Displaying publications 1 - 20 of 335 in total

Abstract:
Sort:
  1. Goh KW, Say YH
    Tumour Biol., 2015 Sep;36(10):7947-60.
    PMID: 25956278 DOI: 10.1007/s13277-015-3455-6
    γ-synuclein, a neuronal protein of the synuclein family, is involved in carcinogenesis. To investigate its role in colorectal cancer carcinogenesis, we overexpressed γ-synuclein in LS 174T colon adenocarcinoma cell line (termed LS 174T-γsyn). When compared with untransfected/mock transfectants, LS 174T-γsyn had higher mobility in scratch wound assay, tend to scatter more in cell-scattering assay, and had enhanced lamellipodia and filopodia formation in cell-spreading assay. Enhanced adhesion of LS 174T-γsyn to fibronectin and collagen and significantly higher proliferation rate showed that γ-synuclein was able to increase extracellular matrix interaction and promoted proliferation of LS 174T. Higher invasiveness of LS 174T-γsyn was evidenced by enhanced invasion to the bottom of the basement membrane in Boyden chamber assay. However, LS 174T-γsyn were significantly more vulnerable to doxorubicin, vincristine and hydrogen peroxide insults, via apoptotic cell death. LS 174T-γsyn also had reduced anchorage-independent growth as shown by reduced colony formation and reduced anoikis resistance. We found that overexpression of γ-synuclein confers both pro-invasive and doxorubicin-mediated pro-apoptotic properties to LS 174T, where the former was mediated through enhanced cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation, while the latter involved hepatocyte growth factor (HGF) downregulation and subsequent downstream signalling pathways possibly involving extracellular signal-regulated kinases (ERK)1/2, p38α, c-Jun N-terminal kinase (JNK) pan and Signal Transducers and Activators of Transcription (STATs). This unexpected contrasting finding as compared to other similar studies on colon cancer cell lines might be correlated with the degree of tumour advancement from which the cell lines were derived from.
    Matched MeSH terms: Cell Movement/drug effects*
  2. Dahham SS, Tabana Y, Asif M, Ahmed M, Babu D, Hassan LE, et al.
    Int J Mol Sci, 2021 Sep 29;22(19).
    PMID: 34638895 DOI: 10.3390/ijms221910550
    Beta-Caryophyllene (BCP), a naturally occurring sesquiterpene abundantly found in cloves, hops, and cannabis, is the active candidate of a relatively new group of vascular-inhibiting compounds that aim to block existing tumor blood vessels. Previously, we have reported the anti-cancer properties of BCP by utilizing a series of in-vitro anti-tumor-related assays using human colorectal carcinoma cells. The present study aimed to investigate the effects of BCP on in-vitro, ex-vivo, and in-vivo models of anti-angiogenic assays and evaluate its anti-cancer activity in xenograft tumor (both ectopic and orthotopic) mice models of human colorectal cancer. Computational structural analysis and an apoptosis antibody array were also performed to understand the molecular players underlying this effect. BCP exhibited strong anti-angiogenic activity by blocking the migration of endothelial cells, tube-like network formation, suppression of vascular endothelial growth factor (VEGF) secretion from human umbilical vein endothelial cells and sprouting of rat aorta microvessels. BCP has a probable binding at Site#0 on the surface of VEGFR2. Moreover, BCP significantly deformed the vascularization architecture compared to the negative control in a chick embryo chorioallantoic membrane assay. BCP showed a remarkable reduction in tumor size and fluorescence molecular tomography signal intensity in all the mice treated with BCP, in a dose-dependent relationship, in ectopic and orthotopic tumor xenograft models, respectively. The histological analysis of the tumor from BCP-treated mice revealed a clear reduction of the density of vascularization. In addition, BCP induced apoptosis through downregulation of HSP60, HTRA, survivin, and XIAP, along with the upregulation of p21 expressions. These results suggest that BCP acts at multiple stages of angiogenesis and could be used as a promising therapeutic candidate to halt the growth of colorectal tumor cells.
    Matched MeSH terms: Cell Movement/drug effects
  3. Nor WMFSBW, Chung I, Said NABM
