Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Akinboro A, Mohamed KB, Asmawi MZ, Othman AS, Ying TH, Maidin SM
    Drug Chem Toxicol, 2012 Oct;35(4):412-22.
    PMID: 22149219 DOI: 10.3109/01480545.2011.638300
    The role of diets in causing cancers necessitates the ongoing search for natural antimutagens of promising anticancer therapeutics. This study determined the potential anticancer efficacy of the leaf extract of Myristica fragrans (Houtt.). Methanol leaf extract of M. fragrans (Houtt.) alone was screened for mutagenicity in the bacterial reverse mutation (Ames) test, using the Salmonella typhimurium TA100 strain, the Allium cepa, and the mouse in vivo bone marrow micronucleus tests. The antimutagenicity of this extract against benzo[a]pyrene- and cyclophosphamide-induced mutations was evaluated. An antioxidant test on the extract was performed with 2,2-diphenyl-1-picrylhydrazyl, using butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) as the standards, whereas its phytochemicals were elucidated by following the gas chromatography/mass spectrometry protocol. In S. typhimurium (TA100), the mutagenicity ratio at 200,500 and 1,000 µg/well was >2. Cell division in the A. cepa root tips and mouse bone marrow was significantly (P ≤ 0.05) inhibited at 2,000 and 4,000 mg/kg, whereas the observed chromosomal aberrations and micronucleated polychromatic erythrocytes were non-dose-related and were insignificantly (P ≥ 0.05) different from the negative control. Inhibition of benzo[a]pyrene- and cyclophosphamide-induced mutagenicity by this extract was above 40%. Half-maximal inhibitory concentration of the extract in the antioxidant test was lower than that of BHA and BHT. Phytochemical compounds, possessing antioxidant activity, may be responsible for the observed effects, suggesting a strong antimutagenic activity of the MeOH leaf extract of M. fragrans, a necessary characteristic of a promising anticancer agent.
    Matched MeSH terms: Mutagenicity Tests
  2. Ali AQ, Kannan TP, Ahmad A, Samsudin AR
    Toxicol In Vitro, 2008 Feb;22(1):57-67.
    PMID: 17892925
    The aims of this study are to determine the mutagenicity of a locally produced polyhydroxybutyrate (PHB) using Salmonella mutagenicity test and to find out if PHB altered the expression of p53 and c-myc proto-oncogenes and bcl-xl and bcl-xs anti-apoptotic genes in the human fibroblast cell line, MRC-5. Different concentrations of PHB were incubated with special genotypic variants of Salmonella strains (TA1535, TA1537, TA1538, TA98 and TA100) carrying mutations in several genes both with and without metabolic activation (S9) and the test was assessed based on the number of revertant colonies. The average number of revertant colonies per plate treated with PHB was less than double as compared to that of negative control. For the gene expression analyses, fibroblast cell lines were treated with PHB at different concentrations and incubated for 1, 12, 24 and 48 h separately. The total RNA was isolated and analysed for the expression of p53, c-myc, bcl-xl and bcl-xs genes. The PHB did not show over or under expression of the genes studied. The above tests indicate that the locally produced PHB is non-genotoxic and does not alter the expression of the proto-oncogenes and anti-apoptotic genes considered in this study.
    Matched MeSH terms: Mutagenicity Tests
  3. Lee SS, Enchang FK, Tan NH, Fung SY, Pailoor J
    J Ethnopharmacol, 2013 May 2;147(1):157-63.
    PMID: 23458920 DOI: 10.1016/j.jep.2013.02.027
    Lignosus rhinocerus (Tiger Milk mushroom) is distributed in South China, Thailand, Malaysia, Indonesia, Philippines and Papua New Guinea. In Malaysia, it is the most popular medicinal mushroom used by the indigenous communities to relieve fever, cough, asthma, cancer, food poisoning and as a general tonic. In China, this mushroom is an expensive traditional medicine used to treat liver cancer, chronic hepatitis and gastric ulcers. The sclerotium of the mushroom is the part with medicinal value. This rare mushroom has recently been successfully cultivated making it possible to be fully exploited for its medicinal and functional benefits. The present study was carried out to evaluate the chronic toxicity of the sclerotial powder of Lignosus rhinocerus cultivar (termed TM02), its anti-fertility and teratogenic effects as well as genotoxicity.
    Matched MeSH terms: Mutagenicity Tests
  4. Muhammad H, Gomes-Carneiro MR, Poça KS, De-Oliveira AC, Afzan A, Sulaiman SA, et al.
    J Ethnopharmacol, 2011 Jan 27;133(2):647-53.
    PMID: 21044879 DOI: 10.1016/j.jep.2010.10.055
    Orthosiphon stamineus, Benth, also known as Misai Kucing in Malaysia and Java tea in Indonesia, is traditionally used in Southeastern Asia to treat kidney dysfunctions, diabetes, gout and several other illnesses. Recent studies of Orthosiphon stamineus pharmacological profile have revealed antioxidant properties and other potentially useful biological activities thereby lending some scientific support to its use in folk medicine. So far the genotoxicity of Orthosiphon stamineus extracts has not been evaluated. In this study the genotoxic potential of Orthosiphon stamineus aqueous extract was investigated by the Salmonella/microsome mutation assay and the mouse bone marrow micronucleus test.
    Matched MeSH terms: Mutagenicity Tests
  5. Lim CK, Yaacob NS, Ismail Z, Halim AS
    Toxicol In Vitro, 2010 Apr;24(3):721-7.
    PMID: 20079826 DOI: 10.1016/j.tiv.2010.01.006
    Biopolymer chitosan (beta-1,4-d-glucosamine) comprises the copolymer mixture of N-acetylglucosamine and glucosamine. The natural biocompatibility and biodegradability of chitosan have recently highlighted its potential use for applications in wound management. Chemical and physical modifications of chitosan influence its biocompatibility and biodegradability, but it is unknown as to what degree. Hence, the biocompatibility of the chitosan porous skin regenerating templates (PSRT 82, 87 and 108) was determined using an in vitro toxicology model at the cellular and molecular level on primary normal human epidermal keratinocytes (pNHEK). Cytocompatibility was accessed by using a 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl tetrazolium bromide (MTT) assay from 24 to 72h. To assess the genotoxicity of the PSRTs, DNA damage to the pNHEK was evaluated by using the Comet assay following direct contact with the various PSRTs. Furthermore, the skin pro-inflammatory cytokines TNF-alpha and IL-8 were examined to evaluate the tendency of the PSRTs to provoke inflammatory responses. All PSRTs were found to be cytocompatible, but only PSRT 108 was capable of stimulating cell proliferation. While all of the PSRTs showed some DNA damage, PSRT 108 showed the least DNA damage followed by PSRT 87 and 82. PSRT 87 and 82 induced a higher secretion of TNF-alpha and IL-8 in the pNHEK cultures than did PSRT 108. Hence, based on our experiments, PSRT 108 is the most biocompatible wound dressing of the three tested.
    Matched MeSH terms: Mutagenicity Tests
  6. Sutris JM, How V, Sumeri SA, Muhammad M, Sardi D, Mohd Mokhtar MT, et al.
    Int J Occup Environ Med, 2016 01;7(1):42-51.
    PMID: 26772597 DOI: 10.15171/ijoem.2016.705
    BACKGROUND: Agriculture is an important sector for the Malaysian economy. The use of pesticides in agriculture is crucial due to its function in keeping the crops from harmful insects. Children living near agricultural fields are at risk of pesticide poisoning.

