Displaying publications 1 - 20 of 370 in total

Abstract:
Sort:
  1. Paul J, Jacob J, Mahmud M, Vaka M, Krishnan SG, Arifutzzaman A, et al.
    Int J Biol Macromol, 2024 Apr;265(Pt 2):130850.
    PMID: 38492706 DOI: 10.1016/j.ijbiomac.2024.130850
    Recent decades have witnessed a surge in research interest in bio-nanocomposite-based packaging materials, but still, a lack of systematic analysis exists in this domain. Bio-based packaging materials pose a sustainable alternative to petroleum-based packaging materials. The current work employs bibliometric analysis to deliver a comprehensive outline on the role of bio nanocomposites in packaging. India, Iran, and China were revealed to be the top three nations actively engaged in this domain in total publications. Islamic Azad University in Iran and Universiti Putra Malaysia in Malaysia are among the world's best institutions in active research and publications in this field. The extensive collaboration between nations and institutions highlights the significance of a holistic approach towards bio-nanocomposite. The National Natural Science Foundation of China is the leading funding body in this field of research. Among authors, Jong whan Rhim secured the topmost citations (2234) in this domain (13 publications). Among journals, Carbohydrate Polymers secured the maximum citation count (4629) from 36 articles; the initial one was published in 2011. Bio nanocomposite is the most frequently used keyword. Researchers and policymakers focussing on sustainable packaging solutions will gain crucial insights on the current research status on packaging solutions using bio-nanocomposites from the conclusions.
    Matched MeSH terms: Nanocomposites*
  2. Nanda A, Pandey P, Rajinikanth PS, Singh N
    Int J Biol Macromol, 2024 Mar;260(Pt 1):129416.
    PMID: 38224810 DOI: 10.1016/j.ijbiomac.2024.129416
    Zein, a protein-based biopolymer derived from corn, has garnered attention as a promising and eco-friendly choice for packaging food due to its favorable physical attributes. The introduction of electrospinning technology has significantly advanced the production of zein-based nanomaterials. This cutting-edge technique enables the creation of nanofibers with customizable structures, offering high surface area and adjustable mechanical and thermal attributes. Moreover, the electrospinning process allows for integrating various additives, such as antioxidants, antimicrobial agents, and flavoring compounds, into the zein nanofibers, enhancing their functionalities for food preservation. In this comprehensive review, the various electrospinning techniques employed for crafting zein-based nanofibers, and we delve into their enhanced properties. Furthermore, the review illuminates the potential applications of zein nanofibers in active and intelligent packaging materials by incorporating diverse constituents. Altogether, this review highlights the considerable prospects of zein-based nanocomposites in the realm of food packaging, offering sustainable and innovative solutions for food industry.
    Matched MeSH terms: Nanocomposites*
  3. Daub NA, Aziz F, Mhamad SA, Chee DNA, Jaafar J, Yusof N, et al.
    Environ Sci Pollut Res Int, 2024 Mar;31(11):16629-16641.
    PMID: 38321283 DOI: 10.1007/s11356-024-32261-w
    In response to the escalating global issue of microbial contamination, this study introduces a breakthrough photocatalyst: bismuth ferrite-activated carbon (BFO-AC) for visible light-driven disinfection, specifically targeting the Gram-positive bacterium Staphylococcus aureus (S. aureus). Employing an ultrasonication method, we synthesized various BFO-AC ratios and subjected them to comprehensive characterization. Remarkably, the bismuth ferrite-activated carbon 1:1.5 ratio (BA 1:1.5) nanocomposite exhibited the narrowest band gap of 1.86 eV. Notably, BA (1:1.5) demonstrated an exceptional BET surface area of 862.99 m2/g, a remarkable improvement compared to pristine BFO with only 27.61 m2/g. Further investigation through FE-SEM unveiled the presence of BFO nanoparticles on the activated carbon surface. Crucially, the photocatalytic efficacy of BA (1:1.5) towards S. aureus reached its zenith, achieving complete inactivation in just 60 min. TEM analysis revealed severe damage and rupture of bacterial cells, affirming the potent disinfection capabilities of BA (1:1.5). This exceptional disinfection efficiency underscores the promising potential of BA (1:1.5) for the treatment of contaminated water sources. Importantly, our results underscore the enhanced photocatalytic performance with an increased content of activated carbon, suggesting a promising avenue for more effective microorganism inactivation.
