Displaying publications 1 - 20 of 91 in total

Abstract:
Sort:
  1. Manogaran G, Shakeel PM, Fouad H, Nam Y, Baskar S, Chilamkurti N, et al.
    Sensors (Basel), 2019 Jul 09;19(13).
    PMID: 31324070 DOI: 10.3390/s19133030
    According to the survey on various health centres, smart log-based multi access physical monitoring system determines the health conditions of humans and their associated problems present in their lifestyle. At present, deficiency in significant nutrients leads to deterioration of organs, which creates various health problems, particularly for infants, children, and adults. Due to the importance of a multi access physical monitoring system, children and adolescents' physical activities should be continuously monitored for eliminating difficulties in their life using a smart environment system. Nowadays, in real-time necessity on multi access physical monitoring systems, information requirements and the effective diagnosis of health condition is the challenging task in practice. In this research, wearable smart-log patch with Internet of Things (IoT) sensors has been designed and developed with multimedia technology. Further, the data computation in that smart-log patch has been analysed using edge computing on Bayesian deep learning network (EC-BDLN), which helps to infer and identify various physical data collected from the humans in an accurate manner to monitor their physical activities. Then, the efficiency of this wearable IoT system with multimedia technology is evaluated using experimental results and discussed in terms of accuracy, efficiency, mean residual error, delay, and less energy consumption. This state-of-the-art smart-log patch is considered as one of evolutionary research in health checking of multi access physical monitoring systems with multimedia technology.
    Matched MeSH terms: Monitoring, Physiologic/instrumentation*; Monitoring, Physiologic/methods*
  2. Noraishah Othmanl, Nor Pa' iza M. Hasani, Juhari Mohd Yusof, Roslan Yahya, Mohd Amirul Syafiq
    MyJurnal
    Flow measurement is a critical element for liquid resources monitoring for various applications in many industrial systems. The purposes of the study are to determine the flow rate of liquid system in flow rig using radiotracer techniques and to compare the result with that obtained by the conventional flow meters. The flow rig consists of 58.7m long and 20cm diameter pipeline that can accommodate about 0.296m3 of liquid. Tap water was used as liquid flow in pipeline and conventional flow meters were also installed at the flow rig. Radiotracer was injected as a sharp pulse into the inlet p.peline. The pulse was monitored at the inlet and various points along the outlet pipeline using collimated scintillation detector. The peak to peak and total count methods were applied for radiotracer techniques and showed the comparable results with conventional flow meter.
    Matched MeSH terms: Monitoring, Physiologic
  3. Chan WF, Sinnathuray TA, Rahman MG
    Int Surg, 1973 Nov-Dec;58(11):784-6.
    PMID: 4796092
    Matched MeSH terms: Monitoring, Physiologic
  4. Chua SL, Foo LK
    Sensors (Basel), 2017 Aug 18;17(8).
    PMID: 28820438 DOI: 10.3390/s17081902
    Activity recognition in smart homes aims to infer the particular activities of the inhabitant, the aim being to monitor their activities and identify any abnormalities, especially for those living alone. In order for a smart home to support its inhabitant, the recognition system needs to learn from observations acquired through sensors. One question that often arises is which sensors are useful and how many sensors are required to accurately recognise the inhabitant's activities? Many wrapper methods have been proposed and remain one of the popular evaluators for sensor selection due to its superior accuracy performance. However, they are prohibitively slow during the evaluation process and may run into the risk of overfitting due to the extent of the search. Motivated by this characteristic, this paper attempts to reduce the cost of the evaluation process and overfitting through tree alignment. The performance of our method is evaluated on two public datasets obtained in two distinct smart home environments.
    Matched MeSH terms: Monitoring, Physiologic
  5. Pahl C, Ebelt H, Sayahkarajy M, Supriyanto E, Soesanto A
    J Med Syst, 2017 Aug 15;41(10):148.
    PMID: 28812247 DOI: 10.1007/s10916-017-0786-4
    This paper proposes a robotic Transesophageal Echocardiography (TOE) system concept for Catheterization Laboratories. Cardiovascular disease causes one third of all global mortality. TOE is utilized to assess cardiovascular structures and monitor cardiac function during diagnostic procedures and catheter-based structural interventions. However, the operation of TOE underlies various conditions that may cause a negative impact on performance, the health of the cardiac sonographer and patient safety. These factors have been conflated and evince the potential of robot-assisted TOE. Hence, a careful integration of clinical experience and Systems Engineering methods was used to develop a concept and physical model for TOE manipulation. The motion of different actuators of the fabricated motorized system has been tested. It is concluded that the developed medical system, counteracting conflated disadvantages, represents a progressive approach for cardiac healthcare.
