Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Ahmad P, Khandaker MU, Muhammad N, Rehman F, Ullah Z, Khan G, et al.
    Appl Radiat Isot, 2020 Dec;166:109404.
    PMID: 32956924 DOI: 10.1016/j.apradiso.2020.109404
    The shortcomings in Boron neutron capture therapy (BNCT) and Hyperthermia for killing the tumor cell desired for the synthesis of a new kind of material suitable to be first used in BNCT and later on enable the conditions for Hyperthermia to destroy the tumor cell. The desire led to the synthesis of large band gap semiconductor nano-size Boron-10 enriched crystals of hexagonal boron nitride (10BNNCs). The contents of 10BNNCs are analyzed with the help of x-ray photoelectron spectroscopy (XPS) and counter checked with Raman and XRD. The 10B-contents in 10BNNCs produce 7Li and 4He nuclei. A Part of the 7Li and 4He particles released in the cell is allowed to kill the tumor (via BNCT) whereas the rest produce electron-hole pairs in the semiconductor layer of 10BNNCs suggested to work in Hyperthermia with an externally applied field.
    Matched MeSH terms: Nanoparticles/therapeutic use
  2. Ahmad S, Zamry AA, Tan HT, Wong KK, Lim J, Mohamud R
    Mol Immunol, 2017 11;91:123-133.
    PMID: 28898717 DOI: 10.1016/j.molimm.2017.09.001
    Gold nanoparticles (NPs) have been proposed as a highly potential tool in immunotherapies due to its advantageous properties including customizable size and shapes, surface functionality and biocompatibility. Dendritic cells (DCs), the sentinels of immune response, have been of interest to be manipulated by using gold NPs for targeted delivery of immunotherapeutic agent. Researches done especially in human DCs showed a variation of gold NPs effects on cellular uptake and internalization, DC maturation and subsequent T cells priming as well as cytotoxicity. In this review, we describe the synthesis and physiochemical properties of gold NPs as well as the importance of gold NPs in immunotherapies through their actions on human DCs.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  3. AlMatar M, Makky EA, Var I, Koksal F
    Curr Drug Deliv, 2018;15(4):470-484.
    PMID: 29219055 DOI: 10.2174/1567201815666171207163504
    BACKGROUND: Until recently, one of the main reasons for mortality has been infectious diseases, and bacteria that are drug-resistant have emerged as a result of the wide application, as well as the misuse of antibacterial medications. Having multidrug-resistance, bacteria present a great problem for the efficient management of bacterial infections and this challenge has resulted in the creation of other means of dealing with bacterial diseases. Of late, metallic nanoparticles (NPs), employed as antibacterial agents, have the potential for use against resistance to bacterial drugs.

    OBJECTIVE: The mechanisms of bacterial resistance are described in this review and this is followed by an outline of the features and uses of metallic NPs as antibiotic agents to address bacteria that are antibiotic- sensitive and resistant. Additionally, a general impression of metallic NPs as antibiofilm bactericidal agents is presented.

    CONCLUSION: Biofilms and bacterial strains that are resistant to antibiotics present a grave public health challenge and this has enhanced the need to develop new bactericidal agents. Therefore, nanomaterials are considered as a potential platform for managing bacterial infections.

    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  4. Anwar A, Soomaroo A, Anwar A, Siddiqui R, Khan NA
    Exp Parasitol, 2020 Aug;215:107915.