    Oncol Res, 2020 Oct 27.
    PMID: 33109304 DOI: 10.3727/096504020X16037933185170
    Breast cancer is the most commonly diagnosed cancer among women and one of the leading causes of cancer mortality worldwide, in which the most severe form happens when it metastasizes to other regions of the body. Metastasis is responsible for most treatment failures in advanced breast cancer. Epithelial-mesenchymal transition (EMT) plays a significant role in promoting metastatic processes in breast cancer. MicroRNAs (miRNAs) are highly conserved endogenous short non-coding RNAs that play a role in regulating a broad range of biological processes, including cancer initiation and development, by functioning as tumor promoters or tumor suppressors. Expression of miR-548m has been found in various types of cancers, but the biological function and molecular mechanisms of miR-548m in cancers have not been fully studied. Here, we demonstrated the role of miR-548m in modulating EMT in the breast cancer cell lines MDA-MB-231 and MCF-7. Expression data for primary breast cancer obtained from NCBI GEO datasets showed that miR-548m expression was downregulated in breast cancer patients compared with healthy group. We hypothesize that miR-548m acts as a tumor suppressor in breast cancer. Overexpression of miR-548m in both cell lines increased E-cadherin expression and decreased the EMT-associated transcription factors SNAI1, SNAI2, ZEB1 and ZEB2, as well as MMP9 expression. Consequently, migration and invasion capabilities of both MDA-MB-231 and MCF-7 cells were significantly inhibited in miR-548m-overexpressing cells. Analysis of 1059 putative target genes of miR-548m revealed common pathways involving both tight junction and the mTOR signaling pathway, which has potential impacts on cell migration and invasion. Furthermore, this study identified aryl hydrocarbon receptor (AHR) as a direct target of miR-548m in breast cancer cells. Taken together, our findings suggest a novel function of miR-548m in reversing the EMT of breast cancer by reducing their migratory and invasive potentials, at least in part via targeting AHR expression.
    Matched MeSH terms: Cell Movement
  4. Mohamad R, Awang N, Kamaludin NF, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Oct 1;72(Pt 10):1480-1487.
    PMID: 27746946
    The crystal and mol-ecular structures of two tri-phenyl-tin di-thio-carbamates, [Sn(C6H5)3(C16H16NS2)], (I), and [Sn(C6H5)3(C7H14NO2S2)], (II), are described. In (I), the di-thio-carbamate ligand coordinates the Sn(IV) atom in an asymmetric manner, leading to a highly distorted trigonal-bipyramidal coordination geometry defined by a C3S2 donor set with the weakly bound S atom approximately trans to one of the ipso-C atoms. A similar structure is found in (II), but the di-thio-carbamate ligand coordinates in an even more asymmetric fashion. The packing in (I) features supra-molecular chains along the c axis sustained by C-H⋯π inter-actions; chains pack with no directional inter-actions between them. In (II), supra-molecular layers are formed, similarly sustained by C-H⋯π inter-actions; these stack along the b axis. An analysis of the Hirshfeld surfaces for (I) and (II) confirms the presence of the C-H⋯π inter-actions but also reveals the overall dominance of H⋯H contacts in the respective crystals.
    Matched MeSH terms: Stereotypic Movement Disorder
  5. Zainal NS, Gan CP, Lau BF, Yee PS, Tiong KH, Abdul Rahman ZA, et al.
    Phytomedicine, 2018 Jan 15;39:33-41.
    PMID: 29433681 DOI: 10.1016/j.phymed.2017.12.011
    BACKGROUND: The CXCR4-RhoA and PI3K-mTOR signaling pathways play crucial roles in the dissemination and tumorigenesis of oral squamous cell carcinoma (OSCC). Activation of these pathways have made them promising molecular targets in the treatment of OSCC. Zerumbone, a bioactive monocyclic sesquiterpene isolated from the rhizomes of tropical ginger, Zingiber zerumbet (L.) Roscoe ex Sm. has displayed promising anticancer properties with the ability to modulate multiple molecular targets involved in carcinogenesis. While the anticancer activities of zerumbone have been well explored across different types of cancer, the molecular mechanism of action of zerumbone in OSCC remains largely unknown.