    Matched MeSH terms: Monitoring, Physiologic
  6. Quek DK, Ong SB
    Singapore Med J, 1990 Apr;31(2):185-8.
    PMID: 2371586
    A 26-year old woman with congenital complete heart block and prolonged QT interval presented for the first time with syncopal attacks associated with torsade de pointes in adulthood. Cardioversion followed by overdrive pacing was needed to finally control the unstable rhythm. During episodes of non-capture, paraoxysms of torsade de pointes leading to ventricular flutter were recorded by a 24-hour ambulatory electrocardiographic monitoring. Beta-blockade and permanent ventricular pacing finally abolished both the syncopal attacks and the torsade phenomena. The prognosis of congenital complete heart block associated with QT prolongation resembles that of the Romano-Ward syndrome. Recognition of this variant would facilitate earlier treatment of this rare but potentially lethal disorder.
    Matched MeSH terms: Monitoring, Physiologic
  7. Jazayeri SMHM, Jamshidnezhad A
    Malays J Med Sci, 2019 Jan;26(1):5-14.
    PMID: 30914890 DOI: 10.21315/mjms2019.26.1.2
    The development of intelligent software in recent years has grown rapidly. Mobile health has become a field of interest as a tool for childcare, especially as a means for parents of children with diverse diseases and a resource to promote their health conditions. Current systematic review was conducted to survey the functionalities of available applications on the mobile platform to support pediatrics intelligent diagnosis and children healthcare. Results which met the inclusion criteria (such as patient monitoring, decision support, diagnosis support) were obtained, assessed and organised into a checklist. In this study, 379 potential apps were identified using the search feature in Apple App Store and Google Play Store. After careful consideration of the selected apps, only three (Google Play Store) and one (iTunes Store), fulfilled all the general inclusion criteria and special criteria, such as intelligence tools. The results showed that Artificial Intelligence (AI) was used minimally in diagnostic apps due to a limited amount of mobile hardware and software, such as the reliable programming of intelligent algorithms.
    Matched MeSH terms: Monitoring, Physiologic
  8. Miura F, Okamoto K, Takada T, Strasberg SM, Asbun HJ, Pitt HA, et al.
    J Hepatobiliary Pancreat Sci, 2018 Jan;25(1):31-40.
    PMID: 28941329 DOI: 10.1002/jhbp.509
    The initial management of patients with suspected acute biliary infection starts with the measurement of vital signs to assess whether or not the situation is urgent. If the case is judged to be urgent, initial medical treatment should be started immediately including respiratory/circulatory management if required, without waiting for a definitive diagnosis. The patient's medical history is then taken; an abdominal examination is performed; blood tests, urinalysis, and diagnostic imaging are carried out; and a diagnosis is made using the diagnostic criteria for cholangitis/cholecystitis. Once the diagnosis has been confirmed, initial medical treatment should be started immediately, severity should be assessed according to the severity grading criteria for acute cholangitis/cholecystitis, and the patient's general status should be evaluated. For mild acute cholangitis, in most cases initial treatment including antibiotics is sufficient, and most patients do not require biliary drainage. However, biliary drainage should be considered if a patient does not respond to initial treatment. For moderate acute cholangitis, early endoscopic or percutaneous transhepatic biliary drainage is indicated. If the underlying etiology requires treatment, this should be provided after the patient's general condition has improved; endoscopic sphincterotomy and subsequent choledocholithotomy may be performed together with biliary drainage. For severe acute cholangitis, appropriate respiratory/circulatory management is required. Biliary drainage should be performed as soon as possible after the patient's general condition has been improved by initial treatment and respiratory/circulatory management. Free full articles and mobile app of TG18 are available at: http://www.jshbps.jp/modules/en/index.php?content_id=47. Related clinical questions and references are also included.
    Matched MeSH terms: Monitoring, Physiologic/methods
  9. Khalil SF, Mohktar MS, Ibrahim F
    Sensors (Basel), 2014;14(6):10895-928.
