Displaying publications 1 - 20 of 635 in total

Abstract:
Sort:
  1. Idris FN, Nadzir MM
    Arch Microbiol, 2023 Mar 14;205(4):115.
    PMID: 36917278 DOI: 10.1007/s00203-023-03455-6
    Infections by ESKAPE (Enterococcus sp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens cause major concern due to their multi-drug resistance (MDR). The ESKAPE pathogens are frequently linked to greater mortality, diseases, and economic burden in healthcare worldwide. Therefore, the use of plants as a natural source of antimicrobial agents provide a solution as they are easily available and safe to use. These natural drugs can also be enhanced by incorporating silver nanoparticles and combining them with existing antibiotics. By focussing the attention on the ESKAPE organisms, the MDR issue can be addressed much better.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  2. Pramanik A, Xu Z, Shamsuddin SH, Khaled YS, Ingram N, Maisey T, et al.
    ACS Appl Mater Interfaces, 2022 Mar 09;14(9):11078-11091.
    PMID: 35196008 DOI: 10.1021/acsami.1c21655
    Nanomedicines, while having been approved for cancer therapy, present many challenges such as low stability, rapid clearance, and nonspecificity leading to off-target toxicity. Cubosomes are porous lyotropic liquid crystalline nanoparticles that have shown great premise as drug delivery vehicles; however, their behavior in vivo is largely underexplored, hindering clinical translation. Here, we have engineered cubosomes based on the space group Im3m that are loaded with copper acetylacetonate as a model drug, and their surfaces are functionalized for the first time with Affimer proteins via copper-free click chemistry to actively target overexpressed carcinoembryonic antigens on LS174T colorectal cancer cells. Unlike nontargeted cubosomes, Affimer tagged cubosomes showed preferential accumulation in cancer cells compared to normal cells not only in vitro (2D monolayer cell culture and 3D spheroid models) but also in vivo in colorectal cancer mouse xenografts, while exhibiting low nonspecific absorption and toxicity in other vital organs. Cancerous spheroids had maximum cell death compared to noncancerous cells upon targeted delivery. Xenografts subjected to targeted drug-loaded cubosomes showed a 5-7-fold higher drug accumulation in the tumor tissue compared to the liver, kidneys, and other vital organs, a significant decrease in tumor growth, and an increased survival rate compared to the nontargeted group. This work encompasses the first thorough preclinical investigation of Affimer targeted cubosomes as a cancer therapeutic.
    Matched MeSH terms: Nanoparticles/chemistry
  3. Chellappan DK, Prasher P, Saravanan V, Vern Yee VS, Wen Chi WC, Wong JW, et al.
    Chem Biol Interact, 2022 Jan 05;351:109706.
    PMID: 34662570 DOI: 10.1016/j.cbi.2021.109706
    The challenges and difficulties associated with conventional drug delivery systems have led to the emergence of novel, advanced targeted drug delivery systems. Therapeutic drug delivery of proteins and peptides to the lungs is complicated owing to the large size and polar characteristics of the latter. Nevertheless, the pulmonary route has attracted great interest today among formulation scientists, as it has evolved into one of the important targeted drug delivery platforms for the delivery of peptides, and related compounds effectively to the lungs, primarily for the management and treatment of chronic lung diseases. In this review, we have discussed and summarized the current scenario and recent developments in targeted delivery of proteins and peptide-based drugs to the lungs. Moreover, we have also highlighted the advantages of pulmonary drug delivery over conventional drug delivery approaches for peptide-based drugs, in terms of efficacy, retention time and other important pharmacokinetic parameters. The review also highlights the future perspectives and the impact of targeted drug delivery on peptide-based drugs in the coming decade.
    Matched MeSH terms: Nanoparticles/chemistry
  4. Ghazali SZ, Mohamed Noor NR, Mustaffa KMF
    Prep Biochem Biotechnol, 2022;52(1):99-107.