    PURPOSE: Here, we investigated whether OSCC cells were sensitive towards zerumbone treatment and further determined the molecular pathways involved in the mechanism of action.

    METHODS: Cytotoxicity, anti-proliferative, anti-migratory and anti-invasive effects of zerumbone were tested on a panel of OSCC cell lines. The mechanism of action of zerumbone was investigated by analysing the effects on the CXCR4-RhoA and PI3K-mTOR pathways by western blotting.

    RESULTS: Our panel of OSCC cells was broadly sensitive towards zerumbone with IC50 values of less than 5 µM whereas normal keratinocyte cells were less responsive with IC50 values of more than 25 µM. Representative OSCC cells revealed that zerumbone inhibited OSCC proliferation and induced cell cycle arrest and apoptosis. In addition, zerumbone treatment inhibited migration and invasion of OSCC cells, with concurrent suppression of endogenous CXCR4 protein expression in a time and dose-dependent manner. RhoA-pull down assay showed reduction in the expression of RhoA-GTP, suggesting the inactivation of RhoA by zerumbone. In association with this, zerumbone also inhibited the PI3K-mTOR pathway through the inactivation of Akt and S6 proteins.

    CONCLUSION: We provide evidence that zerumbone could inhibit the activation of CXCR4-RhoA and PI3K-mTOR signaling pathways leading to the reduced cell viability of OSCC cells. Our results suggest that zerumbone is a promising phytoagent for development of new therapeutics for OSCC treatment.

    Matched MeSH terms: Cell Movement/drug effects
  6. Ang LF, Darwis Y, Koh RY, Gah Leong KV, Yew MY, Por LY, et al.
    Pharmaceutics, 2019 May 01;11(5).
    PMID: 31052413 DOI: 10.3390/pharmaceutics11050205
    Curcuminoids have been used for the management of burns and wound healing in traditional Chinese medicine practices but the wide application of curcuminoids as a healing agent for wounds has always been a known problem due to their poor solubility, bioavailability, colour staining properties, as well as due to their intense photosensitivity and the need for further formulation approaches to maximise their various properties in order for them to considerably contribute towards the wound healing process. In the present study, a complex coacervation microencapsulation was used to encapsulate curcuminoids using gelatin B and chitosan. This study also focused on studying and confirming the potential of curcuminoids in a microencapsulated form as a wound healing agent. The potential of curcuminoids for wound management was evaluated using an in vitro human keratinocyte cell (HaCaT) model and the in vivo heater-inflicted burn wound model, providing evidence that the antioxidant activities of both forms of curcuminoids, encapsulated or not, are higher than those of butylated hydroxyanisole and butylated hydroxytoluene in trolox equivalent antioxidant capacity (TEAC) and (2,2-diphenyl-1-picryl-hydrazyl-hydrate) (DPPH) studies. However, curcuminoids did not have much impact towards cell migration and proliferation in comparison with the negative control in the in vitro HaCaT study. The micoencapsulation formulation was shown to significantly influence wound healing in terms of increasing the wound contraction rate, hydroxyproline synthesis, and greater epithelialisation, which in turn provides strong justification for the incorporation of the microencapsulated formulation of curcuminoids as a topical treatment for burns and wound healing management as it has the potential to act as a crucial wound healing agent in healthcare settings.
    Matched MeSH terms: Cell Movement
  7. Farook TH, Rashid F, Alam MK, Dudley J
    Clin Oral Investig, 2023 Feb;27(2):489-504.
    PMID: 36577849 DOI: 10.1007/s00784-022-04835-w
    BACKGROUND: To explore the digitisation of jaw movement trajectories through devices and discuss the physiological factors and device-dependent variables with their subsequent effects on the jaw movement analyses.

    METHODS: Based on predefined eligibility criteria, the search was conducted following PRISMA-P 2015 guidelines on MEDLINE, EBSCO Host, Scopus, PubMed, and Web of Science databases in 2022 by 2 reviewers. Articles then underwent Cochrane GRADE approach and JBI critical appraisal for certainty of evidence and bias evaluation.

    RESULTS: Thirty articles were included following eligibility screening. Both in vitro experiments (20%) and in vivo (80%) devices ranging from electronic axiography, electromyography, optoelectronic and ultrasonic, oral or extra-oral tracking, photogrammetry, sirognathography, digital pressure sensors, electrognathography, and computerised medical-image tracing were documented. 53.53% of the studies were rated below "moderate" certainty of evidence. Critical appraisal showed 80% case-control investigations failed to address confounding variables while 90% of the included non-randomised experimental studies failed to establish control reference.

