Displaying publications 1 - 20 of 317 in total

Abstract:
Sort:
  1. Teoh WK, Salleh FM, Shahir S
    3 Biotech, 2017 Jun;7(2):97.
    PMID: 28560637 DOI: 10.1007/s13205-017-0740-7
    Microbial arsenite oxidation is an essential biogeochemical process whereby more toxic arsenite is oxidized to the less toxic arsenate. Thiomonas strains represent an important arsenite oxidizer found ubiquitous in acid mine drainage. In the present study, the arsenite oxidase gene (aioBA) was cloned from Thiomonas delicata DSM 16361, expressed heterologously in E. coli and purified to homogeneity. The purified recombinant Aio consisted of two subunits with the respective molecular weights of 91 and 21 kDa according to SDS-PAGE. Aio catalysis was optimum at pH 5.5 and 50-55 °C. Aio exhibited stability under acidic conditions (pH 2.5-6). The V max and K m values of the enzyme were found to be 4 µmol min(-1) mg(-1) and 14.2 µM, respectively. SDS and Triton X-100 were found to inhibit the enzyme activity. The homology model of Aio showed correlation with the acidophilic adaptation of the enzyme. This is the first characterization studies of Aio from a species belonging to the Thiomonas genus. The arsenite oxidase was found to be among the acid-tolerant Aio reported to date and has the potential to be used for biosensor and bioremediation applications in acidic environments.
    Matched MeSH terms: Molecular Weight
  2. Che HX, Yeap SP, Osman MS, Ahmad AL, Lim J
    ACS Appl Mater Interfaces, 2014 Oct 8;6(19):16508-18.
    PMID: 25198872 DOI: 10.1021/am5050949
    The synthesis of nanocomposite with controlled surface morphology plays a key role for pollutant removal from aqueous environments. The influence of the molecular size of the polyelectrolyte in synthesizing silica-iron oxide core-shell nanocomposite with open shell structure was investigated by using dynamic light scattering, atomic force microscopy, and quartz crystal microbalance with dissipation (QCM-D). Here, poly(diallydimethylammonium chloride) (PDDA) was used to promote the attachment of iron oxide nanoparticles (IONPs) onto the silica surface to assemble a nanocomposite with magnetic and catalytic bifunctionality. High molecular weight PDDA tended to adsorb on silica colloid, forming a more extended conformation layer than low molecular weight PDDA. Subsequent attachment of IONPs onto this extended PDDA layer was more randomly distributed, forming isolated islands with open space between them. By taking amoxicillin, an antibiotic commonly found in pharmaceutical waste, as the model system, better removal was observed for silica-iron oxide nanocomposite with a more extended open shell structure.
    Matched MeSH terms: Molecular Weight
  3. Saadatnia G, Mohamed Z, Ghaffarifar F, Osman E, Moghadam ZK, Noordin R
    APMIS, 2012 Jan;120(1):47-55.
    PMID: 22151308 DOI: 10.1111/j.1600-0463.2011.02810.x
    Infection with Toxoplasma gondii is widespread and important in humans, especially pregnant women and immunosuppressed patients. A panel of tests is usually required for diagnosis toxoplasmosis. Excretory secretory antigen (ESA) is highly immunogenic, and thus it is a good candidate for investigation into new infection markers. ESA was prepared from tachyzoites of RH strain of T. gondii by mice intraperitoneal infection. Sera were obtained from several categories of individuals who differed in their status of anti-Toxoplasma IgM, IgG and IgG avidity antibodies. The ESA was subjected to SDS-PAGE, two-dimensional gel electrophoresis and Western blot analysis. Antigenic bands of approximate molecular weights of 12, 20 and 30 kDa, when probed with anti-human IgM-HRP and IgA-HRP, showed good potential as infection markers. The highest sensitivity of the bands was 98.7% with combination of IgM and IgA blots with sera of patients with anti-Toxoplasma IgM+ IgG+. The specificities were 84% and 70% with sera from other infections and healthy controls in IgM blots and IgA blots respectively. By mass spectrometry, the 12 kDa protein was identified as thioredoxin. The two top proteins identified for 20 kDa molecule were microneme protein 10 and dense granule protein 7; whereas that for 30 kDa were phosphoglycerate mutase 1 and phosphoglycerate mutase.
    Matched MeSH terms: Molecular Weight
  4. M.A.M. Ishak, M.T. Safian, Z.A. Ghani, K. Ismail
    ASM Science Journal, 2013;7(1):7-17.