    PMID: 33890844 DOI: 10.1080/10826068.2021.1913602
    The objective of this study is to synthesize neem-silver nitrate nanoparticles (neem-AgNPs) using aqueous extracts of Azadirachta indica A. Juss for malaria therapy. Neem leaves collected from FRIM Malaysia were authenticated and extracted using Soxhlet extraction method. The extract was introduced to 1 mM of silver nitrate solution for neem-AgNPs synthesis. Synthesized AgNPs were further characterized by ultraviolet-visible spectroscopy and the electron-scanning microscopy. Meanwhile, for the anti-plasmodial activity of the neem-AgNPs, two lab-adapted Plasmodium falciparum strains, 3D7 (chloroquine-sensitive), and W2 (chloroquine-resistant) were tested. Red blood cells hemolysis was monitored to observe the effects of neem-AgNPs on normal and parasitized red blood cells. The synthesized neem-AgNPs were spherical in shape and showed a diameter range from 31-43 nm. When compared to aqueous neem leaves extract, the half inhibitory concentration (IC50) of the synthesized neem-AgNPs showed a four-fold IC50 decrease against both parasite strains with IC50 value of 40.920 µg/mL to 8.815 µg/mL for 3D7, and IC50 value of 98.770 µg/mL to 23.110 µg/mL on W2 strain. The hemolysis assay indicates that the synthesized neem-AgNPs and aqueous extract alone do not have hemolysis activity against normal and parasitized red blood cells. Therefore, this study shows the synthesized neem-AgNPs has a great potential to be used for malaria therapy.
    Matched MeSH terms: Nanoparticles/chemistry
  5. Samrot AV, Saigeetha S, Mun CY, Abirami S, Purohit K, Cypriyana PJJ, et al.
    Sci Rep, 2021 12 31;11(1):24511.
    PMID: 34972829 DOI: 10.1038/s41598-021-03328-2
    Latex, a milky substance found in a variety of plants which is a natural source of biologically active compounds. In this study, Latex was collected from raw Carica papaya and was characterized using UV-Vis, FTIR and GC-MS analyses. Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) were synthesized, coated with C. papaya latex (PL-Sp) and characterized using UV-Vis, FT-IR, SEM-EDX, XRD, VSM and Zeta potential analyses. SPIONs and latex coated SPIONs (PL-Sp) were used in batch adsorption study for effective removal of Methylene blue (MB) dye, where (PL-Sp) removed MB dye effectively. Further the PL-Sp was used to produce a nanoconjugate loaded with curcumin and it was characterized using UV-Vis spectrophotometer, FT-IR, SEM-EDX, XRD, VSM and Zeta potential. It showed a sustained drug release pattern and also found to have good antibacterial and anticancer activity.
    Matched MeSH terms: Magnetite Nanoparticles/chemistry*
  6. Gunathilake TMSU, Ching YC, Uyama H, Nguyen DH, Chuah CH
    Int J Biol Macromol, 2021 Dec 15;193(Pt B):1522-1531.
    PMID: 34740692 DOI: 10.1016/j.ijbiomac.2021.10.215
    The investigation of protein-nanoparticle interactions contributes to the understanding of nanoparticle bio-reactivity and creates a database of nanoparticles for use in nanomedicine, nanodiagnosis, and nanotherapy. In this study, hen's egg white was used as the protein source to study the interaction of proteins with sulphuric acid hydrolysed nanocellulose (CNC). Several techniques such as FTIR, zeta potential measurement, UV-vis spectroscopy, compressive strength, TGA, contact angle and FESEM provide valuable information in the protein-CNC interaction study. The presence of a broader peak in the 1600-1050 cm-1 range of CNC/egg white protein FTIR spectrum compared to the 1600-1050 cm-1 range of CNC sample indicated the binding of egg white protein to CNC surface. The contact angle with the glass surface decreased with the addition of CNC to egg white protein. The FESEM EDX spectra showed a higher amount of N and Na on the surface of CNC. It indicates the density of protein molecules higher around CNC. The zeta potential of CNC changed from -26.7 ± 0.46 to -21.7 ± 0.2 with the introduction of egg white protein due to the hydrogen bonding, polar bonds and electrostatic interaction between surface CNC and protein. The compressive strength of the egg white protein films increased from 0.064 ± 0.01 to 0.36 ± 0.02 MPa with increasing the CNC concentration from 0 to 4.73% (w/v). The thermal decomposition temperature of CNC/egg white protein decreased compared to egg white protein thermal decomposition temperature. According to UV-Vis spectroscopy, the far-UV light (207-222nm) absorption peak slightly changed in the CNC/egg white protein spectrum compared to the egg white protein spectrum. Based on the results, the observations of protein nanoparticle interactions provide an additional understanding, besides the theoretical simulations from previous studies. Also, the results indicate to aim CNC for the application of nanomedicine and nanotherapy. A new insight given by us in this research assumes a reasonable solution to these crucial applications.