    CONCLUSION: Mandibular and condylar growth, kinematic dysfunction of the neuromuscular system, shortened dental arches, previous orthodontic treatment, variations in habitual head posture, temporomandibular joint disorders, fricative phonetics, and to a limited extent parafunctional habits and unbalanced occlusal contact were identified confounding variables that shaped jaw movement trajectories but were not highly dependent on age, gender, or diet. Realistic variations in device accuracy were found between 50 and 330 µm across the digital systems with very low interrater reliability for motion tracing from photographs. Forensic and in vitro simulation devices could not accurately recreate variations in jaw motion and muscle contractions.

    Matched MeSH terms: Movement*
  8. Sikandar T, Rabbi MF, Ghazali KH, Altwijri O, Alqahtani M, Almijalli M, et al.
    Sensors (Basel), 2021 Apr 17;21(8).
    PMID: 33920617 DOI: 10.3390/s21082836
    Human body measurement data related to walking can characterize functional movement and thereby become an important tool for health assessment. Single-camera-captured two-dimensional (2D) image sequences of marker-less walking individuals might be a simple approach for estimating human body measurement data which could be used in walking speed-related health assessment. Conventional body measurement data of 2D images are dependent on body-worn garments (used as segmental markers) and are susceptible to changes in the distance between the participant and camera in indoor and outdoor settings. In this study, we propose five ratio-based body measurement data that can be extracted from 2D images and can be used to classify three walking speeds (i.e., slow, normal, and fast) using a deep learning-based bidirectional long short-term memory classification model. The results showed that average classification accuracies of 88.08% and 79.18% could be achieved in indoor and outdoor environments, respectively. Additionally, the proposed ratio-based body measurement data are independent of body-worn garments and not susceptible to changes in the distance between the walking individual and camera. As a simple but efficient technique, the proposed walking speed classification has great potential to be employed in clinics and aged care homes.
    Matched MeSH terms: Movement
  9. Li X, Peng B, Li J, Tian M, He L
    Protein Pept Lett, 2023;30(12):992-1000.
    PMID: 38013437 DOI: 10.2174/0109298665245603231106050224
    OBJECTIVES: We aim to investigate the regulatory mechanisms of miR-455-5p/SOCS3 pathway that underlie the proliferation, migration, and invasion of triple-negative breast cancer (TNBC) cells.

    METHODS: Reverse transcription-quantitative PCR (RT-qPCR) was used to detect miR-455-5p expression in breast cancer tissues and cell lines. CCK8 and Transwell assays were conducted to assess the effects of miR-455-5p on breast cancer line proliferation, migration, and invasion. SOCS3 expression level in breast cancer tissues and cell lines was determined by qPCR and western blotting. The targeting relationship between miR-455-5p and SOCS3 was determined by dual luciferase reporter gene assay in different breast cancer cell lines. Finally, the upstream and downstream regulatory association between miR-455-5p and SOCS3 was confirmed in breast cancer cells by CCK8, western blot, and Transwell assays.

    RESULTS: MiR-455-5p expression was up-regulated in breast cancer tissues; miR-455-5p regulates TNBC proliferation, migration, and invasion of TNBC. SOCS3 was the direct target of miR-455-5p and was down-regulated in breast cancer. Interference with SOCS3 reversed the inhibitory effect of the miR-455-5p inhibitor on breast cancer cells' malignant potential.

    CONCLUSION: MiR-455-5p promotes breast cancer progression by targeting the SOCS3 pathway and may be a potential therapeutic target for breast cancer.