    MyJurnal
    Solvent flow reactor system was introduced into the extraction system to increase the system efficiency and enhance the extraction yield by adding fresh solvent during the extraction processes. The liquefaction experiment was carried out at various flow-rates (1, 3 and 5 ml/min), reaction times (30, 45 and 60 min) and reaction temperatures (300ºC, 350ºC, 400ºC, 420ºC and 450ºC) with tetralin as solvent. Despite the ability of adding fresh solvent into the extraction process, the conversion of oil+gas was still considered to be low as there was ~25% of coal extracts left to be converted into low molecular weight compounds. One possible option to increase the oil yield is by applying catalyst that will further break up the coal extracts into small molecular weight compounds. In this study, a second reactor was introduced consisting of catalyst (NiSiO2) assuming that the catalyst would interact more effectively with coal extracts rather than the coal itself. In the
    absence of catalyst, the oil yield was 55%. By introducing the Ni catalyst, the oil yield increased by 15%. Further analysis of GCMS showed that the oil from catalytic liquefaction gave out more low molecular weight compounds in comparison to the un-catalytic liquefaction oil.
    Matched MeSH terms: Molecular Weight
  5. Salleh, R.M., Djauhari, M.A.
    ASM Science Journal, 2012;6(1):1-13.
    MyJurnal
    A monitoring procedure was introduced for process variability in a multivariate setting based on individual observations which was a combination of (i) robust high breakdown point approach in the set-up stage to determine the reference sample and (ii) the use of Wilks chart in the mass production stage. This setting is what the Malaysian manufacturing industry is currently lacking in, especially when a robust approach must be used. The advantage of this procedure was revealed by using the case of a female shrouded connector production process in a Malaysian industry. Moreover, this procedure could also be used in any process quality monitoring and for any industry. A recommendation for quality practitioners was also addressed.
    Matched MeSH terms: Molecular Weight
  6. Ramesh, S., Shanti, R., Chin, S.F.
    ASM Science Journal, 2011;5(1):19-26.
    MyJurnal
    In this present study, a series of polymer electrolyte thin films were synthesized by incorporating different ratios of lithium triflate (LiCF3SO3) in a low molecular weight polyvinyl chloride (PVC) matrix by the solution casting technique. The incorporation of LiCF3SO3 suppressed the high degree of crystallinity in PVC enabling the system to possess an appreciable ionic conductivity. The ionic conductivity of the samples, with different LiCF3SO3 content, was determined by the aid of ac impedance spectroscopy. The highest ionic conductivity of 4.04  10–9 S cm–1 was identified for the composition of PVC: LiCF3SO3 (75:25). Further understanding of the ionic conductivity mechanism was based on temperature-dependent conductivity data which obeyed Arrhenius theory, indicating that the ionic conductivity enhancement was thermally assisted. The possible dipole-dipole interaction between the chemical constituents was confirmed with changes in cage peak, analysed using Fourier transform infrared spectroscopy.
    Matched MeSH terms: Molecular Weight
  7. Liu J, Tan CSY, Yu Z, Li N, Abell C, Scherman OA
    Adv Mater, 2017 Jun;29(22).
    PMID: 28370560 DOI: 10.1002/adma.201605325
    Recent progress on highly tough and stretchable polymer networks has highlighted the potential of wearable electronic devices and structural biomaterials such as cartilage. For some given applications, a combination of desirable mechanical properties including stiffness, strength, toughness, damping, fatigue resistance, and self-healing ability is required. However, integrating such a rigorous set of requirements imposes substantial complexity and difficulty in the design and fabrication of these polymer networks, and has rarely been realized. Here, we describe the construction of supramolecular polymer networks through an in situ copolymerization of acrylamide and functional monomers, which are dynamically complexed with the host molecule cucurbit[8]uril (CB[8]). High molecular weight, thus sufficient chain entanglement, combined with a small-amount dynamic CB[8]-mediated non-covalent crosslinking (2.5 mol%), yields extremely stretchable and tough supramolecular polymer networks, exhibiting remarkable self-healing capability at room temperature. These supramolecular polymer networks can be stretched more than 100× their original length and are able to lift objects 2000× their weight. The reversible association/dissociation of the host-guest complexes bestows the networks with remarkable energy dissipation capability, but also facile complete self-healing at room temperature. In addition to their outstanding mechanical properties, the networks are ionically conductive and transparent. The CB[8]-based supramolecular networks are synthetically accessible in large scale and exhibit outstanding mechanical properties. They could readily lead to the promising use as wearable and self-healable electronic devices, sensors and structural biomaterials.
