Displaying publications 1 - 20 of 91 in total

Abstract:
Sort:
  1. Gill, Jesjeet Singh, Ahmad Hatim Sulaiman, Mohd Hussain Habil
    ASEAN Journal of Psychiatry, 2007;8(2):64-70.
    MyJurnal
    Objectives: To determine the best possible programme that suits our local setting, to determine the average dose required, and to determine possible problems that can arise from implementing such a programme locally and how best to address them. Methods: The inclusion criteria were those above 18, a positive urine test, the presence of a supportive carer and willing to engage in the programme. Methadone was initiated and observations relating to dose, adverse events, relationship with carers, work performance, crime and high risk behaviours were monitored for 18 weeks. Results: Two thirds of the 45 subjects completed the trial over the 18 week period. No significant adverse events occurred and improvement in relationship with carers and work performance were noted with reduction in crime and high risk behaviours. Conclusion: Methadone is a safe and effective drug that can be used in the local Malaysian setting.
    Matched MeSH terms: Monitoring, Physiologic
  2. Chan YK, Khan ZH
    Acta Anaesthesiol Taiwan, 2011 Dec;49(4):154-8.
    PMID: 22221689 DOI: 10.1016/j.aat.2011.11.002
    Hemodynamic monitoring provides us with refined details about the cardiovascular system. In spite of increased availability of the monitoring process and monitoring equipment, hemodynamic monitoring has not significantly improved survival outcome. Care providers should be cognizant of the role of the cardiovascular system and its importance in oxygen delivery to the cells in order to sustain life. Effective hemodynamic monitoring should be able to delineate how well the system is performing in carrying out this role. Different hemodynamic monitors serve in this role to a different extent; some provide very little information on this. The cardiovascular system is only one of the many systems that need to function optimally for survival; others of equal importance include the integrity of the airway, the breathing process, the adequacy of hemoglobin level, and the health of the tissue bed, especially in the brain and the heart. Advances in hemodynamic monitoring with focus on oxygen delivery at the cellular level may ultimately provide the edge to effective monitoring that can impact outcome.
    Matched MeSH terms: Monitoring, Physiologic*
  3. Abdullah J, Zamzuri I, Awang S, Sayuthi S, Ghani A, Tahir A, et al.
    Acta Neurochir. Suppl., 2005;95:311-4.
    PMID: 16463872
    The monitoring of craniospinal compliance is uncommonly used clinically despite it's value. The Spiegelberg compliance monitor calculates intracranial compliance (C = deltaV/deltaP) from a moving average of small ICP perturbations (deltaP) resulting from a sequence of up to 200 pulses of added volume (deltaV = 0.1 ml, total V = 0.2 ml) made into a double lumen intraventricular balloon catheter. The objective of this study was thus to determine the effectiveness of the decompressive craniectomy done on the worst brain site with regard to compliance (Cl), pressure volume index (PVI), jugular oximetry (SjVo2), autoregulation abnormalties, brain tissue oxygen (TiO2) and cerebral blood flow (CBF). This is a prospective cohort study of 17 patients who were enrolled after consent and approval of the ethics committee between the beginning of the year 2001 and end of the year 2002. For pre and post assessment on compliance and PVI, all 12 patients who survived were reported to become normal after decompressive craniectomy. There is no significant association between pre and post craniectomy assessment in jugular oxymetry (p > 0.05), autoregulation (p > 0.05), intracranial brain oxymetry (p = 0.125) and cerebral blood flow (p = 0.375). Compliance and PVI improved dramatically in all alive patients who received decompressive craniectomy. Compliance and PVI monitoring may be crucial in improving the outcome of severe head injured patients after decompressive craniectomy.
    Matched MeSH terms: Monitoring, Physiologic/methods*; Monitoring, Physiologic/statistics & numerical data
  4. Ling W, Liew G, Li Y, Hao Y, Pan H, Wang H, et al.
    Adv Mater, 2018 Jun;30(23):e1800917.
    PMID: 29633379 DOI: 10.1002/adma.201800917
    The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10-6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs.
    Matched MeSH terms: Monitoring, Physiologic
  5. Wong A, Abu Bakar MZ
    Am J Otolaryngol, 2021 01 04;42(2):102869.
    PMID: 33429183 DOI: 10.1016/j.amjoto.2020.102869
    PURPOSE: The nasocardiac reflex is known but not well researched. We aimed to ascertain the electrocardiographic features of the reflex and to chronologically map the heart rhythm dynamics during nasoendoscopy. We also intended to identify variables that could potentially affect the occurrence of this reflex.