    PMID: 24949644 DOI: 10.3390/s140610895
    Bioimpedance analysis is a noninvasive, low cost and a commonly used approach for body composition measurements and assessment of clinical condition. There are a variety of methods applied for interpretation of measured bioimpedance data and a wide range of utilizations of bioimpedance in body composition estimation and evaluation of clinical status. This paper reviews the main concepts of bioimpedance measurement techniques including the frequency based, the allocation based, bioimpedance vector analysis and the real time bioimpedance analysis systems. Commonly used prediction equations for body composition assessment and influence of anthropometric measurements, gender, ethnic groups, postures, measurements protocols and electrode artifacts in estimated values are also discussed. In addition, this paper also contributes to the deliberations of bioimpedance analysis assessment of abnormal loss in lean body mass and unbalanced shift in body fluids and to the summary of diagnostic usage in different kinds of conditions such as cardiac, pulmonary, renal, and neural and infection diseases.
    Matched MeSH terms: Monitoring, Physiologic/instrumentation*; Monitoring, Physiologic/methods*
  10. Mat Zin S, Md Rasib SZ, Suhaimi FM, Mariatti M
    Biomed Eng Online, 2021 Feb 06;20(1):17.
    PMID: 33549118 DOI: 10.1186/s12938-021-00854-y
    The tongue and hard palate play an essential role in the production of sound during continuous speech. Appropriate tongue and hard palate contacts will ensure proper sound production. Electropalatography, also known as EPG, is a device that can be used to identify the location of the tongue and hard palate contact. It can also be used by a speech therapist to help patients who have a speech disorder. Among the group with the disease are cleft palate, Down syndrome, glossectomy, and autism patients. Besides identifying the contact location, EPG is a useful medical device that has been continuously developed based on the patient's needs and treatment advancement. This article reviews the technology of electropalatography since the early introduction of the device. It also discusses the development process and the drawbacks of the previous EPG systems, resulting in the EPG's upgraded system and technology. This review suggests additional features that can be useful for the future development of the EPG. The latest technology can be incorporated into the EPG system to provide a more convenient method. There are some elements to be considered in the development of EPG's new technology that were discussed in this study. The elements are essential to provide more convenience for the patient during speech therapy. New technology can accelerate the growth of medical devices, particularly on the development of speech therapy equipment that should be based on the latest technological advancements available. Thus, the advanced EPG system suggested in this article may expand the usage of the EPG and serve as a tool to provide speech therapy treatment services and not limited to monitoring only.
    Matched MeSH terms: Monitoring, Physiologic/methods*
  11. Poh AH, Adikan FRM, Moghavvemi M
    Med Biol Eng Comput, 2020 Jun;58(6):1159-1175.
    PMID: 32319030 DOI: 10.1007/s11517-019-02077-9
    The study and applications of in vivo skin optics have been openly documented as early as the year 1954, or possibly earlier. To date, challenges in analyzing the complexities of this field remain, with wide scopes requiring more scrutiny. Recent advances in spectroscopic research and multivariate analytics allow a closer look into applications potentially for detecting or monitoring diseases. One of the challenges in this field is in establishing a reference for applications which correspond to certain bandwidths. This article reviews the scope on past research on skin spectroscopy, and the clinical aspects which have or may have applications on disease detection or enhancing diagnostics. A summary is supplied on the technicalities surrounding the measurements reported in literature, focused towards the wavelength-dependent applications in themes central to the respective research. Analytics on the topology of the papers' data cited in this work is also provided for a statistical perspective. In short, this paper strives to immediately inform the reader with possible applications via the spectroscopic devices at hand. Graphical Abstract .
    Matched MeSH terms: Monitoring, Physiologic/methods
  12. Wong A, Abu Bakar MZ
    Am J Otolaryngol, 2021 01 04;42(2):102869.
    PMID: 33429183 DOI: 10.1016/j.amjoto.2020.102869
    PURPOSE: The nasocardiac reflex is known but not well researched. We aimed to ascertain the electrocardiographic features of the reflex and to chronologically map the heart rhythm dynamics during nasoendoscopy. We also intended to identify variables that could potentially affect the occurrence of this reflex.