    Matched MeSH terms: Nanoparticles/chemistry*
  7. Wong ZW, Ng JF, New SY
    Chem Asian J, 2021 Dec 13;16(24):4081-4086.
    PMID: 34668337 DOI: 10.1002/asia.202101145
    miRNA (miR)-155 is a potential biomarker for breast cancers. We aimed at developing a nanosensor for miR-155 detection by integrating hybridization chain reaction (HCR) and silver nanoclusters (AgNCs). HCR serves as an enzyme-free and isothermal amplification method, whereas AgNCs provide a built-in fluorogenic detection probe that could simplify the downstream analysis. The two components were integrated by adding a nucleation sequence of AgNCs to the hairpin of HCR. The working principle was based on the influence of microenvironment towards the hosted AgNCs, whereby unfolding of hairpin upon HCR has manipulated the distance between the hosted AgNCs and cytosine-rich toehold region of hairpin. As such, the dominant emission of AgNCs changed from red to yellow in the absence and presence of miR-155, enabling a ratiometric measurement of miR with high sensitivity. The limit of detection (LOD) of our HCR-AgNCs nanosensor is 1.13 fM in buffered solution. We have also tested the assay in diluted serum samples, with comparable LOD of 1.58 fM obtained. This shows the great promise of our HCR-AgNCs nanosensor for clinical application.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  8. Prasher P, Sharma M, R Wich P, Jha NK, Singh SK, Chellappan DK, et al.
    Future Med Chem, 2021 12;13(23):2027-2031.
    PMID: 34596425 DOI: 10.4155/fmc-2021-0218
    Matched MeSH terms: Nanoparticles/chemistry*
  9. Devasvaran K, Lim V
    Pharm Biol, 2021 Dec;59(1):494-503.
    PMID: 33905665 DOI: 10.1080/13880209.2021.1910716
    CONTEXT: Pectin is a plant heteropolysaccharide that is biocompatible and biodegradable, enabling it to be an excellent reducing agent (green synthesis) for metallic nanoparticles (MNPs). Nevertheless, in the biological industry, pectin has been left behind in synthesising MNPs, for no known reason.

    OBJECTIVE: To systematically review the biological activities of pectin synthesised MNPs (Pe-MNPs).

    METHODS: The databases Springer Link, Scopus, ScienceDirect, Google Scholar, PubMed, Mendeley, and ResearchGate were systematically searched from the date of their inception until 10th February 2020. Pectin, green synthesis, metallic nanoparticles, reducing agent and biological activities were among the key terms searched. The data extraction was focussed on the biological activities of Pe-MNPs and reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations for systematic reviews.

    RESULTS: A total of 15 studies outlined 7 biological activities of Pe-MNPs in the only three metals that have been explored, namely silver (Ag), gold (Au) and cerium oxide (CeO2). The activities reported from the in vitro and in vivo studies were antimicrobial (9 studies), anticancer (2 studies), drug carrier (3 studies), non-toxic (4 studies), antioxidant (2 studies), wound healing (1 study) and anti-inflammation (1 study).

    CONCLUSIONS: This systematic review demonstrates the current state of the art of Pe-MNPs biological activities, suggesting that Ag and Au have potent antibacterial and anticancer/chemotherapeutic drug carrier activity, respectively. Further in vitro, in vivo, and clinical research is crucial for a better understanding of the pharmacological potential of pectin synthesised MNPs.