    MATERIAL AND METHODS: A prospective, quasi-experimental physiological study. Selected healthy subjects were observed electrocardiographically for 60 s continuously in three equal phases of 20 s each - baseline phase, nasoendoscopic phase, and recovery phase (post-nasoendoscopy). Heart rate fluctuations were charted, followed by identification of a positive nasocardiac reflex group of subjects and a negative group. Analyses against multiple variables were done.

    RESULTS: A total of 53 subjects were analysed. Heart rate during the baseline phase was 81.0 ± 9.9, nasoendoscopic phase was 72.7 ± 10.1, and recovery phase was 75.2 ± 9.6. Sixteen subjects (30.2%) had a positive nasocardiac reflex, and they remained in sinus rhythm with no occurrences of skipped beats, atrioventricular blocks or asystoles. One subject (1.9%) developed temporary ectopic premature ventricular contractions after nasoendoscopy. No variables were found affecting the incidence of a nasocardiac reflex in our study.

    CONCLUSIONS: The pattern of heart rate dynamics was consistent as heart rates drop rapidly upon endoscope insertion and recover in some measure after its withdrawal. Although all our subjects remained asymptomatic, clinicians should not overlook the risks of a severe nasocardiac reflex when performing nasoendoscopy. We recommend that electrical cardiac monitoring be part of the management of vasovagal responses during in-office endonasal procedures.

    Matched MeSH terms: Monitoring, Physiologic/methods*
  6. Krishna SR
    Anaesth Intensive Care, 1975 May;3(2):122-6.
    PMID: 1155754
    Factors that governed the setting up of a multipurpose, temporary Intensive Care Unit of six beds, in a remote area of Malaysia and the experience of operating it for more than two and a half years are outlined.
    Matched MeSH terms: Monitoring, Physiologic
  7. Shukri A, Green S, Bradley DA
    Appl Radiat Isot, 1995 6 1;46(6-7):625.
    PMID: 7633384
    Matched MeSH terms: Monitoring, Physiologic
  8. Yuen NS, Ibrahim SB
    Arch Pediatr Adolesc Med, 2011 Jun;165(6):563-4.
    PMID: 21646590 DOI: 10.1001/archpediatrics.2011.80-a
    Matched MeSH terms: Monitoring, Physiologic/methods
  9. Idris Z, Ghani RI, Musa KI, Ibrahim MI, Abdullah M, Nyi NN, et al.
    Asian J Surg, 2007 Jul;30(3):200-8.
    PMID: 17638640
    To determine whether or not multimodality monitoring technique would result in a better outcome score than single modality monitoring in severely head injured patients.
    Matched MeSH terms: Monitoring, Physiologic/methods*
  10. Khuan LY, Bister M, Blanchfield P, Salleh YM, Ali RA, Chan TH
    Australas Phys Eng Sci Med, 2006 Jun;29(2):216-28.
    PMID: 16845928
    Increased inter-equipment connectivity coupled with advances in Web technology allows ever escalating amounts of physiological data to be produced, far too much to be displayed adequately on a single computer screen. The consequence is that large quantities of insignificant data will be transmitted and reviewed. This carries an increased risk of overlooking vitally important transients. This paper describes a technique to provide an integrated solution based on a single algorithm for the efficient analysis, compression and remote display of long-term physiological signals with infrequent short duration, yet vital events, to effect a reduction in data transmission and display cluttering and to facilitate reliable data interpretation. The algorithm analyses data at the server end and flags significant events. It produces a compressed version of the signal at a lower resolution that can be satisfactorily viewed in a single screen width. This reduced set of data is initially transmitted together with a set of 'flags' indicating where significant events occur. Subsequent transmissions need only involve transmission of flagged data segments of interest at the required resolution. Efficient processing and code protection with decomposition alone is novel. The fixed transmission length method ensures clutter-less display, irrespective of the data length. The flagging of annotated events in arterial oxygen saturation, electroencephalogram and electrocardiogram illustrates the generic property of the algorithm. Data reduction of 87% to 99% and improved displays are demonstrated.
    Matched MeSH terms: Monitoring, Physiologic/methods*
  11. Khoo CS, Lee D, Park KM, In Lee B, Kim SE
    BMC Neurol, 2019 Dec 30;19(1):348.
    PMID: 31888520 DOI: 10.1186/s12883-019-1575-0
    BACKGROUND: Chest pain as the primary manifestation of epilepsy is extremely rare and has only been reported once to date.