    Matched MeSH terms: Molecular Weight
  8. Saheb Sharif-Askari F, Syed Sulaiman SA, Saheb Sharif-Askari N
    Adv Exp Med Biol, 2017;906:101-114.
    PMID: 27628006
    Patients with chronic kidney disease (CKD) are at increased risk for both thrombotic events and bleeding. The early stages of CKD are mainly associated with prothrombotic tendency, whereas in its more advanced stages, beside the prothrombotic state, platelets can become dysfunctional due to uremic-related toxin exposure leading to an increased bleeding tendency. Patients with CKD usually require anticoagulation therapy for treatment or prevention of thromboembolic diseases. However, this benefit could easily be offset by the risk of anticoagulant-induced bleeding. Treatment of patients with CKD should be based on evidence from randomized clinical trials, but usually CKD patients are excluded from these trials. In the past, unfractionated heparins were the anticoagulant of choice for patients with CKD because of its independence of kidney elimination. However, currently low-molecular-weight heparins have largely replaced the use of unfractionated heparins owing to fewer incidences of heparin-induced thrombocytopenia and bleeding. We undertook this review in order to explain the practical considerations for the management of anticoagulation in these high risk population.
    Matched MeSH terms: Heparin, Low-Molecular-Weight/administration & dosage; Heparin, Low-Molecular-Weight/pharmacokinetics*
  9. Yeang HY, Ward MA, Zamri AS, Dennis MS, Light DR
    Allergy, 1998 May;53(5):513-9.
    PMID: 9636811
    Separate studies have reported spina bifida patients to be especially allergic to proteins of 27 and 23 kDa found in the serum of centrifuged natural rubber latex. An insoluble latex protein located on the surface of small rubber particles, Hev b 3, has similarly been found to be allergenic to spina bifida patients. In this study, internal amino acid sequences of Hev b 3 showed similarity to the published sequences for the 27- and 23-kDa latex proteins. The latter allergens are hence identified as Hev b 3. Determination of the molecular weight of Hev b 3 revealed various species of 22-23 kDa. The consistent gaps of about 266 Da observed between various forms of the intact protein suggest that the protein undergoes post-translational modification. To determine whether Hev b 3 also occurs in a soluble form in the latex serum, its presence in molecular-filtered serum was checked by ELISA and Western blot. The results showed Hev b 3 to be largely absent in the C-serum from fresh latex. The protein is therefore insoluble in its native state. However, a small amount of the solubilized protein was detected in ammonia-stabilized latex (commonly used in the manufacture of latex products).
    Matched MeSH terms: Molecular Weight
  10. Hoe, S.Z., Pendek, R., Lam, S.K., Rahim, Z.H.A.
    Ann Dent, 1997;4(1):-.
    MyJurnal
    Human saliva contains a large number of proteins which can be separated using polyacrylamide gel electrophoresis (PAGE). In this study the protein profiles of whole saliva of diabetic and non-diabetic were compared. Considerable variations between individuals in the protein profiles were observed. The saliva from diabetic patients appeared to have more of proline-rich protein bands in the molecular weight region below 56 KOa. Further investigations using individual gland saliva should be carried out.
    Matched MeSH terms: Molecular Weight
  11. Ansari NF, Amirul AA
    Appl Biochem Biotechnol, 2013 Jun;170(3):690-709.
    PMID: 23604967 DOI: 10.1007/s12010-013-0216-0
    Polyhydroxyalkanoates (PHAs) are hydrophobic biodegradable thermoplastics that have received considerable attention in biomedical applications due to their biocompatibility, mechanical properties, and biodegradability. In this study, the degradation rate was regulated by optimizing the interaction of parameters that influence the enzymatic degradation of P(3HB) film using response surface methodology (RSM). The RSM model was experimentally validated yielding a maximum 21 % weight loss, which represents onefold increment in percentage weight loss in comparison with the conventional method. By using the optimized condition, the enzymatic degradation by an extracellular PHA depolymerase from Acidovorax sp. DP5 was studied at 37 °C and pH 9.0 on different types of PHA films with various monomer compositions. Surface modification of scaffold was employed using enzymatic technique to create highly porous scaffold with a large surface to volume ratio, which makes them attractive as potential tissue scaffold in biomedical field. Scanning electron microscopy revealed that the surface of salt-leached films was more porous compared with the solvent-cast films, and hence, increased the degradation rate of salt-leached films. Apparently, enzymatic degradation behaviors of PHA films were determined by several factors such as monomer composition, crystallinity, molecular weight, porosity, and roughness of the surface. The hydrophilicity and water uptake of degraded salt-leached film of P(3HB-co-70%4HB) were enhanced by incorporating chitosan or alginate. Salt-leached technique followed by partial enzymatic degradation would enhance the cell attachment and suitable for biomedical as a scaffold.