    Matched MeSH terms: Metal Nanoparticles/chemistry*
  10. Li G, Lee WJ, Tan CP, Lai OM, Wang Y, Qiu C
    Food Funct, 2021 Nov 29;12(23):11732-11746.
    PMID: 34698749 DOI: 10.1039/d1fo01883c
    Pickering water-in-oil (W/O) emulsions were fabricated by using medium-long chain diacylglycerol (MLCD)-based solid lipid nanoparticles (SLNs) and the connection between the characteristics of the SLNs and the colloidal stability of the emulsions was established. Via melt-emulsification and ultrasonication, MLCD-based SLNs with particle sizes of 120-300 nm were obtained with or without other surfactants. The particle size of the SLNs was influenced by the chemical properties of the surfactants, and surfactants decreased the contact angle of SLNs at the oil-water interface. Gelation was observed in SLNs modified by sodium stearoyl lactylate and lecithin, whereas the addition of Tween 20 resulted in a homogeneous SLN solution. The adsorption of surfactants onto SLN surfaces caused the production of higher amounts of α crystals accompanied by delayed crystallization onset which contributed to the reduction of particle size, interfacial tension and oil wetting ability. The W/O emulsions with higher rigidity and physical stability can be obtained by varying surfactant types and by increasing SLN mass ratios to 60%, whereby more SLNs are adsorbed at the droplet surface as a Pickering stabilizer. This study provides useful insights for the development of diacylglycerol-based SLNs and Pickering W/O emulsions which have great potential for food, cosmetic and pharmaceutical applications.
    Matched MeSH terms: Nanoparticles/chemistry*
  11. Gaddam SA, Kotakadi VS, Subramanyam GK, Penchalaneni J, Challagundla VN, Dvr SG, et al.
    Sci Rep, 2021 11 09;11(1):21969.
    PMID: 34753977 DOI: 10.1038/s41598-021-01281-8
    The current investigation highlights the green synthesis of silver nanoparticles (AgNPs) by the insectivorous plant Drosera spatulata Labill var. bakoensis, which is the first of its kind. The biosynthesized nanoparticles revealed a UV visible surface plasmon resonance (SPR) band at 427 nm. The natural phytoconstituents which reduce the monovalent silver were identified by FTIR. The particle size of the Ds-AgNPs was detected by the Nanoparticle size analyzer confirms that the average size of nanoparticles was around 23 ± 2 nm. Ds-AgNPs exhibit high stability because of its high negative zeta potential (- 34.1 mV). AFM studies also revealed that the Ds-AgNPs were spherical in shape and average size ranges from 10 to 20 ± 5 nm. TEM analysis also revealed that the average size of Ds-AgNPs was also around 21 ± 4 nm and the shape is roughly spherical and well dispersed. The crystal nature of Ds-AgNPs was detected as a face-centered cube by the XRD analysis. Furthermore, studies on antibacterial and antifungal activities manifested outstanding antimicrobial activities of Ds-AgNPs compared with standard antibiotic Amoxyclav. In addition, demonstration of superior free radical scavenging efficacy coupled with potential in vitro cytotoxic significance on Human colon cancer cell lines (HT-29) suggests that the Ds-AgNPs attain excellent multifunctional therapeutic applications.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  12. Khursheed R, Singh SK, Wadhwa S, Gulati M, Kapoor B, Jain SK, et al.
    Int J Biol Macromol, 2021 Oct 31;189:744-757.