    Matched MeSH terms: Nanocomposites*
  4. Danagody B, Bose N, Rajappan K, Iqbal A, Ramanujam GM, Anilkumar AK
    ACS Biomater Sci Eng, 2024 Jan 08;10(1):468-481.
    PMID: 38078836 DOI: 10.1021/acsbiomaterials.3c00892
    Developing biomaterial scaffolds using tissue engineering with physical and chemical surface modification processes can improve the bioactivity and biocompatibility of the materials. The appropriate substrate and site for cell attachment are crucial in cell behavior and biological activities. Therefore, the study aims to develop a conventional electrospun nanofibrous biomaterial using reproducible surface topography, which offers beneficial effects on the cell activities of bone cells. The bioactive MgO/gC3N4 was incorporated on PAN/PEG and fabricated into a nanofibrous membrane using electrospinning. The nanocomposite uniformly distributed on the PAN/PEG nanofiber helps to increase the number of induced pores and reduce the hydrophobicity of PAN. The physiochemical characterization of prepared nanoparticles and nanofibers was carried out using FTIR, X-ray diffraction (XRD), thermogravimetry analysis (TGA), X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. SEM and TEM analyses examined the nanofibrous morphology and the structure of MgO/gC3N4. In vitro studies such as on ALP activity demonstrated the membrane's ability to regenerate new bone and healing capacity. Furthermore, alizarin red staining showed the increasing ability of the cell-cell interaction and calcium content for tissue regeneration. The cytotoxicity of the prepared membrane was about 97.09% of live THP-1 cells on the surface of the MgO/gC3N4@PAN/PEG membrane evaluated using MTT dye staining. The soil burial degradation analysis exhibited that the maximum degradation occurs on the 45th day because of microbial activity. In vitro PBS degradation was observed on the 15th day after the bulk hydrolysis mechanism. Hence, on the basis of the study outcomes, we affirm that the MgO/gC3N4@PAN/PEG nanofibrous membrane can act as a potential bone regenerative substrate.
    Matched MeSH terms: Nanocomposites*
  5. Yusuf J, Sapuan SM, Ansari MA, Siddiqui VU, Jamal T, Ilyas RA, et al.
    Int J Biol Macromol, 2024 Jan;255:128121.
    PMID: 37984579 DOI: 10.1016/j.ijbiomac.2023.128121
    Material is an inseparable entity for humans to serve different purposes. However, synthetic polymers represent a major category of anthropogenic pollutants with detrimental impacts on natural ecosystems. This escalating environmental issue is characterized by the accumulation of non-biodegradable plastic materials, which pose serious threats to the health of our planet's ecosystem. Cellulose is becoming a focal point for many researchers due to its high availability. It has been used to serve various purposes. Recent scientific advancements have unveiled innovative prospects for the utilization of nanocellulose within the area of advanced science. This comprehensive review investigates deeply into the field of nanocellulose, explaining the methodologies employed in separating nanocellulose from cellulose. It also explains upon two intricately examined applications that emphasize the pivotal role of nanocellulose in nanocomposites. The initial instance pertains to the automotive sector, encompassing cutting-edge applications in electric vehicle (EV) batteries, while the second exemplifies the use of nanocellulose in the field of biomedical applications like otorhinolaryngology, ophthalmology, and wound dressing. This review aims to provide comprehensive information starting from the definitions, identifying the sources of the nanocellulose and its extraction, and ending with the recent applications in the emerging field such as energy storage and biomedical applications.
    Matched MeSH terms: Nanocomposites*
  6. Abdulhameed AS, Hapiz A, Musa SA, ALOthman ZA, Wilson LD, Jawad AH
    Int J Biol Macromol, 2024 Jan;255:128075.