    PMID: 32461112 DOI: 10.1016/j.exppara.2020.107915
    Acanthamoeba castellanii is an opportunistic protozoan responsible for serious human infections including Acanthamoeba keratitis and granulomatous amoebic encephalitis. Despite advances in antimicrobial therapy and supportive care, infections due to Acanthamoeba are a major public concern. Current methods of treatment are not fully effective against both the trophozoite and cyst forms of A. castellanii and are often associated with severe adverse effects, host cell cytotoxicity and recurrence of infection. Therefore, there is an urgent need to develop new therapeutic approaches for the treatment and management of Acanthamoebic infections. Repurposing of clinically approved drugs is a viable avenue for exploration and is particularly useful for neglected and rare diseases where there is limited interest by pharmaceutical companies. Nanotechnology-based drug delivery systems offer promising approaches in the biomedical field, particularly in diagnosis and drug delivery. Herein, we conjugated an antihyperglycemic drug, metformin with silver nanoparticles and assessed its anti-acanthamoebic properties. Characterization by ultraviolet-visible spectrophotometry and atomic force microscopy showed successful formation of metformin-coated silver nanoparticles. Amoebicidal and amoebistatic assays revealed that metformin-coated silver nanoparticles reduced the viability and inhibited the growth of A. castellanii significantly more than metformin and silver nanoparticles alone at both 5 and 10 μM after 24 h incubation. Metformin-coated silver nanoparticles also blocked encystation and inhibited the excystation in Acanthamoeba after 72 h incubation. Overall, the conjugation of metformin with silver nanoparticles was found to enhance its antiamoebic effects against A. castellanii. Furthermore, the pretreatment of A. castellanii with metformin and metformin-coated silver nanoparticles for 2 h also reduced the amoebae-mediated host cell cytotoxicity after 24 h incubation from 73% to 10% at 10 μM, indicating that the drug-conjugated silver nanoparticles confer protection to human cells. These findings suggest that metformin-coated silver nanoparticles hold promise in the improved treatment and management of Acanthamoeba infections.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use
  5. Bapat RA, Joshi CP, Bapat P, Chaubal TV, Pandurangappa R, Jnanendrappa N, et al.
    Drug Discov Today, 2019 01;24(1):85-98.
    PMID: 30176358 DOI: 10.1016/j.drudis.2018.08.012
    Maintenance of oral health is a major challenge in dentistry. Different materials have been used to treat various dental diseases, although treatment success is limited by features of the biomaterials used. To overcome these limitations, materials incorporated with nanoparticles (NPs) can be used in dental applications including endodontics, periodontics, tissue engineering, oral surgery, and imaging. The unique properties of NPs, including their surface:volume ratio, antibacterial action, physical, mechanical, and biological characteristics, and unique particle size have rendered them effective vehicles for dental applications. In this review, we provide insights into the various applications of NPs in dentistry, including their benefits, limitations, properties, actions and future potential.
    Matched MeSH terms: Nanoparticles/therapeutic use*
  6. Chengzheng W, Jiazhi W, Shuangjiang C, Swamy MK, Sinniah UR, Akhtar MS, et al.
    J Nanosci Nanotechnol, 2018 May 01;18(5):3673-3681.
    PMID: 29442882 DOI: 10.1166/jnn.2018.15364
    Nanobiotechnology has emerged as a promising technology to develop new therapeutically active nanomaterials. The present study was aimed to biosynthesize AgNPs extracellularly using Aspergillus niger JX556221 fungal extract and to evaluate their anticancer potential against colon cancer cell line, HT-29. UV-visible spectral characterization of the synthesized AgNPs showed higher absorption peak at 440 nm wavelength. Transmission Electron Microscopy (TEM) analysis revealed the monodispersed nature of synthesized AgNPs occurring in spherical shape with a size in the range of 20-25 nm. Further, characterization using Energy Dispersive Spectroscopy (EDX) confirmed the face-centred cubic crystalline structure of metallic AgNPs. FTIR data revealed the occurrence of various phytochemicals in the cell free fungal extract which substantiated the fungal extract mediated AgNPs synthesis. The cytotoxic effect of AgNPs was studied by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results evidenced the cytotoxic effect of AgNPs on HT-29 cell lines in a dose dependent manner. The highest activity was found at 100 μg/ml concentration after 24 h of incubation. Use of propidium iodide staining examination method confirmed the cytotoxic effect of AgNPs through inducing cell apoptosis. AgNPs cytotoxicity was found to be through elevating reactive oxygen species (ROS), and caspase-3 activation resulting in induced apoptosis. Therefore, this research finding provides an insight towards the development of novel anticancer agents using biological sources.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  7. Choudhury H, Pandey M, Lim YQ, Low CY, Lee CT, Marilyn TCL, et al.