    PMID: 34464640 DOI: 10.1016/j.ijbiomac.2021.08.170
    The role of mushroom polysaccharides and probiotics as pharmaceutical excipients for development of nanocarriers has never been explored. In the present study an attempt has been made to explore Ganoderma lucidum extract powder (GLEP) containing polysaccharides and probiotics to convert liquid self nanoemulsifying drug delivery system (SNEDDS) into solid free flowing powder. Two lipophilic drugs, curcumin and quercetin were used in this study due to their dissolution rate limited oral bioavailability and poor permeability. These were loaded into liquid SNEDDS by dissolving them into isotropic mixture of Labrafill M1944CS, Capmul MCM, Tween-80 and Transcutol P. The liquid SNEDDS were solidified using probiotics and mushroom polysaccharides as carriers and Aerosil-200 as coating agent. The solidification was carried out using spray drying process. The process and formulation variables for spray drying process of liquid SNEDDS were optimized using Box Behnken Design to attain required powder properties. The release of both drugs from the optimized spray dried (SD) formulation was found to be more than 90%, whereas, it was less than 20% for unprocessed drugs. The results of DSC, PXRD and SEM, showed that the developed L-SNEDDS preconcentrate was successfully loaded onto the porous surface of probiotics, mushroom polysaccharides and Aerosil-200.
    Matched MeSH terms: Nanoparticles/chemistry*
  13. Abdulhussein AQ, Jamil AKM, Bakar NKA
    Food Chem, 2021 Oct 15;359:129936.
    PMID: 33957328 DOI: 10.1016/j.foodchem.2021.129936
    In this work, new selective and sensitive dual-template molecularly imprinted polymer nanoparticles (MIPs) were synthesized and characterized. Sorbent MIPs were investigated for simultaneous extraction and clean-up of thiamethoxam and thiacloprid from light and dark honey samples. In this study, ultra-high-performance liquid chromatography-tandem mass spectrometry triple-quadrupole (UHPLC-MS/MS) (QQQ) was used to detect and quantify the pesticides. The kinetic model with adsorption kinetics of sorbent was investigated. The optimal adsorption conditions were 80 mg of polymer MIPs, a 30-min extraction time, and a pH of 7. The detection limit (LOD) and the quantification limit (LOQ) varied from 0.045 to 0.070 µg kg-1 and from 0.07 to 0.10 µg kg-1, respectively. The intra-day and inter-day precision (RSD, %) ranged from 1.3 to 2.0% and from 8.2 to 12.0%, respectively. The recovery of thiamethoxam and thiacloprid ranged from 96.8 to 106.5% and 95.3 to 104.4%, respectively, in light and dark honey samples.
    Matched MeSH terms: Nanoparticles/chemistry*
  14. Yang CL, Chao YJ, Wang HC, Hou YC, Chen CG, Chang CC, et al.
    Nanomedicine, 2021 10;37:102450.
    PMID: 34332115 DOI: 10.1016/j.nano.2021.102450
    Epigenetic inhibitors have shown anticancer effects. Combination chemotherapy with epigenetic inhibitors has shown high effectiveness in gastric cancer clinical trials, but severe side effect and local progression are the causes of treatment failure. Therefore, we sought to develop an acidity-sensitive drug delivery system to release drugs locally to diminish unfavorable outcome of gastric cancer. In this study, we showed that, as compared with single agents, combination treatment with the demethylating agent 5'-aza-2'-deoxycytidine and HDAC inhibitors Trichostatin A or LBH589 decreased cell survival, blocked cell cycle by reducing number of S-phase cells and expression of cyclins, increased cell apoptosis by inducing expression of Bim and cleaved Caspase 3, and reexpressed tumor suppressor genes more effectively in MGCC3I cells. As a carrier, reconstituted apolipoprotein B lipoparticles (rABLs) could release drugs in acidic environments. Orally administrated embedded drugs not only showed inhibitory effects on gastric tumor growth in a syngeneic orthotopic mouse model, but also reduced the hepatic and renal toxicity. In conclusion, we have established rABL-based nanoparticles embedded epigenetic inhibitors for local treatment of gastric cancer, which have good therapeutic effects but do not cause severe side effects.
    Matched MeSH terms: Nanoparticles/chemistry
  15. Yahaya ML, Zakaria ND, Noordin R, Abdul Razak K
    Biotechnol Appl Biochem, 2021 Oct;68(5):1095-1106.