    CASE PRESENTATION: We herein describe a 47-year-old woman with recurrent chest pain for 3 years. The cause of her chest pain remained elusive despite extensive investigations including comprehensive cardiac work-up. She was referred to the neurology clinic for one episode of confusion. Video-electroencephalographic monitoring detected unequivocal ictal changes during her habitual chest pain events. She has remained chest pain (seizure) free with a single antiseizure drug.

    CONCLUSIONS: This case underlines the importance of epilepsy as a rare yet treatable cause of recurrent chest pain. Further studies are required to determine the pathophysiology of ictal chest pain.

    Matched MeSH terms: Monitoring, Physiologic
  12. Malon RS, Sadir S, Balakrishnan M, Córcoles EP
    Biomed Res Int, 2014;2014:962903.
    PMID: 25276835 DOI: 10.1155/2014/962903
    Saliva is increasingly recognised as an attractive diagnostic fluid. The presence of various disease signalling salivary biomarkers that accurately reflect normal and disease states in humans and the sampling benefits compared to blood sampling are some of the reasons for this recognition. This explains the burgeoning research field in assay developments and technological advancements for the detection of various salivary biomarkers to improve clinical diagnosis, management, and treatment. This paper reviews the significance of salivary biomarkers for clinical diagnosis and therapeutic applications, with focus on the technologies and biosensing platforms that have been reported for screening these biomarkers.
    Matched MeSH terms: Monitoring, Physiologic/methods*
  13. Mat Zin S, Md Rasib SZ, Suhaimi FM, Mariatti M
    Biomed Eng Online, 2021 Feb 06;20(1):17.
    PMID: 33549118 DOI: 10.1186/s12938-021-00854-y
    The tongue and hard palate play an essential role in the production of sound during continuous speech. Appropriate tongue and hard palate contacts will ensure proper sound production. Electropalatography, also known as EPG, is a device that can be used to identify the location of the tongue and hard palate contact. It can also be used by a speech therapist to help patients who have a speech disorder. Among the group with the disease are cleft palate, Down syndrome, glossectomy, and autism patients. Besides identifying the contact location, EPG is a useful medical device that has been continuously developed based on the patient's needs and treatment advancement. This article reviews the technology of electropalatography since the early introduction of the device. It also discusses the development process and the drawbacks of the previous EPG systems, resulting in the EPG's upgraded system and technology. This review suggests additional features that can be useful for the future development of the EPG. The latest technology can be incorporated into the EPG system to provide a more convenient method. There are some elements to be considered in the development of EPG's new technology that were discussed in this study. The elements are essential to provide more convenience for the patient during speech therapy. New technology can accelerate the growth of medical devices, particularly on the development of speech therapy equipment that should be based on the latest technological advancements available. Thus, the advanced EPG system suggested in this article may expand the usage of the EPG and serve as a tool to provide speech therapy treatment services and not limited to monitoring only.
    Matched MeSH terms: Monitoring, Physiologic/methods*
  14. Ranjit S, Sim K, Besar R, Tso C
