Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Delamare-Deboutteville J, Meemetta W, Pimsannil K, Sangpo P, Gan HM, Mohan CV, et al.
    Sci Rep, 2023 Nov 20;13(1):20276.
    PMID: 37985860 DOI: 10.1038/s41598-023-47425-w
    Tilapia lake virus (TiLV) is a highly contagious viral pathogen that affects tilapia, a globally significant and affordable source of fish protein. To prevent the introduction and spread of TiLV and its impact, there is an urgent need for increased surveillance, improved biosecurity measures, and continuous development of effective diagnostic and rapid sequencing methods. In this study, we have developed a multiplexed RT-PCR assay that can amplify all ten complete genomic segments of TiLV from various sources of isolation. The amplicons generated using this approach were immediately subjected to real-time sequencing on the Nanopore system. By using this approach, we have recovered and assembled 10 TiLV genomes from total RNA extracted from naturally TiLV-infected tilapia fish, concentrated tilapia rearing water, and cell culture. Our phylogenetic analysis, consisting of more than 36 TiLV genomes from both newly sequenced and publicly available TiLV genomes, provides new insights into the high genetic diversity of TiLV. This work is an essential steppingstone towards integrating rapid and real-time Nanopore-based amplicon sequencing into routine genomic surveillance of TiLV, as well as future vaccine development.
    Matched MeSH terms: Nanopores*
  2. Lee SC, Lintang HO, Yuliati L
    Chem Asian J, 2012 Sep;7(9):2139-44.
    PMID: 22733646 DOI: 10.1002/asia.201200383
    A urea precursor was used for the first time to prepare mesoporous carbon nitride (MCN) by a thermal polymerization process with silica nanospheres as a hard template. Although the prepared MCN samples have similar structures and optical properties, it was revealed that the specific surface area, pore-size distribution, and morphology of the MCN samples depend on the initial mass ratio of urea to silica. Compared to the bulk carbon nitride (BCN) that only gave 20% phenol removal (6 h of irradiation), the activities can be enhanced up to 74% on MCN samples for photocatalytic removal of phenol under visible-light irradiation. The highest conversion was obtained on MCN with an initial mass ratio of urea to silica of 5, which has high surface area of 191 m(2) g(-1) and a nanoporous structure with uniform pore-size distribution of 7 nm. In addition to the high activity, the MCN sample also showed high photocatalytic stability.
    Matched MeSH terms: Nanopores
  3. Mahmud AH, Salahuddin NM, Md Jani AM, Abu Bakar NF, Zainal Abidin SAS, Mohd Zain Z, et al.
    Food Chem, 2023 Jun 15;411:135493.
    PMID: 36689871 DOI: 10.1016/j.foodchem.2023.135493
    A voltammetric immunosensor was developed for detection of porcine serum albumin (PSA) to identify raw meat products adulterated with pork. A novel strategy to fabricate multiple individual nanoporous alumina (NPA) millirods (length, 5.0 mm; diameter, 1.0 mm) as the biorecognition platform is described. Each NPA millirod was covalently bioconjugated with anti-PSA capturing antibodies (α-PSAC). Following immunocapture, the PSA bound to the α-PSAC/NPA millirod bioconjugate were tagged with gold nanoparticles (AuNPs) functionalized with anti-PSA detection antibodies as the signaling probe. Subsequently, the AuNPs were voltammetrically analyzed to quantify the target PSA. The immunosensor exhibited 100 % specificity and high sensitivity to PSA with a limit of detection (LoD) of 50 (range, 0-1000) pg/mL (R2 = 0.9907). Real-world applicability was successfully validated using pork/beef adulterated mixtures with a LoD of 0.05 % (w/w). Overall, the detection performance of the proposed immunosensor was excellent and, thus, is suitable for surveillance of food safety and quality.
    Matched MeSH terms: Nanopores*
  4. Gan HM, Grandjean F, Jenkins TL, Austin CM
    BMC Genomics, 2019 May 03;20(1):335.