    PMID: 32935878 DOI: 10.1002/bab.2029
    Salmonella and Shigella genera are common pathogens that contaminate foods and beverages. Lateral flow assays (LFA) are commonly used to detect these pathogens. However, most of the developed LFAs are for single detection. Simultaneous detection of pathogens is required to reduce cost and time. In this work, 40 nm gold nanoparticles (AuNPs) were synthesized using the seeding growth method as labeling agent. The AuNPs were characterized and conjugated with mouse anti-Gram negative endotoxin antibody. The nitrocellulose membrane HF135 was immobilized with anti-mouse IgG antibody as a control line and two separate test lines with either anti-Shigella or anti-Salmonella antibody, respectively. Color intensity of test lines was observed for positive samples. A milk sample was used as proof of concept to mimic actual contamination. The limit of detection of the LFA was 3.0 × 106 CFU/mL for multiplex detection of Shigella flexneri and Salmonella Typhi and for both single detections. The result was comparable with the enzyme-linked immunosorbent assay (ELISA) analysis. The produced LFA could differentiate between Shigella flexneri, Shigella boydii, Salmonella Enteritidis, and Salmonella Typhi. The developed LFA was able to identify Shigella flexneri and Salmonella Typhi with good sensitivity in milk samples, thus, beneficial to ensure the safety of food before entering the market.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  16. Mustafa IF, Hussein MZ, Idris AS, Hilmi NHZ, Fakurazi S
    Molecules, 2021 Sep 26;26(19).
    PMID: 34641379 DOI: 10.3390/molecules26195837
    Reports on fungicide-based agronanochemicals in combating disastrous basal stem rot disease in the oil palm industry are scant. Herein, we describe the potential of fungicide nanodelivery agents based on hexaconazole-micelle systems produced using three different surfactants; sodium dodecylbenze sulfonate (SDBS), sodium dodecyl sulfate (SDS) and Tween 80 (T80). The resulting nanodelivery systems were characterized and the results supported the encapsulation of the fungicide into the micelles of the surfactants. We have investigated in detail the size-dependent effects of the as-synthesized micelles towards the inhibition growth of Ganoderma Boninense fungi. All the nanodelivery systems indicate that their size decreased as the surfactant concentration was increased, and it directly affects the fungal inhibition. It was also found that Tween 80, a non-ionic surfactant gave the lowest effective concentration, the EC50 value of 2, on the pathogenic fungus Ganoderma boninense compared to the other anionic surfactants; SDBS and SDS. This study opens up a new generation of agronanofungicide of better efficacy for Ganoderma disease treatment.
    Matched MeSH terms: Nanoparticles/chemistry
  17. Chong WL, Chupradit K, Chin SP, Khoo MM, Khor SM, Tayapiwatana C, et al.
    Molecules, 2021 Sep 20;26(18).
    PMID: 34577167 DOI: 10.3390/molecules26185696
    Protein-protein interaction plays an essential role in almost all cellular processes and biological functions. Coupling molecular dynamics (MD) simulations and nanoparticle tracking analysis (NTA) assay offered a simple, rapid, and direct approach in monitoring the protein-protein binding process and predicting the binding affinity. Our case study of designed ankyrin repeats proteins (DARPins)-AnkGAG1D4 and the single point mutated AnkGAG1D4-Y56A for HIV-1 capsid protein (CA) were investigated. As reported, AnkGAG1D4 bound with CA for inhibitory activity; however, it lost its inhibitory strength when tyrosine at residue 56 AnkGAG1D4, the most key residue was replaced by alanine (AnkGAG1D4-Y56A). Through NTA, the binding of DARPins and CA was measured by monitoring the increment of the hydrodynamic radius of the AnkGAG1D4-gold conjugated nanoparticles (AnkGAG1D4-GNP) and AnkGAG1D4-Y56A-GNP upon interaction with CA in buffer solution. The size of the AnkGAG1D4-GNP increased when it interacted with CA but not AnkGAG1D4-Y56A-GNP. In addition, a much higher binding free energy (∆GB) of AnkGAG1D4-Y56A (-31 kcal/mol) obtained from MD further suggested affinity for CA completely reduced compared to AnkGAG1D4 (-60 kcal/mol). The possible mechanism of the protein-protein binding was explored in detail by decomposing the binding free energy for crucial residues identification and hydrogen bond analysis.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  18. Haniffa MACM, Munawar K, Chee CY, Pramanik S, Halilu A, Illias HA, et al.