    MATERIAL AND METHODS: A prospective, quasi-experimental physiological study. Selected healthy subjects were observed electrocardiographically for 60 s continuously in three equal phases of 20 s each - baseline phase, nasoendoscopic phase, and recovery phase (post-nasoendoscopy). Heart rate fluctuations were charted, followed by identification of a positive nasocardiac reflex group of subjects and a negative group. Analyses against multiple variables were done.

    RESULTS: A total of 53 subjects were analysed. Heart rate during the baseline phase was 81.0 ± 9.9, nasoendoscopic phase was 72.7 ± 10.1, and recovery phase was 75.2 ± 9.6. Sixteen subjects (30.2%) had a positive nasocardiac reflex, and they remained in sinus rhythm with no occurrences of skipped beats, atrioventricular blocks or asystoles. One subject (1.9%) developed temporary ectopic premature ventricular contractions after nasoendoscopy. No variables were found affecting the incidence of a nasocardiac reflex in our study.

    CONCLUSIONS: The pattern of heart rate dynamics was consistent as heart rates drop rapidly upon endoscope insertion and recover in some measure after its withdrawal. Although all our subjects remained asymptomatic, clinicians should not overlook the risks of a severe nasocardiac reflex when performing nasoendoscopy. We recommend that electrical cardiac monitoring be part of the management of vasovagal responses during in-office endonasal procedures.

    Matched MeSH terms: Monitoring, Physiologic/methods*
  13. Wolkow AP, Rajaratnam SMW, Wilkinson V, Shee D, Baker A, Lillington T, et al.
    Sleep Health, 2020 06;6(3):366-373.
    PMID: 32340910 DOI: 10.1016/j.sleh.2020.03.005
    OBJECTIVES: This study examined the influence of a wrist-worn heart rate drowsiness detection device on heavy vehicle driver safety and sleep and its ability to predict driving events under naturalistic conditions.

    DESIGN: Prospective, non-randomized trial.

    SETTING: Naturalistic driving in Malaysia.

    PARTICIPANTS: Heavy vehicle drivers in Malaysia were assigned to the Device (n = 25) or Control condition (n = 34).

    INTERVENTION: Both conditions were monitored for driving events at work over 4-weeks in Phase 1, and 12-weeks in Phase 2. In Phase 1, the Device condition wore the device operated in the silent mode (i.e., no drowsiness alerts) to examine the accuracy of the device in predicting driving events. In Phase 2, the Device condition wore the device in the active mode to examine if drowsiness alerts from the device influenced the rate of driving events (compared to Phase 1).

    MEASUREMENTS: All participants were monitored for harsh braking and harsh acceleration driving events and self-reported sleep duration and sleepiness daily.

    RESULTS: There was a significant decrease in the rate of harsh braking events (Rate ratio = 0.48, p 