    PMID: 31053062 DOI: 10.1186/s12864-019-5704-3
    BACKGROUND: The recently published complete mitogenome of the European lobster (Homarus gammarus) that was generated using long-range PCR exhibits unusual gene composition (missing nad2) and gene rearrangements among decapod crustaceans with strong implications in crustacean phylogenetics. Such atypical mitochondrial features will benefit greatly from validation with emerging long read sequencing technologies such as Oxford Nanopore that can more accurately identify structural variation.

    RESULTS: We re-sequenced the H. gammarus mitogenome on an Oxford Nanopore Minion flowcell and performed a long-read only assembly, generating a complete mitogenome assembly for H. gammarus. In contrast to previous reporting, we found an intact mitochondrial nad2 gene in the H. gammarus mitogenome and showed that its gene organization is broadly similar to that of the American lobster (H. americanus) except for the presence of a large tandemly duplicated region with evidence of pseudogenization in one of each duplicated protein-coding genes.

    CONCLUSIONS: Using the European lobster as an example, we demonstrate the value of Oxford Nanopore long read technology in resolving problematic mitogenome assemblies. The increasing accessibility of Oxford Nanopore technology will make it an attractive and useful tool for evolutionary biologists to verify new and existing unusual mitochondrial gene rearrangements recovered using first and second generation sequencing technologies, particularly those used to make phylogenetic inferences of evolutionary scenarios.

    Matched MeSH terms: Nanopores*
  5. Liu Y, Sairi M, Neusser G, Kranz C, Arrigan DW
    Anal Chem, 2015 Jun 2;87(11):5486-90.
    PMID: 25962586 DOI: 10.1021/acs.analchem.5b01162
    In this work, independent radial diffusion at arrayed nanointerfaces between two immiscible electrolyte solutions (nanoITIES) was achieved. The arrays were formed at nanopores fabricated by focused ion beam milling of silicon nitride (SiN) membranes, enabling the reproducible and systematic design of five arrays with different ratios of pore center-to-center distance (rc) to pore radius (ra). Voltammetry across water-1,6-dichlorohexane nanoITIES formed at these arrays was examined by the interfacial transfer of tetrapropylammonium ions. The diffusion-limited ion-transfer current increased with the ratio rc/ra, reaching a plateau for rc/ra ≥ 56, which was equivalent to the theoretical current for radial diffusion to an array of independent nanoITIES. As a result, mass transport to the nanoITIES arrays was greatly enhanced due to the decreased overlap of diffusion zones at adjacent nanoITIES, allowing each interface in the array to behave independently. When the rc/ra ratio increased from 13 to 56, the analytical performance parameters of sensitivity and limit of detection were improved from 0.50 (±0.02) A M(-1) to 0.76 (±0.02) A M(-1) and from 0.101 (±0.003) μM to 0.072 (±0.002) μM, respectively. These results provide an experimental basis for the design of arrayed nanointerfaces for electrochemical sensing.
    Matched MeSH terms: Nanopores
  6. Doris M, Aziz F, Alhummiany H, Bawazeer T, Alsenany N, Mahmoud A, et al.
    Nanoscale Res Lett, 2017 Dec;12(1):67.
    PMID: 28116608 DOI: 10.1186/s11671-017-1851-0
    In this study, low-bandgap polymer poly{[4,4-bis(2-ethylhexyl)-cyclopenta-(2,1-b;3,4-b')dithiophen]-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl} (PCPDTBT) nanostructures have been synthesized via a hard nanoporous alumina template of centrifugal process. Centrifuge has been used to infiltrate the PCPDTBT solution into the nanoporous alumina by varying the rotational speeds. The rotational speed of centrifuge is directly proportional to the infiltration force that penetrates into the nanochannels of the template. By varying the rotational speed of centrifuge, different types of PCPDTBT nanostructures are procured. Infiltration force created during the centrifugal process has been found a dominant factor in tuning the morphological, optical, and structural properties of PCPDTBT nanostructures. The field emission scanning electron microscopy (FESEM) images proved the formation of nanotubes and nanowires. The energy-dispersive X-ray spectroscope (EDX) analysis showed that the nanostructures were composed of PCPDTBT with complete dissolution of the template.