    Matched MeSH terms: Cell Movement/genetics
  10. Yahaya B
    ScientificWorldJournal, 2012;2012:961684.
    PMID: 23049478 DOI: 10.1100/2012/961684
    Understanding the mechanisms underlying the process of regeneration and repair of airway epithelial structures demands close characterization of the associated cellular and molecular events. The choice of an animal model system to study these processes and the role of lung stem cells is debatable since ideally the chosen animal model should offer a valid comparison with the human lung. Species differences may include the complex three-dimensional lung structures, cellular composition of the lung airway as well as transcriptional control of the molecular events in response to airway epithelium regeneration, and repair following injury. In this paper, we discuss issues related to the study of the lung repair and regeneration including the role of putative stem cells in small- and large-animal models. At the end of this paper, the author discuss the potential for using sheep as a model which can help bridge the gap between small-animal model systems and humans.
    Matched MeSH terms: Cell Movement
  11. Gupta G, Chellappan DK, de Jesus Andreoli Pinto T, Hansbro PM, Bebawy M, Dua K
    Panminerva Med, 2018 Mar;60(1):17-24.
    PMID: 29164842 DOI: 10.23736/S0031-0808.17.03386-9
    MicroRNAs (miRNAs) are non-coding RNAs of around 20-25 nucleotides in length with highly conserved characteristics. They moderate post-transcriptional silencing by precisely combining with 3' untranslated regions (UTRs) of target mRNAs at a complementary site. miR‑503, an associate of the "canonical" miRNA-16 family, is expressed in numerous types of tumors such as breast cancer, prostate cancer, lung cancer, colorectal cancer, hepatocellular carcinoma, glioblastoma and several others. There is convincing evidence to show that miR‑503 functions as a tumor suppressor gene through its effects on target genes that regulate cell proliferation, migration, and invasion in tumor cells. In this current assessment, we discuss the biology and tumor suppressor role of miR‑503 in different cancers and elaborate on its mechanism of action.
    Matched MeSH terms: Cell Movement
  12. Tan JJ, Azmi SM, Yong YK, Cheah HL, Lim V, Sandai D, et al.
    PLoS One, 2014;9(5):e96800.
    PMID: 24802273 DOI: 10.1371/journal.pone.0096800
    Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3 ± 0.4%) were observed compared to the untreated population (20.5 ± 0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in vitro.
    Matched MeSH terms: Cell Movement/drug effects
  13. Anasamy T, Thy CK, Lo KM, Chee CF, Yeap SK, Kamalidehghan B, et al.
    Eur J Med Chem, 2017 Jan 05;125:770-783.
    PMID: 27723565 DOI: 10.1016/j.ejmech.2016.09.061
    This study seeks to investigate the relationship between the structural modification and bioactivity of a series of tribenzyltin complexes with different ligands and substitutions. Complexation with the N,N-diisopropylcarbamothioylsulfanylacetate or isonicotinate ligands enhanced the anticancer properties of tribenzyltin compounds via delayed cancer cell-cycle progression, caspase-dependent apoptosis induction, and significant reduction in cell motility, migration and invasion. Halogenation of the benzyl ring improved the anticancer effects of the tribenzyltin compounds with the N,N-diisopropylcarbamothioylsulfanylacetate ligand. These compounds also demonstrated far greater anticancer effects and selectivity than cisplatin and doxorubicin, which provides a rationale for their further development as anticancer agents.