    Matched MeSH terms: Molecular Weight
  12. Ramachandran H, Iqbal NM, Sipaut CS, Abdullah AA
    Appl Biochem Biotechnol, 2011 Jul;164(6):867-77.
    PMID: 21302147 DOI: 10.1007/s12010-011-9180-8
    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)] terpolymer was produced using Cupriavidus sp. USMAA2-4 via one-step cultivation process through combination of various carbon sources such as 1,4-butanediol or γ-butyrolactone with either 1-pentanol, valeric acid, or 1-propanol. Oleic acid was added to increase the biomass production. The composition of 3HV and 4HB monomers were greatly affected by the concentration of 1,4-butanediol and 1-pentanol. Terpolymers with 3HV and 4HB molar fractions ranging from 2 to 41 mol.% and 5 to 31 mol.%, respectively, were produced by varying the concentration of carbon precursors. The thermal and mechanical properties of the terpolymers containing different proportions of the constituent monomers were characterized using gel permeation chromatography (GPC), DSC, and tensile machine. GPC analysis showed that the molecular weights (M (w)) of the terpolymer produced were within the range of 346 to 1,710 kDa. The monomer compositions of 3HV and 4HB were also found to have great influences on the thermal and mechanical properties of the terpolymer P(3HB-co-3HV-co-4HB) produced.
    Matched MeSH terms: Molecular Weight
  13. Lim SP, Gan SN, Tan IK
    Appl Biochem Biotechnol, 2005 Jul;126(1):23-33.
    PMID: 16014996
    Bacterial polyhydroxyalkanoates (PHAs) are perceived to be a suitable alternative to petrochemical plastics because they have similar material properties, are environmentally degradable, and are produced from renewable resources. In this study, the in situ degradation of medium-chain-length PHA (PHAMCL) films in tropical forest and mangrove soils was assessed. The PHAMCL was produced by Pseudomonas putida PGA1 using saponified palm kernel oil (SPKO) as the carbon source. After 112 d of burial, there was 16.7% reduction in gross weight of the films buried in acidic forest soil (FS), 3.0% in the ones buried in alkaline forest soil by the side of a stream (FSst) and 4.5% in those buried in mangrove soil (MS). There was a slight decrease in molecular weight for the films buried in FS but not for the films buried in FSst and in MS. However, no changes were observed for the melting temperature, glass transition temperature, monomer compositions, structure, and functional group analyses of the films from any of the burial sites during the test period. This means that the integral properties of the films were maintained during that period and degradation was by surface erosion. Scanning electron microscopy of the films from the three sites revealed holes on the film surfaces which could be attributed to attack by microorganisms and bigger organisms such as detritivores. For comparison purposes, films of polyhydroxybutyrate (PHB), a short-chain-length PHA, and polyethylene (PE) were buried together with the PHAMCL films in all three sites. The PHB films disintegrated completely in MS and lost 73.5% of their initial weight in FSst, but only 4.6% in FS suggesting that water movement played a major role in breaking up the brittle PHB films. The PE films did not register any weight loss in any of the test sites.
    Matched MeSH terms: Molecular Weight
  14. Shantini K, Yahya AR, Amirul AA
    Appl Biochem Biotechnol, 2015 Jul;176(5):1315-34.
    PMID: 25951779 DOI: 10.1007/s12010-015-1648-5
    Copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] has been the center of attention in the bio-industrial fields, as it possesses superior mechanical properties compared to poly(3-hydroxybutyrate) [P(3HB)]. The usage of oleic acid and 1-pentanol was exploited as the carbon source for the production of P(3HB-co-3HV) copolymer by using a locally isolated strain Cupriavidus sp. USMAA2-4. In this study, the productivity of polyhydroxyalkanoate (PHA) was improved by varying the frequency of feeding in fed-batch culture. The highest productivity (0.48 g/L/h) that represents 200 % increment was obtained by feeding the carbon source and nitrogen source three times and also by considering the oxygen uptake rate (OUR) and oxygen transfer rate (OTR). A significantly higher P(3HB-co-3HV) concentration of 25.7 g/L and PHA content of 66 wt% were obtained. The 3-hydroxyvalerate (3HV) monomer composition obtained was 24 mol% with the growth of 13.3 g/L. The different frequency of feeding carried out has produced a blend copolymer and has broadened the monomer distribution. In addition, increase in number of granules was also observed as the frequency of feeding increases. In general, the most glaring increment in productivity offer advantage for industrial P(3HB-co-3HV) production, and it is crucial in developing cost-effective processes for commercialization.