    Matched MeSH terms: Nanopores
  7. Ng EP, Goh JY, Ling TC, Mukti RR
    Nanoscale Res Lett, 2013;8(1):120.
    PMID: 23497184 DOI: 10.1186/1556-276X-8-120
    Nanoporous materials such as Mobil composite material number 41 (MCM-41) are attractive for applications such as catalysis, adsorption, supports, and carriers. Green synthesis of MCM-41 is particularly appealing because the chemical reagents are useful and valuable. We report on the eco-friendly synthesis of MCM-41 nanoporous materials via multi-cycle approach by re-using the non-reacted reagents in supernatant as mother liquor after separating the solid product. This approach was achieved via minimal requirement of chemical compensation where additional fresh reactants were added into the mother liquor followed by pH adjustment after each cycle of synthesis. The solid product of each successive batch was collected and characterized while the non-reacted reagents in supernatant can be recovered and re-used to produce subsequent cycle of MCM-41. The multi-cycle synthesis is demonstrated up to three times in this research. This approach suggests a low cost and eco-friendly synthesis of nanoporous material since less waste is discarded after the product has been collected, and in addition, product yield can be maintained at the high level.
    Matched MeSH terms: Nanopores
  8. Burham N, Hamzah AA, Majlis BY
    Biomed Mater Eng, 2014;24(6):2203-9.
    PMID: 25226919 DOI: 10.3233/BME-141032
    This paper studies parameters which affect the pore size diameter of a silicon membrane. Electrochemical etching is performed in characterise the parameter involved in this process. The parameter has been studied is volume ratio of hydrofluoric acid (HF) and ethanol as an electrolyte aqueous for electrochemical etch. This electrolyte aqueous solution has been mixed between HF and ethanol with volume ratio 3:7, 5:5, 7:3 and 9:1. As a result, the higher volume of HF in this electrolyte gives the smallest pore size diameter compared to the lower volume of HF. These samples have been dipped into HF and ethanol electrolyte aqueous with supplied 25 mA/cm2 current density for 20, 30, 40, and 50 minutes. The samples will inspect under Scanning Electron Microscope (SEM) to execute the pore formations on silicon membrane surface.
    Matched MeSH terms: Nanopores/ultrastructure*
  9. Lawal AA, Hassan MA, Zakaria MR, Yusoff MZM, Norrrahim MNF, Mokhtar MN, et al.
    Bioresour Technol, 2021 Jul;332:125070.
    PMID: 33878542 DOI: 10.1016/j.biortech.2021.125070
    The influence of biomass cellulosic content on biochar nanopore structure and adsorption capacity in aqueous phase was scarcely reported. Commercial cellulose (100% cellulose), oil palm frond (39.5% cellulose), and palm kernel shell (20.5% cellulose) were pyrolyzed AT 630 °C, characterized and tested for the adsorption of iodine and organic contaminants. The external surface area and average pore size increased with cellulosic content, where commercial cellulose formed biochar with external surface area of 95.4 m2/g and average pore size of 4.1 nm. The biochar from commercial cellulose had the largest adsorption capacities: 371.40 mg/g for iodine, 86.7 mg/L for tannic acid, 17.89 mg/g for COD and 60.35 mg/g for colour, while biochar from palm kernel shell had the least adsorption capacities. The cellulosic content reflected the differences in biochar nanopore structure and adsorption capacities, signifying the suitability of highly cellulosic biomass for producing biochar to effectively treat wastewater.
    Matched MeSH terms: Nanopores*
  10. Md Ibrahim NNN, Hashim AM
    Sensors (Basel), 2020 Mar 12;20(6).