    Mater Sci Eng C Mater Biol Appl, 2020 Jul;112:110925.
    PMID: 32409075 DOI: 10.1016/j.msec.2020.110925
    Wounds associated with diabetes mellitus are the most severe co-morbidities, which could be progressed to cause cell necrosis leading to amputation. Statistics on the recent status of the diabetic wounds revealed that the disease affects 15% of diabetic patients, where 20% of them undergo amputation of their limb. Conventional therapies are found to be ineffective due to changes in the molecular architecture of the injured area, urging novel deliveries for effective treatment. Therefore, recent researches are on the development of new and effective wound care materials. Literature is evident in providing potential tools in topical drug delivery for wound healing under the umbrella of nanotechnology, where nano-scaffolds and nanofibers have shown promising results. The nano-sized particles are also known to promote healing of wounds by facilitating proper movement through the healing phases. To date, focuses have been made on the efficacy of silver nanoparticles (AgNPs) in treating the diabetic wound, where these nanoparticles are known to exploit potential biological properties in producing anti-inflammatory and antibacterial activities. AgNPs are also known to activate cellular mechanisms towards the healing of chronic wounds; however, associated toxicities of AgNPs are of great concern. This review is an attempt to illustrate the use of AgNPs in wound healing to facilitate this delivery system in bringing into clinical applications for a superior dressing and treatment over wounds and ulcers in diabetes patients.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  8. Darvishi B, Dinarvand R, Mohammadpour H, Kamarul T, Sharifi AM
    Mol Pharm, 2021 09 06;18(9):3302-3325.
    PMID: 34297586 DOI: 10.1021/acs.molpharmaceut.1c00248
    Microvascular complications are among the major outcomes of patients with type II diabetes mellitus, which are the consequences of impaired physiological functioning of small blood vessels and angiogenic responses in these patients. Overproduction and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl byproduct of glycolysis pathway, has been acclaimed as the main inducer of impaired angiogenic responses and microvascular dysfunction in diabetic patients with uncontrolled hyperglycemia. Hence, an effective approach to overcome diabetes-associated microvascular complications is to neutralize the deleterious activity of enhanced the concentration of MGO in the body. Owing to the glycation inhibitory activity of Aloe vera whole extract, and capability of l-carnosine, an endogenous dipeptide, in attenuating MGO's destructive activity, we examined whether application of a combination of l-carnosine and A. vera could be an effective way of synergistically weakening this reactive dicarbonyl's impaired angiogenic effects. Additionally, overcoming the poor cellular uptake and internalization of l-carnosine and A. vera, a nanophytosomal formulation of the physical mixture of two compounds was also established. Although l-carnosine and A. vera at whole studied combination ratios could synergistically enhance viability of human umbilical vein endothelial cells (HUVECs) treated with MGO, the 25:1 w/w ratio was the most effective one among the others (27 ± 0.5% compared to 12 ± 0.3 to 18 ± 0.4%; F (4, 15) = 183.9, P < 0.0001). Developing dual nanophytosomes of l-carnosine/A. vera (25:1) combination ratio, we demonstrated superiority of the nanophytosomal formulation in protecting HUVECs against MGO-induced toxicity following a 24-72 h incubation period (17.3, 15.8, and 12.4% respectively). Moreover, 500 μg/mL concentration of dual l-carnosine/A. vera nanophytosomes exhibited a superior free radical scavenging potency (63 ± 4 RFU vs 83 ± 5 RFU; F (5, 12) = 54.81, P < 0.0001) and nitric oxide synthesizing capacity (26.11 ± 0.19 vs 5.1 ± 0.33; F (5, 12) = 2537, P < 0.0001) compared to their physical combination counterpart. Similarly, 500 μg/mL dual l-carnosine/A. vera nanophytosome-treated HUVECs demonstrated a superior tube formation capacity (15 ± 3 vs 2 ± 0.3; F (5, 12) = 30.87, P < 0.001), wound scratch healing capability (4.92 ± 0.3 vs 3.07 ± 0.3 mm/h; F (5, 12) = 39.21, P < 0.0001), and transwell migration (586 ± 32 vs 394 ± 18; F (5, 12) = 231.8, P < 0.001) and invasion (172 ± 9 vs 115 ± 5; F (5, 12) = 581.1, P < 0.0001) activities compared to the physical combination treated ones. Further confirming the proangiogenic activity of the dual l-carnosine/A. vera nanophytosomes, a significant shift toward expression of proangiogenic genes including HIF-1α, VEGFA, bFGF, KDR, and Ang II was reported in treated HUVECs. Overall, dual l-carnosine/A. vera nanophytosomes could be a potential candidate for attenuating type II DM-associated microvascular complications with an impaired angiogenesis background.