    OBJECTIVE: To evaluate the genotoxic risk among children who exposed to pesticides and measure DNA damage due to pesticides exposure.

    METHODS: In a cross-sectional study 180 Orang Asli Mah Meri children aged between 7 and 12 years were studied. They were all living in an agricultural island in Kuala Langat, Selangor, Malaysia. The data for this study were collected via modified validated questionnaire and food frequency questionnaire, which consisted of 131 food items. 6 urinary organophosphate metabolites were used as biomarkers for pesticides exposure. For genotoxic risk or genetic damage assessment, the level of DNA damage from exfoliated buccal mucosa cells was measured using the comet assay electrophoresis method.

    RESULTS: Out of 180 respondents, 84 (46.7%) showed positive traces of organophosphate metabolites in their urine. Children with detectable urinary pesticide had a longer tail length (median 43.5; IQR 30.9 to 68.1 μm) than those with undetectable urinary pesticides (median 24.7; IQR 9.5 to 48.1 μm). There was a significant association between the extent of DNA damage and the children's age, length of residence in the area, pesticides detection, and frequency of apple consumption.

    CONCLUSION: The organophosphate genotoxicity among children is associated with the amount of exposure (detectability of urinary pesticide) and length of residence in (exposure) the study area.

    Matched MeSH terms: Mutagenicity Tests
  7. Wahab NFAC, Kannan TP, Mahmood Z, Rahman IA, Ismail H
    Toxicol In Vitro, 2018 Mar;47:207-212.
    PMID: 29247761 DOI: 10.1016/j.tiv.2017.12.002
    Biphasic Calcium Phosphate (BCP) with a ratio of 20/80 Hydroxyapatite (HA)/Beta-tricalcium phosphate (β-TCP) promotes the differentiation of human dental pulp cells (HDPCs). In the current study, the genotoxicity of locally produced BCP of modified porosity (65%) with a mean pore size of 300micrometer (μm) was assessed using Comet and Ames assays. HDPCs were treated with BCP extract at three different inhibitory concentrations which were obtained based on cytotoxicity test conducted with concurrent negative and positive controls. The tail moment of HDPCs treated with BCP extract at all three concentrations showed no significant difference compared to negative control (p>0.05), indicating that BCP did not induce DNA damage to HDPCs. The BCP was evaluated using five tester strains of Salmonella typhimurium TA98, TA100, TA102, TA1537 and TA1538. Each strain was incubated with BCP extract with five different concentrations in the presence and absence of metabolic activation system (S9) mix. Concurrently, negative and positive controls were included. The average number of revertant colonies per plate treated with the BCP extract was less than double as compared to the number of revertant colonies in negative control plate and no dose-related increase was observed. Results from both assays suggested that the BCP of modified porosity did not exhibit any genotoxic effect under the present test conditions.
    Matched MeSH terms: Mutagenicity Tests
  8. Malakahmad A, Manan TSBA, Sivapalan S, Khan T
    Environ Sci Pollut Res Int, 2018 Feb;25(6):5421-5436.
    PMID: 29209979 DOI: 10.1007/s11356-017-0721-8
    Allium cepa assay was carried out in this study to evaluate genotoxic effects of raw and treated water samples from Perak River in Perak state, Malaysia. Samples were collected from three surface water treatment plants along the river, namely WTPP, WTPS, and WTPK. Initially, triplicates of equal size Allium cepa (onions) bulbs, 25-30 mm in diameter and average weight of 20 g, were set up in distilled water for 24 h at 20 ± 2 °C and protected from direct sunlight, to let the roots to grow. After germination of roots (0.5-1.0 cm in length), bulbs were transferred to collected water samples each for a 96-h period of exposure. The root physical deformations were observed. Genotoxicity quantification was based on mitotic index and genotoxicity level. Statistical analysis using cross-correlation function for replicates from treated water showed that root length has inverse correlation with mitotic indices (r = - 0.969) and frequencies of cell aberrations (r = - 0.976) at lag 1. Mitotic indices and cell aberrations of replicates from raw water have shown positive correlation at lag 1 (r = 0.946). Genotoxicity levels obtained were 23.4 ± 1.98 (WTPP), 26.68 ± 0.34 (WTPS), and 30.4 ± 1.13 (WTPK) for treated water and 17.8 ± 0.18 (WTPP), 37.15 ± 0.17 (WTPS), and 47.2 ± 0.48 (WTPK) for raw water. The observed cell aberrations were adherence, chromosome delay, C-metaphase, chromosome loss, chromosome bridge, chromosome breaks, binucleated cell, mini cell, and lobulated nuclei. The morphogenetic deformations obtained were likely due to genotoxic substances presence in collected water samples. Thus, water treatment in Malaysia does not remove genotoxic compounds.