    PMID: 32178225 DOI: 10.3390/s20061572
    A biosensor formed by a combination of silicon (Si) micropore and graphene nanohole technology is expected to act as a promising device structure to interrogate single molecule biopolymers, such as deoxyribonucleic acid (DNA). This paper reports a novel technique of using a focused ion beam (FIB) as a tool for direct fabrication of both conical-shaped micropore in Si3N4/Si and a nanohole in graphene to act as a fluidic channel and sensing membrane, respectively. The thinning of thick Si substrate down to 50 µm has been performed prior to a multi-step milling of the conical-shaped micropore with final pore size of 3 µm. A transfer of graphene onto the fabricated conical-shaped micropore with little or no defect was successfully achieved using a newly developed all-dry transfer method. A circular shape graphene nanohole with diameter of about 30 nm was successfully obtained at beam exposure time of 0.1 s. This study opens a breakthrough in fabricating an integrated graphene nanohole and conical-shaped Si micropore structure for biosensor applications.
    Matched MeSH terms: Nanopores*
  11. Tan MH, Austin CM, Hammer MP, Lee YP, Croft LJ, Gan HM
    Gigascience, 2018 03 01;7(3):1-6.
    PMID: 29342277 DOI: 10.1093/gigascience/gix137
    Background: Some of the most widely recognized coral reef fishes are clownfish or anemonefish, members of the family Pomacentridae (subfamily: Amphiprioninae). They are popular aquarium species due to their bright colours, adaptability to captivity, and fascinating behavior. Their breeding biology (sequential hermaphrodites) and symbiotic mutualism with sea anemones have attracted much scientific interest. Moreover, there are some curious geographic-based phenotypes that warrant investigation. Leveraging on the advancement in Nanopore long read technology, we report the first hybrid assembly of the clown anemonefish (Amphiprion ocellaris) genome utilizing Illumina and Nanopore reads, further demonstrating the substantial impact of modest long read sequencing data sets on improving genome assembly statistics.

    Results: We generated 43 Gb of short Illumina reads and 9 Gb of long Nanopore reads, representing approximate genome coverage of 54× and 11×, respectively, based on the range of estimated k-mer-predicted genome sizes of between 791 and 967 Mbp. The final assembled genome is contained in 6404 scaffolds with an accumulated length of 880 Mb (96.3% BUSCO-calculated genome completeness). Compared with the Illumina-only assembly, the hybrid approach generated 94% fewer scaffolds with an 18-fold increase in N50 length (401 kb) and increased the genome completeness by an additional 16%. A total of 27 240 high-quality protein-coding genes were predicted from the clown anemonefish, 26 211 (96%) of which were annotated functionally with information from either sequence homology or protein signature searches.

    Conclusions: We present the first genome of any anemonefish and demonstrate the value of low coverage (∼11×) long Nanopore read sequencing in improving both genome assembly contiguity and completeness. The near-complete assembly of the A. ocellaris genome will be an invaluable molecular resource for supporting a range of genetic, genomic, and phylogenetic studies specifically for clownfish and more generally for other related fish species of the family Pomacentridae.

    Matched MeSH terms: Nanopores
  12. Kumar P, Pandey R, Sharma P, Dhar MS, A V, Uppili B, et al.
    Wellcome Open Res, 2020;5:184.
    PMID: 32995557 DOI: 10.12688/wellcomeopenres.16119.1
    Background: India first detected SARS-CoV-2, causal agent of COVID-19 in late January 2020, imported from Wuhan, China. From March 2020 onwards, the importation of cases from countries in the rest of the world followed by seeding of local transmission triggered further outbreaks in India. Methods: We used ARTIC protocol-based tiling amplicon sequencing of SARS-CoV-2 (n=104) from different states of India using a combination of MinION and MinIT sequencing from Oxford Nanopore Technology to understand how introduction and local transmission occurred. Results: The analyses revealed multiple introductions of SARS-CoV-2 genomes, including the A2a cluster from Europe and the USA, A3 cluster from Middle East and A4 cluster (haplotype redefined) from Southeast Asia (Indonesia, Thailand and Malaysia) and Central Asia (Kyrgyzstan). The local transmission and persistence of genomes A4, A2a and A3 was also observed in the studied locations. The most prevalent genomes with patterns of variance (confined in a cluster) remain unclassified, and are here proposed as A4-clade based on its divergence within the A cluster. Conclusions: The viral haplotypes may link their persistence to geo-climatic conditions and host response. Multipronged strategies including molecular surveillance based on real-time viral genomic data is of paramount importance for a timely management of the pandemic.