    Biomed Imaging Interv J, 2009 Jul;5(3):e32.
    PMID: 21611059 MyJurnal DOI: 10.2349/biij.5.3.e32
    By applying a hexagon-diamond search (HDS) method to an ultrasound image, the path of an object is able to be monitored by extracting images into macro-blocks, thereby achieving image redundancy is reduced from one frame to another, and also ascertaining the motion vector within the parameters searched. The HDS algorithm uses six search points to form the six sides of the hexagon pattern, a centre point, and a further four search points to create diamond pattern within the hexagon that clarifies the focus of the subject area.
    Matched MeSH terms: Monitoring, Physiologic
  15. Wong, Jackson Sing Ann, Yew, Hoe Tung
    MyJurnal
    In this modern and fast-moving world, elderly’s safety and security have become an important issue. According to the World Population Prospects of the United Nations 2015, there is 12.3 per cent population aged 60 and above globally and it is the fastest growing population at a rate of 3.26 per cent per year. In order to reduce the worries about the elderly living alone at home, Elderly Monitoring System is required for continuous monitoring. “Fall†is one of the critical incidents for the elderly living alone as it causes serious injuries. A fall detection system using global system for mobile communication can help to reduce the time of unaware of their next of kin.
    Matched MeSH terms: Monitoring, Physiologic
  16. Palaniappan R, Sundaraj K, Sundaraj S
    Comput Methods Programs Biomed, 2017 Jul;145:67-72.
    PMID: 28552127 DOI: 10.1016/j.cmpb.2017.04.013
    BACKGROUND: The monitoring of the respiratory rate is vital in several medical conditions, including sleep apnea because patients with sleep apnea exhibit an irregular respiratory rate compared with controls. Therefore, monitoring the respiratory rate by detecting the different breath phases is crucial.

    OBJECTIVES: This study aimed to segment the breath cycles from pulmonary acoustic signals using the newly developed adaptive neuro-fuzzy inference system (ANFIS) based on breath phase detection and to subsequently evaluate the performance of the system.

    METHODS: The normalised averaged power spectral density for each segment was fuzzified, and a set of fuzzy rules was formulated. The ANFIS was developed to detect the breath phases and subsequently perform breath cycle segmentation. To evaluate the performance of the proposed method, the root mean square error (RMSE) and correlation coefficient values were calculated and analysed, and the proposed method was then validated using data collected at KIMS Hospital and the RALE standard dataset.

    RESULTS: The analysis of the correlation coefficient of the neuro-fuzzy model, which was performed to evaluate its performance, revealed a correlation strength of r = 0.9925, and the RMSE for the neuro-fuzzy model was found to equal 0.0069.

    CONCLUSION: The proposed neuro-fuzzy model performs better than the fuzzy inference system (FIS) in detecting the breath phases and segmenting the breath cycles and requires less rules than FIS.

    Matched MeSH terms: Monitoring, Physiologic/methods*
  17. Hasan SS, Kow CS, Bain A, Kavanagh S, Merchant HA, Hadi MA
    Expert Opin Pharmacother, 2021 Feb;22(2):229-240.
    PMID: 33054481 DOI: 10.1080/14656566.2020.1837114
    INTRODUCTION: Diabetes mellitus is one of the most prevalent comorbidities identified in patients with coronavirus disease 2019 (COVID-19). This article aims to discuss the pharmacotherapeutic considerations for the management of diabetes in hospitalized patients with COVID-19.