    PMID: 37977465 DOI: 10.1016/j.ijbiomac.2023.128075
    Herein, a quadruple biomagnetic nanocomposite of cross-linked chitosan-ethylene glycol diglycidyl ether/organo-nanoclay (MCH-EGDE/ORNC) was designed for the uptake of remazol brilliant blue R (RBBR) dye from aqueous environment. The adsorption process was systematically improved via the Box-Behnken design (BBD) to determine the influence of key uptake parameters, including MCH-EGDE/ORNC dosage, pH, and time, on the RBBR removal. The highest RBBR removal of 87.5 % was achieved at the following conditions: MCH-EGDE/ORNC dosage: 0.1 g/100 mL; pH: 4.0; contact time: 25 min. The findings of the kinetics and equilibrium studies revealed an excellent fit to the pseudo-second order and the Freundlich models, respectively. The adsorption capacity of the MCH-EGDE/ORNC for RBBR was found to be 168.4 mg/g, showcasing its remarkable adsorption capability. The present work highlights the potential of MCH-EGDE/ORNC biomaterial as an advanced adsorbent and lays the foundation for future applications in water purification and environmental remediation.
    Matched MeSH terms: Nanocomposites*
  7. Abdul Jalil NAS, Aboelazm E, Khe CS, Ali GAM, Chong KF, Lai CW, et al.
    PLoS One, 2024;19(2):e0292737.
    PMID: 38324619 DOI: 10.1371/journal.pone.0292737
    The transition towards renewable energy sources necessitates efficient energy storage systems to meet growing demands. Electrochemical capacitors, particularly electric double-layer capacitors (EDLCs), show promising performance due to their superior properties. However, the presence of resistance limits their performance. This study explores using an external magnetic field to mitigate ion transfer resistance and enhance capacitance in magnetite-reduced graphene oxide (M-rGO) nanocomposites. M-rGO nanocomposites with varying weight ratios of magnetite were synthesized and comprehensively characterized. Characterization highlighted the difference in certain parameters such as C/O ratio, the Id/Ig ratio, surface area and particle size that contribute towards alteration of M-rGO's capacitive behaviour. Electrochemical studies demonstrated that applying a magnetic field increased specific capacitance by approximately 20% and reduced resistance by 33%. Notably, a maximum specific capacitance of 16.36 F/g (at a scan rate of 0.1 V/s) and 27.24 F/g (at a current density of 0.25 A/g) was achieved. These improvements were attributed to enhanced ion transportation and migration at the electrode/electrolyte interface, lowering overall resistance. However, it was also observed that the aforementioned parameters can also limit the M-rGO's performance, resulting in saturated capacitive state despite a reduced resistance. The integration of magnetic fields enhances energy storage in nanocomposite systems, necessitating further investigation into underlying mechanisms and practical applications.
    Matched MeSH terms: Nanocomposites*
  8. Ibrahim IAA, Alzahrani AR, Alanazi IM, Shahzad N, Shahid I, Falemban AH, et al.
    Int J Nanomedicine, 2024;19:1109-1124.
    PMID: 38344441 DOI: 10.2147/IJN.S445206
    BACKGROUND: Liver cancer is the sixth most prevalent form of cancer and the second major cause of cancer-associated mortalities worldwide. Cancer nanotechnology has the ability to fundamentally alter cancer treatment, diagnosis, and detection.

    OBJECTIVE: In this study, we explained the development of graphene oxide/polyethylene glycol/folic acid/brucine nanocomposites (GO/PEG/Bru-FA NCs) and evaluated their antimicrobial and anticancer effect on the liver cancer HepG2 cells.

    METHODOLOGY: The GO/PEG/Bru-FA NCs were prepared using the co-precipitation technique and characterized using various techniques. The cytotoxicity of the GO/PEG/Bru-FA NCs was tested against both liver cancer HepG2 and non-malignant Vero cells using an MTT assay. The antimicrobial activity of the GO/PEG/Bru-FA NCs was tested against several pathogens using the well diffusion technique. The effects of GO/PEG/Bru-FA NCs on endogenous ROS accumulation, apoptosis, and MMP levels were examined using corresponding fluorescent staining assays, respectively. The apoptotic protein expressions, such as Bax, Bcl-2, and caspases, were studied using the corresponding kits.