    Matched MeSH terms: Mutagenicity Tests
  9. Al-Zubairi AS, Abdul AB, Syam MM
    Toxicol In Vitro, 2010 Apr;24(3):707-12.
    PMID: 20123012 DOI: 10.1016/j.tiv.2010.01.011
    The chromosomal aberrations (CA) assay and micronucleus (MN) test were employed to investigate the effect in vitro of zerumbone (ZER) on human chromosomes. ZER is a sesquiterpene compound isolated from the rhizomes of wild ginger, Zingiber zerumbet Smith. The rhizomes of the plant are employed as a traditional medicine for some ailments and as condiments. ZER has been shown to have anti-cancer and apoptosis-inducing properties against various human tumour cells. It has also been shown to be active in vivo against a number of induced malignancies. Studies on ZER genotoxicity in cultured human peripheral blood lymphocytes (PBL) have not been reported so far. Therefore, the present study was undertaken to investigate the ability of ZER to induce chromosomal aberrations and micronuclei formation in human lymphocytes in vitro. Human blood samples were obtained from four healthy, non-smoking males aged 25-35years. Cultures were exposed to the drug for 48h at four final concentrations: 10, 20, 40 and 80 microM. Mitomycin C (MMC) was used as a positive control. The results of chromosomal aberrations assay showed that ZER was not clastogenic, when compared to untreated control, meanwhile MN test results showed a dose-dependent increase in MN formation. The overall clastogenic effect of ZER on human PBL was statistically not significant. In conclusion, ZER is a cytotoxic but not a clastogenic substance in human PBL.
    Matched MeSH terms: Mutagenicity Tests
  10. Siew EL, Rajab NF, Osman AB, Sudesh K, Inayat-Hussain SH
    J Biomed Mater Res A, 2009 Dec;91(3):786-94.
    PMID: 19051306 DOI: 10.1002/jbm.a.32290
    Polyhydroxyalkanoates (PHA) are naturally occurring biopolyesters that have great potential in the medical field. However, the leachables resulting from sterilization process of the biomaterials may exert toxic effect including genetic damage. Here, we demonstrate that although gamma-irradiation of poly(3-hydroxybutyrate-co-50 mol % 4-hydroxybutyrate) [P(3HB-co-4HB)] did not cause any change in the morphology by scanning electron microscopy, there was a significant degradation of this copolymer where the molecular weight was reduced by 37% after sterilization indicating the generation of leachables. Therefore, further investigation on the ability of the extract of this poststerilized copolymer to induce mutagenic effect was performed using Ames test (S. typhimurium strains TA1535 and TA1537) and umu test (S. typhimurium strain TA1535/pSK1002). Additionally, the capability of the extract to induce clastogenic effect was determined using Chinese hamster lung V79 fibroblast cells. Our results showed that with and without the presence of S9 metabolic activation, no mutagenic effects were observed in both Ames and umu tests when treated with P(3HB-co-4HB) extract. Similarly, treatment of P(3HB-co-4HB) extract in V79 fibroblast cells showed no significant production of micronuclei when compared with the positive control (Mitomycin C). Together, these results indicate that leachables of poststerilized P(3HB-co-4HB) cause no mutagenic and clastogenic effects.
    Matched MeSH terms: Mutagenicity Tests
  11. Farsi E, Esmailli K, Shafaei A, Moradi Khaniabadi P, Al Hindi B, Khadeer Ahamed MB, et al.
    Drug Chem Toxicol, 2016 Oct;39(4):461-73.
    PMID: 27033971 DOI: 10.3109/01480545.2016.1157810
    CONTEXT: Clinacanthus nutans (CN) is used traditionally for treating various illnesses. Robust safety data to support its use is lacking.