    Matched MeSH terms: Nanopores
  13. Gan HM, Lee YP, Austin CM
    Front Microbiol, 2017;8:1880.
    PMID: 29046667 DOI: 10.3389/fmicb.2017.01880
    We improved upon the previously reported draft genome of Hydrogenophaga intermedia strain PBC, a 4-aminobenzenesulfonate-degrading bacterium, by supplementing the assembly with Nanopore long reads which enabled the reconstruction of the genome as a single contig. From the complete genome, major genes responsible for the catabolism of 4-aminobenzenesulfonate in strain PBC are clustered in two distinct genomic regions. Although the catabolic genes for 4-sulfocatechol, the deaminated product of 4-aminobenzenesulfonate, are only found in H. intermedia, the sad operon responsible for the first deamination step of 4-aminobenzenesulfonate is conserved in various Hydrogenophaga strains. The absence of pabB gene in the complete genome of H. intermedia PBC is consistent with its p-aminobenzoic acid (pABA) auxotrophy but surprisingly comparative genomics analysis of 14 Hydrogenophaga genomes indicate that pABA auxotrophy is not an uncommon feature among members of this genus. Of even more interest, several Hydrogenophaga strains do not possess the genomic potential for hydrogen oxidation, calling for a revision to the taxonomic description of Hydrogenophaga as "hydrogen eating bacteria."
    Matched MeSH terms: Nanopores
  14. Yam F, Hassan Z, Omar K
    This article reports on the studies of structural and optical properties of nanoporous GaN prepared by Pt assisted electro chemical etching. The porous GaN samples were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and optical transmission (OT). SEM images liang indicated that the density of the pores increased with etching duration, however, the etching duration has no significant effect on the size and shape of the pores. AFM measurements exhibited that the surface roughness was increased with etching durations, however, for long etching duration, the increase of the surface roughness became insignificant. OT measurements revealed that the increase of pore density would lead to the reduction of light transmission. The studies showed that the porosity could influence the structural and optical properties of the GaN.
    Matched MeSH terms: Nanopores
  15. Alias N, Hussain Z, Tan WK, Kawamura G, Muto H, Matsuda A, et al.
    Chemosphere, 2021 Nov;283:131231.
    PMID: 34144283 DOI: 10.1016/j.chemosphere.2021.131231
    An anodic film with a nanoporous structure was formed by anodizing niobium at 60 V in fluorinated ethylene glycol (fluoride-EG). After 30 min of anodization, the anodic film exhibited a "pore-in-pore" structure; that is, there were smaller pores growing inside larger pores. The as-anodized film was weakly crystalline and became orthorhombic Nb2O5 after heat treatment. The energy band gap of the annealed nanoporous Nb2O5 film was 2.9 eV. A photocatalytic reduction experiment was performed on Cr(VI) under ultraviolet (UV) radiation by immersing the nanoporous Nb2O5 photocatalyst in a Cr(VI) solution at pH 2. The reduction process was observed to be very slow; hence, ethylenediaminetetraacetic acid (EDTA) was added as an organic hole scavenger, which resulted in 100% reduction after 45 min of irradiation. The photocatalytic reduction experiment was also performed under visible light, and findings showed that complete reduction achieved after 120 min of visible light exposure.
    Matched MeSH terms: Nanopores*
  16. Cheah WK, Ishikawa K, Othman R, Yeoh FY
    J Biomed Mater Res B Appl Biomater, 2017 07;105(5):1232-1240.