    Matched MeSH terms: Molecular Weight
  15. Ali SM, Siddiqui R, Ong SK, Shah MR, Anwar A, Heard PJ, et al.
    Appl Microbiol Biotechnol, 2017 Jan;101(1):253-286.
    PMID: 27743045 DOI: 10.1007/s00253-016-7872-2
    Infectious diseases remain a significant threat to human health, contributing to more than 17 million deaths, annually. With the worsening trends of drug resistance, there is a need for newer and more powerful antimicrobial agents. We hypothesized that animals living in polluted environments are potential sources of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of microbes, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances. Here, we characterized antibacterial properties in extracts of various body organs of cockroaches (Periplaneta americana) and showed potent antibacterial activity in crude brain extract against methicillin-resistant Staphylococcus aureus and neuropathogenic Escherichia coli K1. The size-exclusion spin columns revealed that the active compound(s) are less than 10 kDa in molecular mass. Using cytotoxicity assays, it was observed that pre-treatment of bacteria with lysates inhibited bacteria-mediated host cell cytotoxicity. Using spectra obtained with LC-MS on Agilent 1290 infinity liquid chromatograph, coupled with an Agilent 6460 triple quadruple mass spectrometer, tissues lysates were analysed. Among hundreds of compounds, only a few homologous compounds were identified that contained the isoquinoline group, chromene derivatives, thiazine groups, imidazoles, pyrrole-containing analogs, sulfonamides, furanones, and flavanones and known to possess broad-spectrum antimicrobial properties and anti-inflammatory, anti-tumour, and analgesic properties. Further identification, characterization, and functional studies using individual compounds can act as a breakthrough in developing novel therapeutics against various pathogens including superbugs.
    Matched MeSH terms: Molecular Weight
  16. Kahar UM, Ng CL, Chan KG, Goh KM
    Appl Microbiol Biotechnol, 2016 Jul;100(14):6291-307.
    PMID: 27000839 DOI: 10.1007/s00253-016-7451-6
    Type I pullulanases are enzymes that specifically hydrolyse α-1,6 linkages in polysaccharides. This study reports the analyses of a novel type I pullulanase (PulASK) from Anoxybacillus sp. SK3-4. Purified PulASK (molecular mass of 80 kDa) was stable at pH 5.0-6.0 and was most active at pH 6.0. The optimum temperature for PulASK was 60 °C, and the enzyme was reasonably stable at this temperature. Pullulan was the preferred substrate for PulASK, with 89.90 % adsorbance efficiency (various other starches, 56.26-72.93 % efficiency). Similar to other type I pullulanases, maltotriose was formed on digestion of pullulan by PulASK. PulASK also reacted with β-limit dextrin, a sugar rich in short branches, and formed maltotriose, maltotetraose and maltopentaose. Nevertheless, PulASK was found to preferably debranch long branches at α-1,6 glycosidic bonds of starch, producing amylose, linear or branched oligosaccharides, but was nonreactive against short branches; thus, no reducing sugars were detected. This is surprising as all currently known type I pullulanases produce reducing sugars (predominantly maltotriose) on digesting starch. The closest homologue of PulASK (95 % identity) is a type I pullulanase from Anoxybacillus sp. LM14-2 (Pul-LM14-2), which is capable of forming reducing sugars from starch. With rational design, amino acids 362-370 of PulASK were replaced with the corresponding sequence of Pul-LM14-2. The mutant enzyme formed reducing sugars on digesting starch. Thus, we identified a novel motif involved in substrate specificity in type I pullulanases. Our characterization may pave the way for the industrial application of this unique enzyme.
    Matched MeSH terms: Molecular Weight
  17. Bradley DA, Dahlan KZ, Roy SC
    Appl Radiat Isot, 2000 Oct;53(4-5):921-8.
    PMID: 11003542
    High-energy electron (2.0 MV) and gamma irradiation (60Co) has been used to modify polymeric silicone fluids of initial viscosities in the range, 90-700 cSt. Doses of electron and gamma radiation were delivered at rates of 0.246 kGy s(-1) and 15 kGy h(-1), respectively, exposure times being adjusted to ensure energy deposition in the range 30-360 kGy. Measurements were made using a differential viscometer based on a Bose Institute design. In line with expectation, samples of greater initial molecular weight (and hence greater viscosity), were observed to be more susceptible to radiation induced cross-linking than those of lower molecular weight. The role of dose rate and oxygen diffusion in determining the extent of change is discussed.