    Matched MeSH terms: Cell Movement/drug effects*
  14. Abdul Rahman A, Mokhtar NM, Harun R, Jamal R, Wan Ngah WZ
    J Physiol Biochem, 2019 Nov;75(4):499-517.
    PMID: 31414341 DOI: 10.1007/s13105-019-00699-z
    Gamma-tocotrienol (GTT) and hydroxychavicol (HC) exhibit anticancer activity in glioma cancer cells, where the combination of GTT + HC was shown to be more effective than single agent. The aim of this study was to determine the effect of GTT + HC by measuring the cell cycle progression, migration, invasion, and colony formation of glioma cancer cells and elucidating the changes in gene expression mitigated by GTT + HC that are critical to the chemoprevention of glioma cell lines 1321N1 (grade II), SW1783 (grade III), and LN18 (grade IV) using high-throughput RNA sequencing (RNA-seq). Results of gene expression levels and alternative splicing transcripts were validated by qPCR. Exposure of glioma cancer cells to GTT + HC for 24 h promotes cell cycle arrest at G2M and S phases and inhibits cell migration, invasion, and colony formation of glioma cancer cells. The differential gene expression induced by GTT + HC clustered into response to endoplasmic reticulum (ER) stress, cell cycle regulations, apoptosis, cell migration/invasion, cell growth, and DNA repair. Subnetwork analysis of genes altered by GTT + HC revealed central genes, ATF4 and XBP1. The modulation of EIF2AK3, EDN1, and FOXM1 were unique to 1321N1, while CSF1, KLF4, and FGF2 were unique to SW1783. PLK2 and EIF3A gene expressions were only altered in LN18. Moreover, GTT + HC treatment dynamically altered transcripts and alternative splicing expression. GTT + HC showed therapeutic potential against glioma cancer as evident by the inhibition of cell cycle progression, migration, invasion, and colony formation of glioma cancer cells, as well as the changes in gene expression profiles with key targets in ER unfolded protein response pathway, apoptosis, cell cycle, and migration/invasion.
    Matched MeSH terms: Cell Movement/drug effects
  15. Soon CF, Tee KS, Youseffi M, Denyer MC
    Biosensors (Basel), 2015 Mar;5(1):13-24.
    PMID: 25808839 DOI: 10.3390/bios5010013
    Cell migration is a key contributor to wound repair. This study presents findings indicating that the liquid crystal based cell traction force transducer (LCTFT) system can be used in conjunction with a bespoke cell traction force mapping (CTFM) software to monitor cell/surface traction forces from quiescent state in real time. In this study, time-lapse photo microscopy allowed cell induced deformations in liquid crystal coated substrates to be monitored and analyzed. The results indicated that the system could be used to monitor the generation of cell/surface forces in an initially quiescent cell, as it migrated over the culture substrate, via multiple points of contact between the cell and the surface. Future application of this system is the real-time assaying of the pharmacological effects of cytokines on the mechanics of cell migration.
    Matched MeSH terms: Cell Movement/physiology
  16. Tsai MH, Megat Abdul Wahab R, Yazid F
    Arch Oral Biol, 2021 Dec;132:105278.
    PMID: 34634537 DOI: 10.1016/j.archoralbio.2021.105278
    OBJECTIVE: The optimal timing of orthodontic tooth movement (OTM) could allow earlier tooth movements across alveolar bone defects while minimizing the adverse effects. The objective of this scoping systematic review was therefore designed to review pre-clinical animal studies on the ideal protocol for the timing of orthodontic traction across alveolar defects augmented with synthetic scaffolds.