    OBJECTIVE: To evaluate the adverse effects of aqueous extract of CN leaves (AECNL).

    MATERIALS AND METHODS: The oral toxicity of the AECNL was tested following Organisation for Economic Co-operation and Development (OECD) guidelines. Mutagenicity (Ames test) of AECNL was evaluated using TA98 and TA100 Salmonella typhimurium strains.

    RESULTS: No mortality or morbidity was found in the animals upon single and repeated dose administration. However, significant body weight loss was observed at 2000 mg/kg during sub-chronic (90 d) exposure. In addition, increased eosinophil at 500 mg/kg and decreased serum alkaline phosphatase levels at 2000 mg/kg were observed in male rats. Variations in glucose and lipid profiles in treated groups were also observed compared to control. Ames test revealed no evidence of mutagenic or carcinogenic effects at 500 μg/well of AECNL.

    CONCLUSION: The median lethal dose (LD50) of the AECNL is >5000 mg/kg and the no-observed-adverse-effect level is identified to be greater than 2000 mg/kg/day in 90-d study.

    Matched MeSH terms: Mutagenicity Tests
  12. Vinoth KJ, Manikandan J, Sethu S, Balakrishnan L, Heng A, Lu K, et al.
    J Biotechnol, 2014 Aug 20;184:154-68.
    PMID: 24862194 DOI: 10.1016/j.jbiotec.2014.05.009
    This study evaluated human embryonic stem cells (hESC) and their differentiated fibroblastic progenies as cellular models for genotoxicity screening. The DNA damage response of hESCs and their differentiated fibroblastic progenies were compared to a fibroblastic cell line (HEPM, CRL1486) and primary cultures of peripheral blood lymphocytes (PBL), upon exposure to Mitomycin C, gamma irradiation and H2O2. It was demonstrated that hESC-derived fibroblastic progenies (H1F) displayed significantly higher chromosomal aberrations, micronuclei formation and double strand break (DSB) formation, as compared to undifferentiated hESC upon exposure to genotoxic stress. Nevertheless, H1F cell types displayed comparable sensitivities to genotoxic challenge as HEPM and PBL, both of which are representative of somatic cell types commonly used for genotoxicity screening. Subsequently, transcriptomic and pathways analysis identified differential expression of critical genes involved in cell death and DNA damage response upon exposure to gamma irradiation. The results thus demonstrate that hESC-derived fibroblastic progenies are as sensitive as commonly-used somatic cell types for genotoxicity screening. Moreover, hESCs have additional advantages, such as their genetic normality compared to immortalized cell lines, as well as their amenability to scale-up for producing large, standardized quantities of cells for genotoxicity screening on an industrial scale, something which can never be achieved with primary cell cultures.
    Matched MeSH terms: Mutagenicity Tests
  13. Mohammed KB, Ma TH
    Mutat Res, 1999 May 19;426(2):193-9.
    PMID: 10350597
    The clastogenic and mutagenic effects of the insecticide Dimethoate (Cygon-2E), herbicides Atrazine, Simazine (Princep), Dicamba (Banvel D) and Picloram (Tordon) were studied using the Tradescantia-micronucleus (Trad-MCN) and Tradescantia-stamen hair mutation (Trad-SHM) assays. In clone 4430, dimethoate fumes both significantly increased the pink mutation events and reduced the number of stamen hairs per filament with increasing dosages. The pink mutation events were elevated by the liquid treatment with Picloram at 100 ppm concentration. The result of Trad-MCN test on Dimethoate fumes was not significantly different between the control and treated groups. The herbicide Atrazine showed positive effects at 10-50 ppm dose (liquid) and signs of overdose at 100 and 500 ppm concentrations. Simazine was mildly positive in elevating the MCN frequencies in the dose range of 5 to 200 ppm (liquid doses). Both Dicamba and Picloram induced a dosage-related increase in MCN frequencies in the Trad-MCN tests using Tradescantia clone 03. However, in higher dosages (200 ppm or higher), there were signs of overdose, reduction of MCN frequencies and physical damage of the leaves and buds of plant cuttings.
    Matched MeSH terms: Mutagenicity Tests