    Matched MeSH terms: Monitoring, Physiologic/instrumentation*
  14. Gill, Jesjeet Singh, Ahmad Hatim Sulaiman, Mohd Hussain Habil
    ASEAN Journal of Psychiatry, 2007;8(2):64-70.
    MyJurnal
    Objectives: To determine the best possible programme that suits our local setting, to determine the average dose required, and to determine possible problems that can arise from implementing such a programme locally and how best to address them. Methods: The inclusion criteria were those above 18, a positive urine test, the presence of a supportive carer and willing to engage in the programme. Methadone was initiated and observations relating to dose, adverse events, relationship with carers, work performance, crime and high risk behaviours were monitored for 18 weeks. Results: Two thirds of the 45 subjects completed the trial over the 18 week period. No significant adverse events occurred and improvement in relationship with carers and work performance were noted with reduction in crime and high risk behaviours. Conclusion: Methadone is a safe and effective drug that can be used in the local Malaysian setting.
    Matched MeSH terms: Monitoring, Physiologic
  15. Azudin K, Gan KB, Jaafar R, Ja'afar MH
    Sensors (Basel), 2023 Jul 18;23(14).
    PMID: 37514778 DOI: 10.3390/s23146484
    Not long ago, hearables paved the way for biosensing, fitness, and healthcare monitoring. Smart earbuds today are not only producing sound but also monitoring vital signs. Reliable determination of cardiovascular and pulmonary system information can explore the use of hearables for physiological monitoring. Recent research shows that photoplethysmography (PPG) signals not only contain details on oxygen saturation level (SPO2) but also carry more physiological information including pulse rate, respiration rate, blood pressure, and arterial-related information. The analysis of the PPG signal from the ear has proven to be reliable and accurate in the research setting. (1) Background: The present integrative review explores the existing literature on an in-ear PPG signal and its application. This review aims to identify the current technology and usage of in-ear PPG and existing evidence on in-ear PPG in physiological monitoring. This review also analyzes in-ear (PPG) measurement configuration and principle, waveform characteristics, processing technology, and feature extraction characteristics. (2) Methods: We performed a comprehensive search to discover relevant in-ear PPG articles published until December 2022. The following electronic databases: Institute of Electrical and Electronics Engineers (IEEE), ScienceDirect, Scopus, Web of Science, and PubMed were utilized to conduct the studies addressing the evidence of in-ear PPG in physiological monitoring. (3) Results: Fourteen studies were identified but nine studies were finalized. Eight studies were on different principles and configurations of hearable PPG, and eight studies were on processing technology and feature extraction and its evidence in in-ear physiological monitoring. We also highlighted the limitations and challenges of using in-ear PPG in physiological monitoring. (4) Conclusions: The available evidence has revealed the future of in-ear PPG in physiological monitoring. We have also analyzed the potential limitation and challenges that in-ear PPG will face in processing the signal.
    Matched MeSH terms: Monitoring, Physiologic
  16. Venugopal A, Mohammad R, Koslan MFS, Sayd Bakar SR, Ali A
    Materials (Basel), 2021 May 06;14(9).
    PMID: 34066461 DOI: 10.3390/ma14092414
    The environmental condition in which the Royal Malaysian Airforce is currently operating its aircraft is prone to corrosion. This is due to the high relative humidity and temperature. With most of its aircraft being in the legacy aircraft era, the aircraft's main construction consists of the aluminium 2024 material. However, this material is prone to corrosion, thus reducing fatigue life and leading to fatigue failure. Using the concept of either Safe Life or Damage Tolerance as its fatigue design philosophy, the RMAF adopts the Aircraft Structure Integrity Program (ASIP) to monitor its structural integrity. With the current problem of not having the structural limitation on corrosion-damaged structure, the RMAF has embarked on its fatigue testing method. Finite Element (FE) studies and flight tests were conducted, and the outcome is summarized. The conclusion is that the longeron tested on the aircraft can withstand the operational load, and its yield strength is below the ultimate yield strength of the material. These research outcomes will also enhance the ASIP for other aircraft platforms in the RMAF fleet for its structure life assessment or service life extension program.
    Matched MeSH terms: Monitoring, Physiologic
  17. Oung QW, Muthusamy H, Lee HL, Basah SN, Yaacob S, Sarillee M, et al.
    Sensors (Basel), 2015 Aug 31;15(9):21710-45.
    PMID: 26404288 DOI: 10.3390/s150921710
    Parkinson's Disease (PD) is characterized as the commonest neurodegenerative illness that gradually degenerates the central nervous system. The goal of this review is to come out with a summary of the recent progress of numerous forms of sensors and systems that are related to diagnosis of PD in the past decades. The paper reviews the substantial researches on the application of technological tools (objective techniques) in the PD field applying different types of sensors proposed by previous researchers. In addition, this also includes the use of clinical tools (subjective techniques) for PD assessments, for instance, patient self-reports, patient diaries and the international gold standard reference scale, Unified Parkinson Disease Rating Scale (UPDRS). Comparative studies and critical descriptions of these approaches have been highlighted in this paper, giving an insight on the current state of the art. It is followed by explaining the merits of the multiple sensor fusion platform compared to single sensor platform for better monitoring progression of PD, and ends with thoughts about the future direction towards the need of multimodal sensor integration platform for the assessment of PD.