    RESULTS: The findings of various characterization assays revealed the development of GO/PEG/Bru-FA NCs with face-centered spherical morphology and an agglomerated appearance with an average size of 197.40 nm. The GO/PEG/Bru-FA NCs treatment remarkably inhibited the growth of the tested pathogens. The findings of the MTT assay evidenced that the GO/PEG/Bru-FA NCs effectively reduced the HepG2 cell growth while not showing toxicity to the Vero cells. The findings of the fluorescent assay proved that the GO/PEG/Bru-FA NCs increased ROS generation, reduced MMP levels, and promoted apoptosis in the HepG2 cells. The levels of Bax, caspase-9, and -3 were increased, and Bcl-2 was reduced in the GO/PEG/Bru-FA NCs-treated HepG2 cells.

    CONCLUSION: The results of this work demonstrate that GO/PEG/Bru-FA NCs suppress viability and induce apoptosis in HepG2 cells, indicating their potential as an anticancer candidate.

    Matched MeSH terms: Nanocomposites*
  9. Liew WC, Muhamad II, Chew JW, Karim KJA
    Int J Biol Macromol, 2023 Dec 31;253(Pt 6):127288.
    PMID: 37813215 DOI: 10.1016/j.ijbiomac.2023.127288
    Incorporating two different nanoparticles in nanocomposite films is promising as their synergistic effects could significantly enhance polymer performance. Our previous work conferred the remarkable antimicrobial (AM) properties of the polylactic acid (PLA)-based film using optimal formulations of synergistic graphene oxide (GO)/zinc oxide (ZnO) nanocomposites. This study further explores the release profile of GO/ZnO nanocomposite and their impact on the antimicrobial properties. A fixed 1.11 wt% GO and different ZnO concentrations were well dispersed in the PLA matrix. Increasing ZnO concentrations tended to increase agglomeration, as evident in rougher surfaces. Agglomeration inhibited water penetration, leading to a significant reduction in water permeability (46.3 %), moisture content (31.6 %) but an improvement in Young's Modulus (52.6 %). The overall and specific migration of GO/ZnO nanocomposites was found to be within acceptable limits. It is inferred that the release of Zn2+ ions followed pseudo-Fickian behavior with an initial burst effect. AM film with the highest concentration of ZnO (1.25 wt%) exhibited the highest inhibition rate against Escherichia coli (68.0 %), Bacillus cereus (66.5 %), Saccharomyces cerevisiae (70.9 %). Results suggest that GO/ZnO nanocomposites with optimal ZnO concentrations have the potential to serve as promising antimicrobial food packaging materials, offering enhanced barrier, antimicrobial properties and a controlled release system.
    Matched MeSH terms: Nanocomposites*
  10. Kalidasan B, Pandey AK, Aljafari B, Chinnasamy S, Kareri T, Rahman S
    J Environ Manage, 2023 Dec 15;348:119439.
    PMID: 37890400 DOI: 10.1016/j.jenvman.2023.119439
    Metal, carbon and conducting polymer nanoparticles are blended with organic phase change materials (PCMs) to enhance the thermal conductivity, heat storage ability, thermal stability and optical property. However, the existing nanoparticle are expensive and need to be handle with high caution during operation as well during disposal owing to its toxicity. Subsequently handling of solid waste and the disposal of organic PCM after longevity usage are of utmost concern and are less exposed. Henceforth, the current research presents a new dimension of exploration by green synthesized nanoparticles from a thorny shrub of an invasive weed named Prosopis Juliflora (PJ) which is a agro based solid waste. Subsequently, the research is indented to decide the concentration of green synthesized nanoparticle for effective heat transfer rate of organic PCM (Tm = 35-40 °C & Hm = 145 J/g). Furthermore, an in-depth understanding on the kinetic and thermodynamic profile of degradation mechanism involved in disposal of PCM after usage via Coats and Redfern technique is exhibited. Engaging a two-step method, we fuse the green synthesized nanomaterial with PCM to obtain nanocomposite PCM. On experimental evaluation, thermal conductivity of the developed nanocomposite (PCM + PJ) increases by 63.8% (0.282 W/m⋅K to 0.462 W/m⋅K) with 0.8 wt% green synthesized nanomaterial owing to the uniform distribution of nanoparticle within PCM matrix thereby contributing to bridging thermal networks. Subsequently, PCM and PCM + PJ nanocomposites are tested using thermogravimetric analyzer at different heating rates (05 °C/min; 10 °C/min; 15 °C/min & 20 °C/min) to analyze the decomposition kinetic reaction. The kinetic and thermodynamic profile of degradation mechanism involved in disposal of PCM and its nanocomposite of PCM + PJ provides insight on thermal parameters to be considered on large scale operation and to understand the complex nature of the chemical reactions. Adopting thirteen different chemical mechanism model under Coats and Redfern method we determine the reaction mechanism; kinetic parameter like activation energy (Ea) & pre-exponential factor (A) and thermodynamic parameter like change in enthalpy (ΔH), change in Gibbs free energy (ΔG) and change in entropy (ΔS). Dispersion of PJ nanomaterial with PCM reduces Ea from 370.82 kJ/mol-1 to 342.54 kJ/mol-1 (7.7% reduction), as the developed nanomaterial is enriched in carbon element and exhibits a catalytic effect for breakdown reaction. Corresponding, value of ΔG for PCM and PCM + PJ sample within heating rates of 05-20 °C/min varies between 168.95 and 41.611 kJ/mol-1. The current research will unbolt new works with focus on exploring the pyrolysis behaviour of phase change materials and its nanocomposite used for energy storage applications. This work also provides insights on the disposal of PCM which is an organic solid waste. The thermo-kinetic profile will help to investigate and predict the optimum heating rate and temperature range for conversion of micro-scale pyrolysis to commercial scale process.
    Matched MeSH terms: Nanocomposites*
  11. Bharathi D, Ranjithkumar R, Nandagopal JGT, Djearamane S, Lee J, Wong LS
    Environ Res, 2023 Dec 01;238(Pt 1):117109.
    PMID: 37696324 DOI: 10.1016/j.envres.2023.117109
    The synthesis of polymer-encapsulated metal nanoparticles is a growing field of area due to their long-term uses in the development of new technologies. The present study describes the synthesis of chitosan/silver nanocomposite using kaempferol for anticancer and bactericidal activity. The formation of Kf-CS/Ag nanocomposite was confirmed by the development of a brown color and UV-absorbance around 438 nm. The IR study was utilized to determine the existence of Kf and CS in the synthesized nanocomposite. TEM analysis demonstrated that the synthesized nanocomposite have a predominantly uniform spherical shape and size ranges 7-10 nm. EDX spectrum showed the existence of Ag, C, and N elements in the nanocomposite material. Further, Kf-CS/Ag nanocomposite exhibited potential in vitro inhibitory property against triple-negative breast cancer (TNBC) cells and their IC50 values was found to be 53 μg/mL. Moreover, fluorescent assays such as DAPI and AO/EtBr confirmed the apoptosis induction ability of Kf-CS/Ag nanocomposite in MDA-MB-231 cells. The synthesized Kf-CS/Ag nanocomposite showed significant and dose-depended antibacterial property against S. aureus and P. aeruginosa. Thus, the obtained findings demonstrated that the synthesized nanocomposite can be potentially used to improve human health as biocidal nanocomposite in biomedical sectors.
    Matched MeSH terms: Nanocomposites*
  12. Singh S, Numan A, Khalid M, Bello I, Panza E, Cinti S
    Small, 2023 Dec;19(51):e2208209.
    PMID: 37096900 DOI: 10.1002/smll.202208209
    Hydrogen peroxide (H2 O2 ) is a primary reactive oxygen species (ROS) that can act as a chemical signal in developing and progressing serious and life-threatening diseases like cancer. Due to the stressful nature of H2 O2 , there is an urgent need to develop sensitive analytical approaches to be applied to various biological matrices. Herein, a portable point-of-care electrochemical system based on MXene-Co3 O4 nanocomposites to detect H2 O2 in different cancer cell-lines is presented. The developed sensor is affordable, disposable, and highly selective for H2 O2 detection. This approach achieves a dynamic linear range of 75 µm with a LOD of 0.5 µm and a LOQ of 1.6 µm. To improve the practical application, the level of ROS is evaluated both in cancer cell lines MDA-MB-231 and DU145, respectively, to breast and prostate cancers, and in healthy HaCat cells. Moreover, the same cancer cells are treated with transforming growth factor-β1, and MXene-Co3 O4 modified strip is capable to monitorROS variation. The results are satisfactory compared with the cellular ROS fluorescent assay based on DCFH/DCFH-DA. These results open new perspectives for real-time monitoring of cancer progression and the efficacy of the therapy.