    PMID: 26913694 DOI: 10.1002/jbm.b.33475
    Hemodialysis, one of the earliest artificial kidney systems, removes uremic toxins via diffusion through a semipermeable porous membrane into the dialysate fluid. Miniaturization of the present hemodialysis system into a portable and wearable device to maintain continuous removal of uremic toxins would require that the amount of dialysate used within a closed-system is greatly reduced. Diffused uremic toxins within a closed-system dialysate need to be removed to maintain the optimum concentration gradient for continuous uremic toxin removal by the dialyzer. In this dialysate regenerative system, adsorption of uremic toxins by nanoporous biomaterials is essential. Throughout the years of artificial kidney development, activated carbon has been identified as a potential adsorbent for uremic toxins. Adsorption of uremic toxins necessitates nanoporous biomaterials, especially activated carbon. Nanoporous biomaterials are also utilized in hemoperfusion for uremic toxin removal. Further miniaturization of artificial kidney system and improvements on uremic toxin adsorption capacity would require high performance nanoporous biomaterials which possess not only higher surface area, controlled pore size, but also designed architecture or structure and surface functional groups. This article reviews on various nanoporous biomaterials used in current artificial kidney systems and several emerging nanoporous biomaterials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1232-1240, 2017.
    Matched MeSH terms: Nanopores*
  17. Mohamed MA, W Salleh WN, Jaafar J, Ismail AF, Abd Mutalib M, Mohamad AB, et al.
    Carbohydr Polym, 2017 Feb 10;157:1892-1902.
    PMID: 27987909 DOI: 10.1016/j.carbpol.2016.11.078
    This research involves the rare utilisation of the kapok fibre (Ceiba pentandra) as a raw material for the fabrication of cellulose nanocrystal (CNC) and self-assembled CNC membranes. The isolation of CNC from Ceiba pentandra began with the extraction of cellulose via the chemical alkali extraction by using 5wt% NaOH, followed by the typical acidified bleaching method and, finally, the CNC production through acid hydrolysis with 60wt% H2SO4 at the optimum time of 60min. The prepared CNC was then employed for the preparation of self-assembled membrane through the water suspension casting evaporation technique. The obtained CNC membrane was characterised in terms of its composition, crystallinity, thermal stability, as well as, structural and morphological features with the use of several techniques including FTIR, XRD, AFM, TEM, FESEM, and TGA. The FESEM and AFM analyses had illustrated the achievement of a self-assembled CNC membrane with a smooth surface and a well-distributed nano-porous structure, with the porosity of 52.82±7.79%. In addition, the findings proved that the self-assembled CNC membrane displayed good adsorption capability indicated by the recorded efficiency of 79% and 85% for 10mg/L and 5mg/L of methylene blue in an aqueous solution, respectively.
    Matched MeSH terms: Nanopores
  18. Bidsorkhi HC, Riazi H, Emadzadeh D, Ghanbari M, Matsuura T, Lau WJ, et al.
    Nanotechnology, 2016 Oct 14;27(41):415706.
    PMID: 27607307 DOI: 10.1088/0957-4484/27/41/415706
    In this research, novel ultrafiltration nanocomposite membranes were prepared by incorporating self-synthesized nanoporous titanium dioxide (NTiO2) nanoparticles into polysulfone. The surface of the nanoparticle was treated with a silane-based modifier to improve its distribution in the host polymer. Atomic-force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller, transmission electron microscopy, energy-dispersive x-ray spectroscopy, porosity and contact angle tests were conducted to characterize the properties of the particles as well as the fabricated nanocomposite membranes. The effects of the nanoparticle incorporation were evaluated by conducting ultrafiltration experiments. It was reported that the membrane pure water flux was increased with increasing NTiO2 loading owing to the high porosity of the nanoparticles embedded and/or formation of enlarged pores upon addition of them. The antifouling capacity of the membranes was also tested by ultrafiltration of bovine serum albumin fouling solution. It was found that both water flux and antifouling capacity tended to reach desired level if the NTiO2 added was at optimized loading.
    Matched MeSH terms: Nanopores
  19. Al-Salih M, Samsudin S, Arshad SS
    J Genet Eng Biotechnol, 2021 May 18;19(1):76.