  14. How V, Hashim Z, Ismail P, Md Said S, Omar D, Bahri Mohd Tamrin S
    J Agromedicine, 2014;19(1):35-43.
    PMID: 24417530 DOI: 10.1080/1059924X.2013.866917
    Children are the vulnerable group in the agricultural community due to their early exposure to pesticides through the dynamic interplay between genetic predisposition, environment, and host-related factors. This study aims to identify the possible association between the depression in blood cholinesterase level and genotoxic effect among farm children. The results of micronuclei assay and comet assay showed that the reduced blood cholinesterase level from organophosphate pesticide exposure is significantly associated with an increase in chromosome breakage and DNA strand breaks. These genotoxicity end points suggest that farm children's cells experience early DNA damage that may lead to uncontrolled cell proliferation during their adulthood. Thus, farm children who grow up near pesticide-treated farmland have a higher probability of developing cancer than children with minimal or zero exposure to pesticides.
    Matched MeSH terms: Mutagenicity Tests
  15. Al-Shami SA, Rawi CS, Ahmad AH, Nor SA
    Toxicol Ind Health, 2012 Sep;28(8):734-9.
    PMID: 22025505 DOI: 10.1177/0748233711422729
    The genotoxic effects of increasing concentrations (below lethal concentration [LC₅₀]) of cadmium ([Cd] 0.1, 1 and 10 mg/L), copper ([Cu] 0.2, 2 and 20 mg/L) and zinc ([Zn] 0.5, 5 and 50 mg/L) on Chironomus kiiensis were evaluated using alkaline comet assay after exposure for 24 h. Both the tail moment and the olive tail moment showed significant differences between the control and different concentrations of Cd, Cu and Zn (Kruskal-Wallis, p < 0.05). The highest concentration of Cd was associated with higher DNA damage to C. kiiensis larvae compared with Cu and Zn. The potential genotoxicity of these metals to C. kiiensis was Cd > Cu > Zn.
    Matched MeSH terms: Mutagenicity Tests
  16. Noushad M, Kannan TP, Husein A, Abdullah H, Ismail AR
    Toxicol In Vitro, 2009 Sep;23(6):1145-50.
    PMID: 19505568 DOI: 10.1016/j.tiv.2009.05.025
    The aim of this study was to determine the genotoxicity of a locally produced dental porcelain (Universiti Sains Malaysia, Malaysia) using the Ames and Comet assays. In the Ames assay, four genotypic variants of the Salmonella strains (TA98, TA100, TA1537 and TA1535) carrying mutations in several genes were used. The dental porcelain was incubated with these four strains in five different doses both in the presence and absence of metabolic activation (S9) and the result was assessed based on the number of revertant colonies. Concurrently, appropriate positive controls were used so as to validate the test. The average number of revertant colonies per plate treated with locally produced dental porcelain was less than double as compared to that of negative control. In the Comet assay, L929 (CCL-1 ATCC, USA) mouse fibroblast cells were treated with the dental porcelain in three different concentrations along with concurrent negative and positive controls. The tail moment which was used as a measurement of DNA damage was almost equal to that of the negative control, suggesting that the locally produced dental porcelain did not induce any DNA damage. The results indicated that the locally produced dental porcelain is non-genotoxic under the present test conditions.
    Matched MeSH terms: Mutagenicity Tests
  17. Loh DS, Er HM, Chen YS
    J Ethnopharmacol, 2009 Dec 10;126(3):406-14.
    PMID: 19778596 DOI: 10.1016/j.jep.2009.09.025