    Matched MeSH terms: Nanocomposites*
  13. Wee JL, Chan YS, Law MC
    ACS Appl Bio Mater, 2023 Nov 20;6(11):4972-4987.
    PMID: 37910790 DOI: 10.1021/acsabm.3c00515
    The use of nanometal oxides in nanoagronomy has garnered considerable attention due to their excellent antifungal and plant growth promotion properties. Hybrid nanometal oxides, which combine the strengths of individual nanomaterials, have emerged as a promising class of materials. In this study, nanomagnesium oxide (n-MgO) and hybrid magnetic nanomagnesium oxide (m/n-MgO) were successfully synthesized via the ultrasound-mediated sol-gel method. Characterization results, including TGA, XRD, VSM, and FTIR, confirmed the successful synthesis of m/n-MgO. Both n-MgO and m/n-MgO underwent antifungal assays and plant growth promotion ability studies, benchmarked against the conventional fungicide-copper oxychloride. This study bridges a significant gap by simultaneously reporting the antifungal properties of both n-MgO and m/n-MgO and their impact on plant growth. The disc diffusion assay suggested that the antifungal activity of n-MgO and m/n-MgO against F. oxysporum was inversely related to the particle size. Notably, n-MgO exhibited superior antifungal performance (lower minimum inhibitory concentration (MIC)) and sustained efficacy compared with m/n-MgO, owing to distinct antifungal mechanisms. Nanorod-shaped MgO, with a smaller size (8.24 ± 5.61 nm) and higher aspect ratio, allowed them to penetrate the fungal cell wall and cause intercellular damage. In contrast, cubical m/n-MgO, with a larger size (20.95 ± 9.99 nm) and lower aspect ratio, accumulate on the fungal cell wall surface, disrupting the wall integrity, albeit less effectively against F. oxysporum. Moreover, in plant growth promotion studies, m/n-MgO-treated samples exhibited a 15.7% stronger promotion effect compared to n-MgO at their respective MICs. In addition, both n-MgO and m/n-MgO outperformed copper oxychloride in terms of antifungal and plant growth promoting activities. Thus, m/n-MgO presents a promising alternative to conventional copper-based fungicides, offering dual functionality as a fungicide and plant growth promoter, while the study also delves into the antifungal mechanisms at the intracellular level, enhancing its novelty.
    Matched MeSH terms: Nanocomposites*
  14. Mengting Z, Duan L, Zhao Y, Song Y, Xia S, Gikas P, et al.
    J Environ Manage, 2023 Nov 01;345:118772.
    PMID: 37597373 DOI: 10.1016/j.jenvman.2023.118772
    This work investigates the use of novel BiOI@ZIF-8 nanocomposite for the removal of acetaminophen (Ace) from synthetic wastewater. The samples were analyzed using FTIR, XRD, XPS, DRS, PL, FESEM-EDS, and ESR techniques. The effects of the loading capacity of ZIF-8 on the photocatalytic oxidation performance of bismuth oxyiodide (BiOI) were studied. The photocatalytic degradation of Ace was maximized by optimizing pH, reaction time and the amount of photocatalyst. On this basis, the removal mechanisms of the target pollutant by the nanocomposite and its photodegradation pathways were elucidated. Under optimized conditions of 1 g/L of composite, pH 6.8, and 4 h of reaction time, it was found that the BiOI@ZIF-8 (w/w = 1:0.01) nanocomposite exhibited the highest Ace removal (94%), as compared to that of other loading ratios at the same Ace concentration of 25 mg/L. Although this result was encouraging, the treated wastewater still did not satisfy the required statutory of 0.2 mg/L. It is suggested that the further biological processes need to be adopted to complement Ace removal in the samples. To sustain its economic viability for wastewater treatment, the spent composite still could be reused for consecutive five cycles with 82% of regeneration efficiency. Overall, this series of work shows that the nanocomposite was a promising photocatalyst for Ace removal from wastewater samples.