    Matched MeSH terms: Nanoparticles/therapeutic use*
  9. Demirdöğen RE, Emen FM, Ocakoglu K, Murugan P, Sudesh K, Avşar G
    Int J Biol Macromol, 2018 Feb;107(Pt A):436-445.
    PMID: 28888547 DOI: 10.1016/j.ijbiomac.2017.09.011
    Carbon dioxide assisted particle formation combined with electrospraying using supercritical CO2 (scCO2) as an aid (Carbon Dioxide Assisted Nebulization-Electrodeposition, CAN-ED) was used to produce Bortezomib loaded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(3HB-co-3HHx) nanoparticles for sustained release. The morphology and structure of the prepared nanoparticles were investigated by SEM, TEM and FT-IR spectroscopy. Average diameter of particles obtained was 155nm and the average core sizes of P(3HB-co-3HHx) nanoparticles were between 6 and 13nm. The drug loading capacity, drug release and stability of Bortezomib loaded P(3HB-co-3HHx) nanoparticles were analyzed. The maximum loading capacity was achieved at pH=6.0 in phosphate buffer (K2HPO4/KH2PO4). It was found that temperature did not affect the stability of Bortezomib loaded nanoparticles and it was good both at 37°C and 4°C. This study pointed out that CAN-ED is a green method to produce P(3HB-co-3HHx) nanoparticles for pH responsive targeting of Bortezomib especially to parts of the body where size exclusion is not crucial.
    Matched MeSH terms: Nanoparticles/therapeutic use
  10. Dua K, Gupta G, Chellapan DK, Bebawy M, Collet T
    Panminerva Med, 2018 Dec;60(4):237-238.
    PMID: 30563307 DOI: 10.23736/S0031-0808.18.03435-3
    Matched MeSH terms: Nanoparticles/therapeutic use*
  11. Gaddam SA, Kotakadi VS, Subramanyam GK, Penchalaneni J, Challagundla VN, Dvr SG, et al.
    Sci Rep, 2021 11 09;11(1):21969.