    Euphorbia hirta (E. hirta) is a weed commonly found in tropical countries and has been used traditionally for asthma, bronchitis and conjunctivitis. However, one of the constituents in this plant, quercetin, was previously reported to be mutagenic. This work aimed to determine the level of quercetin in the aqueous and methanol plant extracts and to investigate the mutagenic effects of quercetin and the extracts in the Ames test utilising the mutant Salmonella typhimurium TA98 and TA100 strains. The antimutagenic activity of Euphorbia hirta aqueous and methanol extracts was also studied in Salmonella typhimurium TA98. HPLC analyses showed that quercetin and rutin, a glycosidic form of quercetin, were present in the acid-hydrolysed methanol extract and non-hydrolysed methanol extract respectively. The quercetin concentration was negligible in both non-hydrolysed and acid-hydrolysed aqueous extracts. The total phenolic contents in Euphorbia hirta were determined to be 268 and 93 mg gallic acid equivalent (GAE) per gram of aqueous and methanol extracts, respectively. Quercetin (25 microg/mL) was found to be strongly mutagenic in Salmonella typhimurium TA98 in the absence and presence of S-9 metabolic activation. However, both the aqueous and methanol extracts did not demonstrate any mutagenic properties when tested with Salmonella typhimurium TA98 and TA100 strains at concentrations up to 100 microg/mL in the absence and presence of S-9 metabolic activation. In the absence of S-9 metabolic activation, both the extracts were unable to inhibit the mutagenicity of the known mutagen, 2-nitrofluorene, in Salmonella typhimurium TA98. On the other hand, the aqueous extracts at 100 microg/mL and methanol extracts at 10 and 100 microg/mL exhibited strong antimutagenic activity against the mutagenicity of 2-aminoanthracene, a known mutagen, in the presence of S-9 metabolic activating enzymes. The results indicated that these extracts could modulate the xenobiotic metabolising enzymes in the liver at the higher concentrations.
    Matched MeSH terms: Mutagenicity Tests
  18. Mohd-Fuat AR, Kofi EA, Allan GG
    Trop Biomed, 2007 Dec;24(2):49-59.
    PMID: 18209708 MyJurnal
    Three popular medicinal plants regarded as improving human sexual function in some parts of Southeast Asia were analysed for their mutagenic properties using modified Ames test (fluctuation test). Extract of one of the plants, Tacca integrifolia Ker-Gawl., was found to be mutagenic using Salmonella typhimurium strains TA98 and TA100. Extract of T. integrifolia, Eurycoma longifolia Jack and Helmintostachys zeylanica (L.) Hook were cytotoxic to human cell lines, Hep2 and HFL1, with IC50 ranging from 11 mug/ml to 55 mug/ml. Extract of E. longifolia was the most cytotoxic with IC50 of 11 mug/ml and 13 mug/ml on Hep2 and HFL1 cell lines respectively. Combined extract of T. integrifolia and H. zeylanica was more cytotoxic than single extract on both Hep2 and HFL1 cell lines while combined extract of E. longifolia and H. zeylanica was more cytotoxic than single extract on Hep2 cell lines. Under the conditions of this study it can be concluded that T. integrifolia is mutagenic and the combined extracts of the medicinal plants was highly cytotoxic.
    Matched MeSH terms: Mutagenicity Tests
  19. Matsumoto T, Kitagawa T, Teo S, Anai Y, Ikeda R, Imahori D, et al.
    J Nat Prod, 2018 10 26;81(10):2187-2194.
    PMID: 30335380 DOI: 10.1021/acs.jnatprod.8b00341
    A methanol extract of the dried leaves of Lansium domesticum showed antimutagenic effects against 3-amino-1,4-dimethyl-5 H-pyrido[4,3- b]indole (Trp-P-1) and 2-amino-1-methyl-6-phenylimidazo[4,5- bI]pyridine (PhIP) using the Ames assay. Nine new onoceranoid-type triterpenoids, lansium acids I-IX (1-9), and nine known compounds (10-16) were isolated from the extract. The structures of the new compounds were elucidated on the basis of chemical and spectroscopic evidence. The absolute stereostructures of the new compounds were determined via their electronic circular dichroism spectra. Several isolated onoceranoid-type triterpeneoids showed antimutagenic effects in an in vitro Ames assay. Moreover, oral intake of a major constituent, lansionic acid (10), showed antimutagenic effects against PhIP in an in vivo micronucleus test.
    Matched MeSH terms: Mutagenicity Tests
  20. Elgorashi EE, Eldeen IMS, Makhafola TJ, Eloff JN, Verschaeve L
    J Ethnopharmacol, 2022 Mar 01;285:114868.
    PMID: 34826541 DOI: 10.1016/j.jep.2021.114868
    ETHNOBOTANICAL RELEVANCE: Smoke from the wood of Acacia seyal Delile has been used by Sudanese women for making a smoke bath locally called Dukhan. The ritual is performed to relieve rheumatic pain, smooth skin, heal wounds and achieve general body relaxation.