    Matched MeSH terms: Monitoring, Physiologic
  18. Albahri OS, Albahri AS, Mohammed KI, Zaidan AA, Zaidan BB, Hashim M, et al.
    J Med Syst, 2018 Mar 22;42(5):80.
    PMID: 29564649 DOI: 10.1007/s10916-018-0943-4
    The new and ground-breaking real-time remote monitoring in triage and priority-based sensor technology used in telemedicine have significantly bounded and dispersed communication components. To examine these technologies and provide researchers with a clear vision of this area, we must first be aware of the utilised approaches and existing limitations in this line of research. To this end, an extensive search was conducted to find articles dealing with (a) telemedicine, (b) triage, (c) priority and (d) sensor; (e) comprehensively review related applications and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were checked for articles on triage and priority-based sensor technology in telemedicine. The retrieved articles were filtered according to the type of telemedicine technology explored. A total of 150 articles were selected and classified into two categories. The first category includes reviews and surveys of triage and priority-based sensor technology in telemedicine. The second category includes articles on the three-tiered architecture of telemedicine. Tier 1 represents the users. Sensors acquire the vital signs of the users and send them to Tier 2, which is the personal gateway that uses local area network protocols or wireless body area network. Medical data are sent from Tier 2 to Tier 3, which is the healthcare provider in medical institutes. Then, the motivation for using triage and priority-based sensor technology in telemedicine, the issues related to the obstruction of its application and the development and utilisation of telemedicine are examined on the basis of the findings presented in the literature.
    Matched MeSH terms: Monitoring, Physiologic/methods*
  19. Lai LL, See MH, Rampal S, Ng KS, Chan L
    J Clin Monit Comput, 2019 Dec;33(6):1105-1112.
    PMID: 30915603 DOI: 10.1007/s10877-019-00259-2
    Thermal imbalances are very common during surgery. Hypothermia exposes the patient to post-operative shivering, cardiac dysfunction, coagulopathy, bleeding, wound infection, delayed anesthesia recovery, prolonged hospital stay and increased hospitalization cost. There are many factors contributing to intraoperative hypothermia. This is a prospective cohort study conducted through observation and measurement of pediatric surgical patients' temperature. Convenience sampling methods were used in this study. Initial skin temperature and core temperature at 10 min, 30 min,1 h, 2 h, 3 h, 4 h, 5 h, 6 h and at the end of surgery were recorded. Body temperature was monitored from time of transfer to the operating table until recovery and discharge to the respective pediatric ward. The overall incidence of intraoperative hypothermia was still very high at about 46.6% even though active and passive temperature management were carried out during surgery. Patient's age, body weight, duration of surgery, type of surgery, intraoperative blood loss, type of anesthesia and operating room temperature were factors that contributed to intraoperative hypothermia. Hypothermia is common in surgery, especially in major and long duration surgery. Intraoperative hypothermia can be life threatening if it is not handled carefully. Various methods are used before, during and after surgery to maintain a patient's body temperature within the normothermia range. The use of an active warming device like the Bair Hugger® air-forced warming system seems to be a good method for reducing the risk of intraoperative hypothermia and effectively maintaining body temperature for all major and minor surgeries.
    Matched MeSH terms: Monitoring, Physiologic
  20. Liew BS, Johari SA, Nasser AW, Abdullah J
    Med J Malaysia, 2009 Dec;64(4):280-8.
    PMID: 20954551
    Patients with isolated severe head injury with diffuse axonal injury and without any surgical lesion may be treated safely without cerebral resuscitation and intracranial pressure (ICP) monitoring. Seventy two patients were divided into three groups of patients receiving treatment based on ICP-CPP-targeted, or conservative methods either with or without ventilation support. The characteristics of these three groups were compared based on age, gender, Glasgow Coma Scale (GCS), pupillary reaction to light, computerized tomography scanning according to the Marshall classification, duration of intensive care unit (ICU) stays, Glasgow Outcome Score (GOS) and possible complications. There were higher risk of mortality (p < 0.001), worse GCS improvement upon discharge (p < 0.001) and longer ICU stays (p = 0.016) in ICP group compared to Intubation group. There were no significant statistical differences of GOS at 3rd and 6th months between all three groups.
    Matched MeSH terms: Monitoring, Physiologic
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links