    PMID: 34753977 DOI: 10.1038/s41598-021-01281-8
    The current investigation highlights the green synthesis of silver nanoparticles (AgNPs) by the insectivorous plant Drosera spatulata Labill var. bakoensis, which is the first of its kind. The biosynthesized nanoparticles revealed a UV visible surface plasmon resonance (SPR) band at 427 nm. The natural phytoconstituents which reduce the monovalent silver were identified by FTIR. The particle size of the Ds-AgNPs was detected by the Nanoparticle size analyzer confirms that the average size of nanoparticles was around 23 ± 2 nm. Ds-AgNPs exhibit high stability because of its high negative zeta potential (- 34.1 mV). AFM studies also revealed that the Ds-AgNPs were spherical in shape and average size ranges from 10 to 20 ± 5 nm. TEM analysis also revealed that the average size of Ds-AgNPs was also around 21 ± 4 nm and the shape is roughly spherical and well dispersed. The crystal nature of Ds-AgNPs was detected as a face-centered cube by the XRD analysis. Furthermore, studies on antibacterial and antifungal activities manifested outstanding antimicrobial activities of Ds-AgNPs compared with standard antibiotic Amoxyclav. In addition, demonstration of superior free radical scavenging efficacy coupled with potential in vitro cytotoxic significance on Human colon cancer cell lines (HT-29) suggests that the Ds-AgNPs attain excellent multifunctional therapeutic applications.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use
  12. Govindaraj D, Rajan M, Munusamy MA, Alarfaj AA, Sadasivuni KK, Kumar SS
    Nanomedicine, 2017 Nov;13(8):2661-2669.
    PMID: 28800874 DOI: 10.1016/j.nano.2017.07.017
    Minerals substituted apatite (M-HA) nanoparticles were prepared by the precipitation of minerals and phosphate reactants in choline chloride-Thiourea (ChCl-TU) deep eutectic solvent (DESs) as a facile and green way approach. After preparation of nanoparticles (F-M-HA (F=Fresh solvent)), the DESs was recovered productively and reprocess for the preparation of R-M-HA nanoparticles (R=Recycle solvent).The functional groups, phase, surface texture and the elemental composition of the M-HA nanoparticles were evaluated by advance characterization methods. The physicochemical results of the current work authoritative the successful uses of the novel (ChCl-TU) DESs as eco-friendly recuperate and give the medium for the preparation of M-HA nanoparticles. Moreover, the as-synthesized both M-HA nanoparticles exhibit excellent biocompatibility, consisting of cell co-cultivation and cell adhesion, in vivo according to surgical implantation of Wistar rats.
    Matched MeSH terms: Nanoparticles/therapeutic use*
  13. Idris FN, Nadzir MM
    Arch Microbiol, 2023 Mar 14;205(4):115.
    PMID: 36917278 DOI: 10.1007/s00203-023-03455-6
    Infections by ESKAPE (Enterococcus sp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens cause major concern due to their multi-drug resistance (MDR). The ESKAPE pathogens are frequently linked to greater mortality, diseases, and economic burden in healthcare worldwide. Therefore, the use of plants as a natural source of antimicrobial agents provide a solution as they are easily available and safe to use. These natural drugs can also be enhanced by incorporating silver nanoparticles and combining them with existing antibiotics. By focussing the attention on the ESKAPE organisms, the MDR issue can be addressed much better.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use
  14. Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, et al.
    Parasitol Int, 2016 Jun;65(3):276-84.
    PMID: 26873539 DOI: 10.1016/j.parint.2016.02.003
    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC(50) were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  15. Jeevanandam J, Pal K, Danquah MK
    Biochimie, 2019 Feb;157:38-47.
    PMID: 30408502 DOI: 10.1016/j.biochi.2018.11.001
    Viruses are considered as natural nanomaterials as they are in the size range of 20-500 nm with a genetical material either DNA or RNA, which is surrounded by a protein coat capsid. Recently, the field of virus nanotechnology is gaining significant attention from researchers. Attention is given to the utilization of viruses as nanomaterials for medical, biotechnology and energy applications. Removal of genetic material from the viral capsid creates empty capsid for drug incorporation and coating the capsid protein crystals with antibodies, enzymes or aptamers will enhance their targeted drug deliver efficiency. Studies reported that these virus-like nanoparticles have been used in delivering drugs for cancer. It is also used in imaging and sensory applications for various diseases. However, there is reservation among researchers to utilize virus-like nanoparticles in targeted delivery of genes in gene therapy, as there is a possibility of using virus-like nanoparticles for targeted gene delivery. In addition, other biomedical applications that are explored using virus-like nanoparticles and the probable mechanism of delivering genes.