    PMID: 34003402 DOI: 10.1186/s43141-021-00161-y
    BACKGROUND: Environmental contamination by microbes is a major public health concern. A damp environment is one of the potential sources for microbe proliferation. Smart synthesis nanocatalytic coatings on surfaces, food, and material from different pathogen bacteria can inhibit using the Fe3O4/CNTs as anti-microbial growth can effectively curb this growing threat. In this present work, the anti-microbial efficacy of synthesis of a compound nanoparticle-containing iron oxide-multi-walled carbon nanotube was combined by laser ablation PLAL and explored the anti-bacterial action of colloidal solution of Fe3O4/CNTs NPs that was evaluated against bacteria which is classified as gram-negative (Escherichia coli (E. coli), Klebsiella pneumonia (K. pneumonia), and also that is identified as gram-positive (Streptococcus pyogenes (S .pyogenes) and Staphylococcus aureus (S. aureus) under visible light irradiation.

    RESULTS: Doping of a minute fraction of iron(III) salt (0.5 mol%) in a volatile solvent (ethanol) was carried out via the sol-gel technique. Fe3O4 was further calcined at various temperatures (in the range of 500-700 °C) to evaluate the thermal stability of the Fe3O4 nanoporous oxidizer nanoparticles. The physicochemical properties of the samples were characterized through X-ray diffraction (XRD), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and UV-Visible spectroscopy techniques. XRD results revealed that the nanoparticles framework of Fe3O4 was maintained well up to 650 °C by the Fe dopant. UV-Vis results suggested that absorption property of combination Fe3O4/CNTs nanopowder by PLAL was enhanced and the band gap is reduced into 2.0 eV.

    CONCLUSIONS: Density functional theory (DFT) studies emphasize the introduction of Fe+ and Fe2+ ions by replacing other ions in the CNT lattice, therefore creating oxygen vacancies. These further promoted anti-microbial efficiency. A significantly high bacterial inactivation that indicates results was evaluated and that the mean estimations of restraint were determined from triple assessment in every appraisal at 400 ml which represent the best anti-bacterial action against gram-positive and gram-negative microbes.

    Matched MeSH terms: Nanopores
  20. Gan HM, Linton SM, Austin CM
    Mar Genomics, 2019 Jun;45:64-71.
    PMID: 30928201 DOI: 10.1016/j.margen.2019.02.002
    Despite recent advances in sequencing technology, a complete mitogenome assembly is still unavailable for the gecarcinid land crabs that include the iconic Christmas Island red crab (Gecarcoidea natalis) which is known for its high population density, annual mass breeding migration and ecological significance in maintaining rainforest structure. Using sequences generated from Nanopore and Illumina platforms, we assembled the complete mitogenome for G. natalis, the first for the genus and only second for the family Gecarcinidae. Nine Nanopore long reads representing 0.15% of the sequencing output from an overnight MinION Nanopore run were aligned to the mitogenome. Two of them were >10 kb and combined are sufficient to span the entire G. natalis mitogenome. The use of Illumina genome skimming data only resulted in a fragmented assembly that can be attributed to low to zero sequencing coverage in multiple high AT-regions including the mitochondrial protein-coding genes (NAD4 and NAD5), 16S ribosomal rRNA and non-coding control region. Supplementing the mitogenome assembly with previously acquired transcriptome dataset containing high abundance of mitochondrial transcripts improved mitogenome sequence coverage and assembly reliability. We then inferred the phylogeny of the Eubrachyura using Maximum Likelihood and Bayesian approaches, confirming the phylogenetic placement of G. natalis within the family Gecarcinidae based on whole mitogenome alignment. Given the substantial impact of AT-content on mitogenome assembly and the value of complete mitogenomes in phylogenetic and comparative studies, we recommend that future mitogenome sequencing projects consider generating a modest amount of Nanopore long reads to facilitate the closing of problematic and fragmented mitogenome assemblies.
    Matched MeSH terms: Nanopores
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links