    Matched MeSH terms: Nanocomposites*
  15. Bukhari NTM, Rawi NFM, Hassan NAA, Saharudin NI, Kassim MHM
    Int J Biol Macromol, 2023 Aug 01;245:125486.
    PMID: 37355060 DOI: 10.1016/j.ijbiomac.2023.125486
    A million tonnes of plastic produced each year are disposed of after single use. Biodegradable polymers have become a promising material as an alternative to petroleum-based polymers. Utilising biodegradable polymers will promote environmental sustainability which has emerged with potential features and performances for various applications in different sectors. Seaweed-derived polysaccharides-based composites have been the focus of numerous studies due to the composites' renewability and sustainability for industries (food packaging and medical fields like tissue engineering and drug delivery). Due to their biocompatibility, abundance, and gelling ability, seaweed derivatives such as alginate, carrageenan, and agar are commonly used for this purpose. Seaweed has distinct film-forming characteristics, but its mechanical and water vapour barrier qualities are weak. Thus, modifications are necessary to enhance the seaweed properties. This review article summarises and discusses the effect of incorporating seaweed films with different types of nanoparticles on their mechanical, thermal, and water barrier properties.
    Matched MeSH terms: Nanocomposites*
  16. Arul P, Nandhini C, Huang ST, Gowthaman NSK, Huang CH
    Food Chem, 2023 Jul 15;414:135747.
    PMID: 36841102 DOI: 10.1016/j.foodchem.2023.135747
    A simple and rapid screening of biomarkers in clinical and food matrices is urgently needed to diagnose cardiovascular diseases. The cholesterol (Chol) and hydrogen peroxide (H2O2) are critical bio-indicators, which require more inventive detection techniques to be applied to real food, and bio-samples. In this study, a robust dual sensor was developed for Chol and H2O2 using hybrid catalyst. Bovine serum albumin (BSA)-capped nanocatalyst was potentially catalyzed 3,3',5,5'-tetramethylbenzidine (TMB), and H2O2. The enzymatic nanoelectrocatalyst delivered a wide range of signaling concentrations from 250 nM to 3.0 mM and 100 nM to 10 mM, limit of detection (LOD) of 53.2 nM and 18.4 nM for Chol and H2O2. The cholesterol oxidase-BSA-AuNPs-metal-free organic framework (ChOx-BSA-AuNPs-MFOF) based electrode surface effectively operated in live-cells and real-food samples. The enzymatic sensor exhibits adequate recovery of real-food samples (96.96-99.44%). Finally, the proposed system is a suitable choice for the potential applications of Chol and H2O2 in clinical and food chemistry.
    Matched MeSH terms: Nanocomposites*
  17. Imran M, Ahmed S, Abdullah AZ, Hakami J, Chaudhary AA, Rudayni HA, et al.
    Luminescence, 2023 Jul;38(7):1064-1086.
    PMID: 36378274 DOI: 10.1002/bio.4408
    The penicillin derivative amoxicillin (AMX) plays an important role in treating various types of infections caused by bacteria. However, excessive use of AMX may have negative health effects. Therefore, it is of utmost importance to detect and quantify the AMX in pharmaceutical drugs, biological fluids, and environmental samples with high sensitivity. Therefore, this review article provides valuable and up-to-date information on nanostructured material-based optical and electrochemical sensors to detect AMX in various biological and chemical samples. The role of using different nanostructured materials on the performance of important optical sensors such as colorimetric sensors, fluorescence sensors, surface-enhanced Raman scattering sensors, chemiluminescence/electroluminescence sensors, optical immunosensors, optical fibre-based sensors, and several important electrochemical sensors based on different electrode types have been discussed. Moreover, nanocomposites, polymer, and MXenes-based electrochemical sensors have also been discussed, in which such materials are being used to further enhance the sensitivity of these sensors. Furthermore, nanocomposite-based photo-electrochemical sensors and the market availability of biosensors including AMX have also been discussed briefly. Finally, the conclusion, challenges, and future perspectives of the above-mentioned sensing techniques for AMX detection are presented.