    Matched MeSH terms: Nanoparticles/therapeutic use
  16. Jeevanandam J, Danquah MK, Debnath S, Meka VS, Chan YS
    Curr Pharm Biotechnol, 2015;16(10):853-70.
    PMID: 26212563 DOI: 10.2174/1389201016666150727120618
    Diabetes mellitus has been a threat to humans for many years. Amongst the different diabetes types, type 2 diabetes mellitus is the most common, and this is due to drastic changes in human lifestyle such as lack of exercise, stressful life and so on. There are a large number of conventional treatment methods available for type 2 diabetes mellitus. However, most of these methods are curative and are only applicable when the patient is highly symptomatic. Effective treatment strategies should be geared towards interfering with cellular and bio molecular mechanisms associated with the development and sustenance of the disease. In recent years, research into the medical potential of nanoparticles has been a major endeavor within the pharmaceutical industries. Nanoparticles display unique and tuneable biophysical characteristics which are determined by their shape and size. Nanoparticles have been used to manifest the properties of drugs, and as carriers for drug and vaccine delivery. Notwithstanding, there are further opportunities for nanoparticles to augment the treatment of a wide range of life threatening diseases that are yet to be explored. This review article seeks to highlight the application of potential nano-formulations in the treatment of type 2 diabetes mellitus. In addition, the activity of nanomedicine supplements in reversing insulin resistance is also discussed.
    Matched MeSH terms: Nanoparticles/therapeutic use
  17. Kanagesan S, Aziz SB, Hashim M, Ismail I, Tamilselvan S, Alitheen NB, et al.
    Molecules, 2016 Mar 11;21(3):312.
    PMID: 26978339 DOI: 10.3390/molecules21030312
    Manganese ferrite (MnFe2O4) magnetic nanoparticles were successfully prepared by a sol-gel self-combustion technique using iron nitrate and manganese nitrate, followed by calcination at 150 °C for 24 h. Calcined sample was systematically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrational sample magnetometry (VSM) in order to identify the crystalline phase, functional group, morphology, particle size, shape and magnetic behavior. It was observed that the resultant spinal ferrites obtained at low temperature exhibit single phase, nanoparticle size and good magnetic behavior. The study results have revealed the existence of a potent dose dependent cytotoxic effect of MnFe2O4 nanoparticles against 4T1 cell lines at varying concentrations with IC50 values of 210, 198 and 171 μg/mL after 24 h, 48 h and 72 h of incubation, respectively. Cells exposed to higher concentrations of nanoparticles showed a progressive increase of apoptotic and necrotic activity. Below 125 μg/mL concentration the nanoparticles were biocompatible with 4T1 cells.
    Matched MeSH terms: Magnetite Nanoparticles/therapeutic use*
  18. Kura AU, Ain NM, Hussein MZ, Fakurazi S, Hussein-Al-Ali SH
    Int J Mol Sci, 2014;15(4):5916-27.
    PMID: 24722565 DOI: 10.3390/ijms15045916
    Layered hydroxide nanoparticles are generally biocompatible, and less toxic than most inorganic nanoparticles, making them an acceptable alternative drug delivery system. Due to growing concern over animal welfare and the expense of in vivo experiments both the public and the government are interested to find alternatives to animal testing. The toxicity potential of zinc aluminum layered hydroxide (ZAL) nanocomposite containing anti-Parkinsonian agent may be determined using a PC 12 cell model. ZAL nanocomposite demonstrated a decreased cytotoxic effect when compared to levodopa on PC12 cells with more than 80% cell viability at 100 µg/mL compared to less than 20% cell viability in a direct levodopa exposure. Neither levodopa-loaded nanocomposite nor the un-intercalated nanocomposite disturbed the cytoskeletal structure of the neurogenic cells at their IC50 concentration. Levodopa metabolite (HVA) released from the nanocomposite demonstrated the slow sustained and controlled release character of layered hydroxide nanoparticles unlike the burst uptake and release system shown with pure levodopa treatment.