    AIM OF THE STUDY: The present study was designed to investigate the in vitro anti-inflammatory effect of the smoke condensate using cyclooxygenase -1 (COX-1) and -2 (COX-2) as well as its potential genotoxic effects using the bacterial-based Ames test and the mammalian cells-based micronucleus/cytome and comet assays.

    MATERIAL AND METHODS: The smoke was prepared in a similar way to that commonly used traditionally by Sudanese women then condensed using a funnel. Cyclooxygenase assay was used to evaluate its in vitro anti-inflammatory activity. The neutral red uptake assay was conducted to determine the range of concentrations in the mammalian cells-based assays. The Ames, cytome and comet assays were used to assess its potential adverse (long-term) effects.

    RESULTS: The smoke condensate did not inhibit the cyclooxygenases at the highest concentration tested. All smoke condensate concentrations tested in the Salmonella/microsome assay induced mutation in both TA98 and TA100 in a dose dependent manner. A significant increase in the frequency of micronucleated cells, nucleoplasmic bridges and nuclear buds was observed in the cytome assay as well as in the % DNA damage in the comet assay.

    CONCLUSIONS: The findings indicated a dose dependent genotoxic potential of the smoke condensate in the bacterial and human C3A cells and may pose a health risk to women since the smoke bath is frequently practised. The study highlighted the need for further rigorous assessment of the risks associated with the smoke bath practice.

    Matched MeSH terms: Mutagenicity Tests
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links