    Matched MeSH terms: Nanocomposites*
  18. Mahboob I, Shafique S, Shafiq I, Akhter P, Belousov AS, Show PL, et al.
    Environ Res, 2023 Feb 01;218:114983.
    PMID: 36462696 DOI: 10.1016/j.envres.2022.114983
    Dearomatization through photocatalytic oxidation is a swiftly rising phenolic compounds removal technology that works at trifling operations requirements with a special emphasis on the generation of nontoxic products. The study aims to develop a LaVO4/MCM-48 nanocomposite that was prepared via a hydrothermally approach assisting the employment of an MCM-48 matrix, which was then utilized for phenol degradation processes. Various techniques including UV-Vis DRS, FTIR, PL, Raman, TEM, and BET analyses are employed to characterize the developed photocatalyst. The developed photocatalyst presented remarkable characteristics, especially increased light photon utilization, and reduced recombination rate leading to enhanced visible-light-driven photodegradation performance owing to the improved specific surface area, specific porosities, and <2 eV narrow energy bandgap. The LaVO4/MCM-48 nanocomposite was experienced on aqueous phenol solution having 20 mg/L concentration under visible-light exposure, demonstrating exceptional performance in photodegradation up to 99.28%, comparatively higher than pure LaVO4. The conducted kinetic measurements revealed good accordance with pseudo first-order. A possible reaction mechanism for photocatalytic degradation was also predicted. The as-synthesized LaVO4/MCM-48 nanocomposite presented excellent stability and recyclability.
    Matched MeSH terms: Nanocomposites*
  19. Manimegalai S, Vickram S, Deena SR, Rohini K, Thanigaivel S, Manikandan S, et al.
    Chemosphere, 2023 Jan;312(Pt 1):137319.
    PMID: 36410505 DOI: 10.1016/j.chemosphere.2022.137319
    Water treatment is a worldwide issue. This review aims to present current problems and future challenges in water treatments with the existing methodologies. Carbon nanotube production, characterization, and prospective uses have been the subject of considerable and rigorous research around the world. They have a large number of technical uses because of their distinct physical characteristics. Various catalyst materials are used to make carbon nanotubes. This review's primary focus is on integrated and single-treatment technologies for all kinds of drinking water resources, including ground and surface water. Inorganic non-metallic matter, heavy metals, natural organic matter, endocrine-disrupting chemicals, disinfection by-products and microbiological pollutants are among the contaminants that these treatment systems can remediate in polluted drinking water resources. Significant advances in the antibacterial and adsorption capabilities of carbon-based nanomaterials have opened up new options for excluding organic/inorganic and biological contaminants from drinking water in recent years. The advancements in multifunctional nanocomposites synthesis pave the possibility for their use in enhanced wastewater purification system design. The adsorptive and antibacterial characteristics of six main kinds of carbon nanomaterials are single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, graphene oxide, fullerene and single-walled carbon nanohorns. This review potentially addressed the essential metallic and polymeric nanocomposites, are described and compared. Barriers to use these nanoparticles in long-term water treatment are also discussed.
    Matched MeSH terms: Nanocomposites*
  20. Mohamed Haneef INH, Mohd Shaffiar N, Buys YF, Syed Shaharuddin SI, Abdul Hamid AM, Widiyati K
    J Biomed Mater Res B Appl Biomater, 2022 11;110(11):2574-2588.
    PMID: 35661579 DOI: 10.1002/jbm.b.35105
    Halloysite nanotubes (HNTs) have recently been the subject of extensive research as a reinforcing filler. HNT is a natural nanoclay, non-toxic and biocompatible, hence, applicable in biomedical fields. This review focuses on the mechanical, thermal, and functional properties of polymer nanocomposites with HNT as a reinforcing agent from an experimental and theoretical perspective. In addition, this review also highlights the recent applications of polymer/HNT nanocomposites in the biomedical fields.
    Matched MeSH terms: Nanocomposites*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links