    Matched MeSH terms: Nanoparticles/therapeutic use
  19. Kusrini E, Sabira K, Hashim F, Abdullah NA, Usman A, Putra N, et al.
    Acta Ophthalmol, 2021 Mar;99(2):e178-e188.
    PMID: 32701190 DOI: 10.1111/aos.14541
    PURPOSE: Contact lenses have direct contact with the corneal surface and can induce sight-threatening infection of the cornea known as Acanthamoeba keratitis. The objective of this study was to evaluate the dysprosium-based nanoparticles (Dy-based NPs), namely Fe3 O4 -PEG-Dy2 O3 nanocomposites and Dy(OH)3 nanorods, as an active component against Acanthamoeba sp., as well as the possibility of their loading onto contact lenses as the drug administering vehicle to treat Acanthamoeba keratitis (AK).

    METHODS: The Dy-based NPs were synthesized, and they were loaded onto commercial contact lenses. The loading content of the NPs and their release kinetics was determined based on the absorbance of their colloidal solution before and after soaking the contact lenses. The cytotoxicity of the NPs was evaluated, and the IC50 values of their antiamoebic activity against Acanthamoeba sp. were determined by MTT colorimetric assay, followed by observation on the morphological changes by using light microscopy. The mechanism of action of the Dy-based NPs against Acanthamoeba sp. was evaluated by DNA laddering assays.

    RESULTS: The loading efficiencies of the Dy-based NPs onto the contact lens were in the range of 30.6-36.1% with respect to their initial concentration (0.5 mg ml-1 ). The Dy NPs were released with the flux approximately 5.5-11 μg cm-2  hr-1 , and the release was completed within 10 hr. The emission of the NPs consistently showed a peak at 575 nm due to Dy3+ ion, offering the possible monitoring and tracking of the NPs. The SEM images indicated the NPs are aggregated on the surface of the contact lenses. The DNA ladder assay suggested that the cells underwent DNA fragmentation, and the cell death was due most probably to necrosis, rather than apoptosis. The cytotoxicity assay of Acanthamoeba sp. suggested that Fe3 O4 -PEG, Fe3 O4 -PEG-Dy2 O3 , Dy(NO3 )3 .6H2 O and Dy(OH)3 NPs have an antiamoebic activity with the IC50 value being 4.5, 5.0, 9.5 and 22.5 μg ml-1 , respectively.

    CONCLUSIONS: Overall findings in this study suggested that the Dy-based NPs can be considered as active antiamoebic agents and possess the potential as drugs against Acanthamoeba sp. The NPs could be loaded onto the contact lenses; thus, they can be potentially utilized to treat Acanthamoeba keratitis (AK).

    Matched MeSH terms: Nanoparticles/therapeutic use*
  20. Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, et al.
    Int J Nanomedicine, 2020;15:275-300.
    PMID: 32021180 DOI: 10.2147/IJN.S233789
    Gold nanoparticles (AuNPs) are extensively studied nanoparticles (NPs) and are known to have profound applications in medicine. There are various methods to synthesize AuNPs which are generally categorized into two main types: chemical and physical synthesis. Continuous efforts have been devoted to search for other more environmental-friendly and economical large-scale methods, such as environmentally friendly biological methods known as green synthesis. Green synthesis is especially important to minimize the harmful chemical and toxic by-products during the conventional synthesis of AuNPs. Green materials such as plants, fungi, microorganisms, enzymes and biopolymers are currently used to synthesize various NPs. Biosynthesized AuNPs are generally safer for use in biomedical applications since they come from natural materials themselves. Multiple surface functionalities of AuNPs allow them to be more robust and flexible when combined with different biological assemblies or modifications for enhanced applications. This review focuses on recent developments of green synthesized AuNPs and discusses their numerous biomedical applications. Sources of green materials with successful examples and other key parameters that determine the functionalities of AuNPs are also discussed in this review.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links