    Matched MeSH terms: Molecular Weight
  18. Ponnudurai G, Chung MC, Tan NH
    Arch Biochem Biophys, 1994 Sep;313(2):373-8.
    PMID: 8080286
    The L-amino acid oxidase of Malayan pit viper (Calloselasma rhodostoma) venom was purified to electrophoretic homogeneity. The molecular weight of the enzyme was 132,000 as determined by Sephadex G-200 gel filtration chromatography and 66,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is a glycoprotein, has an isoelectric point of 4.4, and contains 2 mol of flavin mononucleotide per mole of enzyme. The N-terminal amino acid sequence of the enzyme was A-D-D-R-N-P-L-A-E-E-F-Q-E-N-N-Y-E-E-F-L. Kinetic studies suggest the presence of a alkyl side-chain binding site in the enzyme and that the binding site comprises at least four hydrophobic subsites. The characteristics of the binding site differ slightly from those of cobra venom L-amino acid oxidases.
    Matched MeSH terms: Molecular Weight
  19. Yadzir ZH, Misnan R, Abdullah N, Bakhtiar F, Arip M, Murad S
    Asian Pac J Trop Biomed, 2012 Jan;2(1):50-4.
    PMID: 23569834 DOI: 10.1016/S2221-1691(11)60189-5
    OBJECTIVE: To characterize the major allergens of Macrobrachium rosenbergii (giant freshwater prawn).

    METHODS: Raw and cooked extracts of the giant freshwater prawn were prepared. The IgE reactivity pattern was identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting technique with the sera of 20 skin prick test (SPT) positive patients. The major allergen identified was then characterized using the proteomics approach involving a combination of two-dimensional (2-DE) electrophoresis, mass spectrometry and bioinformatics tools.

    RESULTS: SDS-PAGE of the raw extract showed 23 protein bands (15-250 kDa) but those ranging from 40 to 100 kDa were not found in the cooked extract. From immunoblotting experiments, raw and cooked extracts demonstrated 11 and 5 IgE-binding proteins, respectively, with a molecular mass ranging from 15 to 155 kDa. A heat-resistant 36 kDa protein was identified as the major allergen of both extracts. In addition, a 42 kDa heat-sensitive protein was shown to be a major allergen of the raw extract. The 2-DE gel fractionated the prawn proteins to more than 50 different protein spots. Of these, 10 spots showed specific IgE reactivity with patients' sera. Matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis led to identification of 2 important allergens, tropomyosin and arginine kinase.

    CONCLUSIONS: It can be concluded that the availability of such allergens would help in component-based diagnosis and therapy of prawn allergies.

    Matched MeSH terms: Molecular Weight
  20. Paengkoum P, Phonmun T, Liang JB, Huang XD, Tan HY, Jahromi MF
    Asian-Australas J Anim Sci, 2015 Oct;28(10):1442-8.
    PMID: 26323400 DOI: 10.5713/ajas.13.0834
    The objectives of this study were to determine the molecular weight of condensed tannins (CT) extracted from mangosteen (Garcinia mangostana L) peel, its protein binding affinity and effects on fermentation parameters including total gas, methane (CH4) and volatile fatty acids (VFA) production. The average molecular weight (Mw) of the purified CT was 2,081 Da with a protein binding affinity of 0.69 (the amount needed to bind half the maximum bovine serum albumin). In vitro gas production declined by 0.409, 0.121, and 0.311, respectively, while CH4 production decreased by 0.211, 0.353, and 0.549, respectively, with addition of 10, 20, and 30 mg CT/500 mg dry matter (DM) compared to the control (p<0.05). The effects of CT from mangosteen-peel on in vitro DM degradability (IVDMD) and in vitro N degradability was negative and linear (p<0.01). Total VFA, concentrations of acetic, propionic, butyric and isovaleric acids decreased linearly with increasing amount of CT. The aforementioned results show that protein binding affinity of CT from mangosteen-peel is lower than those reported for Leucaena forages, however, the former has stronger negative effect on IVDMD. Therefore, the use of mangosteen-peel as protein source and CH4 mitigating agent in ruminant feed requires further investigations.
    Matched MeSH terms: Molecular Weight
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links