    AREAS COVERED: We discussed various aspects of pharmacotherapeutic management in hospitalized patients with COVID-19: (i) susceptibility and severity of COVID-19 among individuals with diabetes, (ii) glycemic goals for hospitalized patients with COVID-19 and concurrent diabetes, (iii) pharmacological treatment considerations for hospitalized patients with COVID-19 and concurrent diabetes.

    EXPERT OPINION: The glycemic goals in patients with COVID-19 and concurrent type 1 (T1DM) or type 2 diabetes (T2DM) are to avoid disruption of stable metabolic state, maintain optimal glycemic control, and prevent adverse glycemic events. Patients with T1DM require insulin therapy at all times to prevent ketosis. The management strategies for patients with T2DM include temporary discontinuation of certain oral antidiabetic agents and consideration for insulin therapy. Patients with T2DM who are relatively stable and able to eat regularly may continue with oral antidiabetic agents if glycemic control is satisfactory. Hyperglycemia may develop in patients with systemic corticosteroid treatment and should be managed upon accordingly.

    Matched MeSH terms: Monitoring, Physiologic
  18. Abu Bakar, B., Abdul Rahman, M.S., Teoh, C.C., Abdullah, M.Z.K., Ismail, R.
    Food Research, 2018;2(2):177-182.
    MyJurnal
    Rice plant population density is a key indicator in determining the crop setting and fertilizer application rate. It is therefore essential that the population density is monitored to ensure that a correct crop management decision is taken. The conventional method of determining plant population is by manually counting the total number of rice plant tillers in a 25 cm x 25 cm square frame. Sampling is done by randomly choosing several different locations within a plot to perform tiller counting. This sampling method is time consuming, labour intensive and costly. An alternative fast estimating method was developed to overcome this issue. The method relies on measuring the outer circumference
    or ambit of the contained rice plants in a 25 cm x 25 cm square frame to determine the number of tillers within that square frame. Data samples of rice variety MR219 were collected from rice plots in the Muda granary area, Sungai Limau Dalam, Kedah. The data were taken at 50 days and 70 days after seeding (DAS). A total of 100 data samples were collected for each sampling day. A good correlation was obtained for the variety of 50 DAS and 70 DAS. The model was then verified by taking 100 samples with the latching strap for 50 DAS and 70 DAS. As a result, this technique can be used as a fast, economical and practical alternative to manual tiller counting. The technique can potentially be used in the development of an electronic sensing system to estimate paddy plant population density.
    Matched MeSH terms: Monitoring, Physiologic
  19. Zhang ZY, Yang WY, Dominiczak AF, Wang JG, Wu Y, Almustafa B, et al.
    Hypertension, 2019 11;74(5):1064-1067.
    PMID: 31422692 DOI: 10.1161/HYPERTENSIONAHA.119.13206
    Matched MeSH terms: Monitoring, Physiologic/methods
  20. Kedung Fletcher, Anding Nyuak, Tan Phei Yee
    MyJurnal
    There is lacking technology application in black pepper farming to automate daily routine activities in monitoring black pepper vines growth and nutrient need. With the revolution of Industry 4.0 (IR4.0), and tremendous improvement in the internet of things (IoT), the application of precision agriculture to pepper farming is a thing to consider for its benefit. This paper to explore the use of IoT to monitor fertilizer requirement for pepper vines using pH sensor. The pH sensor attached to Raspberry Pi 3 will be collecting the data and forwarding it to the cloud database for farmer reference and take decision based on data presented in form of a digital report from the database. The Python environment provides the space for coding in Raspberry Pi. SQL and PHP software is used to design the user interface and data management in the relational database management system. The information about pH provides a better understanding of how pH parameter affects the growth of pepper vines. The farmer will be able to access the information anywhere and anytime. Therefore, our proposed system will greatly help the pepper farmers in Sarawak in managing the usage of fertilizer as a way to minimize farm inputs, thus increase their profit.
    Matched MeSH terms: Monitoring, Physiologic
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links