    DESIGN: Following the PRISMA-ScR guidelines, three electronic databases were searched (Pubmed, Scopus and Web of Science).

    RESULTS: A total of twelve studies were included in the final review that reported on small-animal (rats, guinea pigs, rabbits) and large-animal (dogs and goats) models. Based on the grafting biomaterials, eight papers used cell-free scaffolds, four articles utilised cell-based scaffolds. The timing protocol for the initiation of OTM employed in the studies ranged from immediate to 6 months after surgical grafting. Only four studies included autologous bone graft (gold standard) as positive control. Most papers reported positive results with regards to the rate of OTM and bone augmentation effects while only a few reported side effects such as root resorptions. Overall, the included articles showed a massive heterogeneity in terms of the animal bone defect model characteristics, scaffold materials, study designs, parameters of OTM and methods of analysis.

    CONCLUSION: Since there was inadequate evidence to identify the optimal protocol of OTM, optimization of animal bone defect models and outcome measurements is needed to improve the translational ability of future studies.

    Matched MeSH terms: Tooth Movement*
  17. Damodaran T, Hassan Z, Navaratnam V, Muzaimi M, Ng G, Müller CP, et al.
    Behav Brain Res, 2014 Dec 15;275:252-8.
    PMID: 25239606 DOI: 10.1016/j.bbr.2014.09.014
    Cerebral ischemia is one of the leading causes of death and long-term disability in aging populations, due to the frequent occurrence of irreversible brain damage and subsequent loss of neuronal function which lead to cognitive impairment and some motor dysfunction. In the present study, the real time course of motor and cognitive functions were evaluated following the chronic cerebral ischemia induced by permanent, bilateral occlusion of the common carotid arteries (PBOCCA). Male Sprague Dawley rats (200-300g) were subjected to PBOCCA or sham-operated surgery and tested 1, 2, 3 and 4 weeks following the ischemic insult. The results showed that PBOCCA significantly reduced step-through latency in a passive avoidance task at all time points when compared to the sham-operated group. PBOCCA rats also showed significant increase in escape latencies during training in the Morris water maze, as well as a reduction of the percentage of times spend in target quadrant of the maze at all time points following the occlusion. Importantly, there were no significant changes in locomotor activity between PBOCCA and sham-operated groups. The BDNF expression in the hippocampus was 29.3±3.1% and 40.1±2.6% on day 14 and 28 post PBOCCA, respectively compared to sham-operated group. Present data suggest that the PBOCCA procedure effectively induces behavioral, cognitive symptoms associated with cerebral ischemia and, consequently, provides a valuable model to study ischemia and related neurodegenerative disorder such as Alzheimer's disease and vascular dementia.
    Matched MeSH terms: Movement Disorders/etiology*
  18. Wu X, Zhang S, Lai J, Lu H, Sun Y, Guan W
    Exp Clin Transplant, 2020 12;18(7):823-831.
    PMID: 33349209 DOI: 10.6002/ect.2020.0108
    OBJECTIVES: Liver fibrosis is inevitable in the healing process of liver injury. Liver fibrosis will develop into liver cirrhosis unless the damaging factors are removed. This study investigated the potential therapy of Bama pig adipose-derived mesenchymal stem cells in a carbon tetrachloride-induced liver fibrosis Institute of Cancer Research strain mice model.

    MATERIALS AND METHODS: Adipose-derived mesenchymal stem cells were injected intravenously into the tails of mice of the Institute of Cancer Research strain that had been treated with carbon tetrachloride for 4 weeks. Survival rate, migration, and proliferation of adipose-derived mesenchymal stem cells in the liver were observed by histochemistry, fluorescent labeling, and serological detection.

    RESULTS: At 1, 2, and 3 weeks after adipose-derived mesenchymal stem cell injection, liver fibrosis was significantly ameliorated. The injected adipose-derived mesenchymal stem cells had hepatic differentiation potential in vivo, and the survival rate of adipose-derived mesenchymal stem cells declined over time.

    CONCLUSIONS: The findings in this study confirmed that adipose-derived mesenchymal stem cells derived from the Bama pig can be used in the treatment of liver fibrosis, and the grafted adipose-derived mesenchy-mal stem cells can migrate, survive, and differentiate into hepatic cells in vivo.

    Matched MeSH terms: Cell Movement
  19. Khalid PI, Yunus J, Adnan R, Harun M, Sudirman R, Mahmood NH
    Res Dev Disabil, 2010 Nov-Dec;31(6):1685-93.
    PMID: 20554150 DOI: 10.1016/j.ridd.2010.04.005
    Previous researches on elementary grade handwriting revealed that pupils employ certain strategy when writing or drawing. The relationship between this strategy and the use of graphic rules has been documented but very little research has been devoted to the connection between the use of graphic rules and handwriting proficiency. Thus, this study was conducted to investigate the relative contribution of the use of graphic rules to the writing ability. A sample of 105 first graders who were average printers and 65 first graders who might experience handwriting difficulty, as judged by their teachers, of a normal primary school were individually tested on their use of graphic rules. It has been found that pupils who are below average printers use more non-analytic strategy than average printers to reproduce the figures. The results also reveal that below average printers do not acquire the graphic principles that foster an analytic approach to production skills. Although the findings are not sufficient to allow definitive conclusions about handwriting ability, it can be considered as one of the screening measures in identifying pupils who are at risk of handwriting difficulties.
    Matched MeSH terms: Movement
  20. Chandrasakaran A, Chee HL, Rampal KG, Tan GLE
    Med J Malaysia, 2003 Dec;58(5):657-66.
    PMID: 15190650
    A cross-sectional study to determine work-related musculoskeletal problems and ergonomic risk factors was conducted among 529 women semiconductor workers. Overall, 83.4% had musculoskeletal symptoms in the last one year. Pain in the back (57.8%), lower leg (48.4%) and shoulder (44.8%) were the three most common musculoskeletal problems. Significant associations were found between prolonged standing and upper and lower leg pain, between prolonged sitting and neck and shoulder pain and between prolonged bending and shoulder arm, back and upper leg pain. The study therefore showed a clear association between work-related musculoskeletal pain and prolonged hours spent in particular postures and movements.
    Matched MeSH terms: Movement
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links