    Carbohydr Polym, 2021 Sep 01;267:118136.
    PMID: 34119125 DOI: 10.1016/j.carbpol.2021.118136
    Cellulose and its forms are widely used in biomedical applications due to their biocompatibility, biodegradability and lack of cytotoxicity. It provides ample opportunities for the functionalization of supported magnetic nanohybrids (CSMNs). Because of the abundance of surface hydroxyl groups, they are surface tunable in either homogeneous or heterogeneous solvents and thus act as a substrate or template for the CSMNs' development. The present review emphasizes on the synthesis of various CSMNs, their physicomagnetic properties, and potential applications such as stimuli-responsive drug delivery systems, MRI, enzyme encapsulation, nucleic acid extraction, wound healing and tissue engineering. The impact of CSMNs on cytotoxicity, magnetic hyperthermia, and folate-conjugates is highlighted in particular, based on their structures, cell viability, and stability. Finally, the review also discussed the challenges and prospects of CSMNs' development. This review is expected to provide CSMNs' development roadmap in the context of 21st-century demands for biomedical therapeutics.
    Matched MeSH terms: Magnetite Nanoparticles/chemistry*
  19. Chan Y, Ng SW, Singh SK, Gulati M, Gupta G, Chaudhary SK, et al.
    Life Sci, 2021 Sep 01;280:119744.
    PMID: 34174324 DOI: 10.1016/j.lfs.2021.119744
    Viral respiratory tract infections have significantly impacted global health as well as socio-economic growth. Respiratory viruses such as the influenza virus, respiratory syncytial virus (RSV), and the recent SARS-CoV-2 infection (COVID-19) typically infect the upper respiratory tract by entry through the respiratory mucosa before reaching the lower respiratory tract, resulting in respiratory disease. Generally, vaccination is the primary method in preventing virus pathogenicity and it has been shown to remarkably reduce the burden of various infectious diseases. Nevertheless, the efficacy of conventional vaccines may be hindered by certain limitations, prompting the need to develop novel vaccine delivery vehicles to immunize against various strains of respiratory viruses and to mitigate the risk of a pandemic. In this review, we provide an insight into how polymer-based nanoparticles can be integrated with the development of vaccines to effectively enhance immune responses for combating viral respiratory tract infections.
    Matched MeSH terms: Nanoparticles/chemistry*
  20. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M
    Molecules, 2021 Aug 24;26(17).
    PMID: 34500560 DOI: 10.3390/molecules26175119
    α-Mangostin (AMG) is a potent anticancer xanthone that was discovered in mangosteen (Garcinia mangostana Linn.). AMG possesses the highest opportunity for chemopreventive and chemotherapeutic therapy. AMG inhibits every step in the process of carcinogenesis. AMG suppressed multiple breast cancer (BC) cell proliferation and apoptosis by decreasing the creation of cancerous compounds. Accumulating BC abnormalities and their associated molecular signaling pathways promotes novel treatment strategies. Chemotherapy is a commonly used treatment; due to the possibility of unpleasant side effects and multidrug resistance, there has been substantial progress in searching for alternative solutions, including the use of plant-derived natural chemicals. Due to the limitations of conventional cancer therapy, nanotechnology provides hope for effective and efficient cancer diagnosis and treatment. Nanotechnology enables the delivery of nanoparticles and increased solubility of drugs and drug targeting, resulting in increased cytotoxicity and cell death during BC treatment. This review summarizes the progress and development of AMG's cytotoxicity and the mechanism of death BC cells. The combination of natural medicine and nanotechnology into a synergistic capital will provide various benefits. This information will aid in the development of AMG nanoparticle preparations and may open up new avenues for discovering an effective BC treatment.
    Matched MeSH terms: Nanoparticles/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links