Displaying publications 1 - 20 of 377 in total

Abstract:
Sort:
  1. Siervo M, Hussin AM, Calella P, Ashor A, Shannon OM, Mendes I, et al.
    J Nutr, 2024 Feb;154(2):469-478.
    PMID: 38048992 DOI: 10.1016/j.tjnut.2023.12.002
    BACKGROUND: Aging and vitamin D deficiency have been associated with reduced nitric oxide (NO) synthesis and impaired endothelial function (EF) but the evidence in humans remains weak.

    OBJECTIVES: Two independent cross-sectional studies were designed to evaluate the association between age, sex, and plasma vitamin D concentrations with physiological and biochemical biomarkers of NO synthesis and EF in young and older healthy participants (Study 1) and in overweight and obese postmenopausal females (Study 2).

    METHODS: In Study 1, 40 young (20-49 y) and older (50-75 y) males and females (10 participants per age and sex group) were included. Resting blood pressure and ear-to-finger peripheral pulse wave velocity (PWV) were measured. A stable-isotopic method was used to determine whole-body NO production. Plasma 25-hydroxyvitamin D (25(OH)D), nitrate, nitrite, and asymmetric dimethylarginine (ADMA) concentrations were determined. In Study 2, 80 older overweight and obese females (age 61.2 ± 6.2 y, body mass index 29.5 ± 4.4 kg/m2) were recruited. Postocclusion reactive hyperemia (PORH) and peripheral PWV were measured. Plasma concentrations of 25(OH)D, nitrate, cyclic guanosine monophosphate, 3-nitrotyrosine (3-NT), endothelin-1, vascular endothelial growth factor, and ADMA were determined.

    RESULTS: In Study 1, whole-body NO production was significantly greater in young compared with older participants (0.61 ± 0.30 μmol·h-1·kg-1 compared with 0.39 ± 0.10 μmol·h-1·kg-1, P = 0.01) but there was no evidence of a sex difference (P = 0.81). Plasma 25(OH)D concentration was not associated with PWV (r = 0.18, P = 0.28) or whole-body NO production (r = -0.20, P = 0.22). Plasma ADMA concentration was associated positively with age (r = 0.35, P = 0.03) and negatively with whole-body NO production (r = -0.33, P = 0.04). In Study 2, age was associated with lower PORH (r = -0.28, P = 0.02) and greater ADMA concentrations (r = 0.22, P = 0.04). Plasma 25(OH)D concentration was inversely associated with 3-NT concentrations (r = -0.31, P = 0.004).

    CONCLUSIONS: Older age was associated with lower whole-body NO production. Plasma vitamin D concentrations were not associated with NO production or markers of EF but showed a weak, significant correlation with oxidative stress in postmenopausal overweight females.

    Matched MeSH terms: Nitric Oxide*
  2. Norbäck D, Hashim JH, Hashim Z, Wieslander G
    Int J Environ Health Res, 2024 Jan;34(1):213-224.
    PMID: 36335594 DOI: 10.1080/09603123.2022.2143482
    We studied associations between fractional exhaled nitric oxide (FeNO), health and household exposure among school children (N = 348) in Penang, Malaysia. Multiple logistic regression and linear mixed models were applied. Overall, 46.0% had elevated FeNO (>20 ppb) and 10.6% diagnosed asthma. Male gender (p = 0.002), parental asthma or allergy (p = 0.047), cat allergy (p = 0.009) and seafood allergy (p 
    Matched MeSH terms: Nitric Oxide/analysis
  3. Malik R, Paudel KR, Manandhar B, De Rubis G, Shen J, Mujwar S, et al.
    Pathol Res Pract, 2023 Nov;251:154895.
    PMID: 37879146 DOI: 10.1016/j.prp.2023.154895
    PURPOSE: Oxidative stress and inflammation are key pathophysiological features of chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD). Agarwood oil obtained from Aquilaria trees has promising antioxidant and anti-inflammatory activities. However, its clinical application is hampered by poor solubility. A viable approach to overcome this involves formulation of oily constituents into emulsions. Here, we have investigated the antioxidant and anti-inflammatory potential of an agarwood oil-based nanoemulsion (DE'RAAQSIN) against lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages in vitro.

    METHODS: The antioxidant and anti-inflammatory activity of DE'RAAQSIN was assessed by measuring the levels of ROS and nitric oxide (NO) produced, using the DCF-DA assay and the Griess reagent assay, respectively. The molecular pathways activated by DE'RAAQSIN were investigated via qPCR.

    RESULTS: LPS stimulation of RAW264.7 cells increased the production of nitric oxide (NO) and ROS and resulted in the overexpression of the inducible nitric oxide synthase (iNOS) gene. Furthermore, LPS induced the upregulation of the expression of key proinflammatory genes (IL-6, TNF-α, IL-1β, and CXCL1) and of the antioxidant gene heme oxygenase-1 (HO-1). DE'RAAQSIN demonstrated potent antioxidant and anti-inflammatory activity by significantly reducing the levels of ROS and of secreted NO, simultaneously counteracting the LPS-induced overexpression of iNOS, IL-6, TNF-α, IL-1β, and HO-1. These findings were corroborated by in silico activity prediction and physicochemical analysis of the main agarwood oil components.

    CONCLUSIONS: We propose DE'RAAQSIN as a promising alternative managing inflammatory disorders, opening the platform for further studies aimed at understanding the effectiveness of DE'RAAQSIN.

    Matched MeSH terms: Nitric Oxide/metabolism; Nitric Oxide/therapeutic use
  4. Sur D, Mondal C, Balaraman AK, Haldar PK, Maji HS, Bala A
    Inflammopharmacology, 2023 Jun;31(3):1305-1317.
    PMID: 36826724 DOI: 10.1007/s10787-023-01165-5
    OBJECTIVE: This study aims to investigate the anti-inflammatory mechanism of monoamine oxidase inhibitor (MAOI) in carrageenan (CARR) induced inflammation models to reprofile their use. We also aimed to explore the role of monoamine oxidase (MAO)-mediated H2O2-NF-κB-COX-2 pathway in acute inflammation.

    METHODS: In vitro anti-inflammatory activity and hydrogen peroxide (H2O2) scavenging activity were performed according to the established procedure. Inflammation was induced using CARR in BALB/c mice at the foot paw and peritoneal cavity. Hourly measurement of paw swelling was performed. The level of nitric oxide (NO), myeloperoxidase (MPO), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) and nuclear factor κB (NF-κB) was determined using enzyme-linked immunosorbent assay (ELISA). Peritoneal fluid was collected to investigate total count, differential count of leukocytes, and capillary permeability.

    RESULTS: In vitro anti-inflammatory evaluations revealed the potential role of MAOI to inhibit heat-induced protein denaturation and human red cell membrane destabilization. H2O2 inhibition activity of MAOI also proved their powerful role as an H2O2 scavenger. Treatment with MAOI in CARR-induced mice significantly reduced paw edema, leukocyte extravasation, and total and differential leukocyte count. The result of ELISA showed MAOI effectively reduce the level of COX-2, PGE2 and NF-κB in inflamed tissue.

    CONCLUSIONS: In short, this study demonstrates that inhibition of H2O2 by MAOI alleviates CARR-induced paw edema possibly by inhibiting the H2O2-mediated NF-κB-COX-2 pathway. The present investigation identifies MAOI might reprofile for the treatment of acute inflammation also, the MAO enzyme may use as a novel therapeutic target to design and develop new class of anti-inflammatory agents.

    Matched MeSH terms: Nitric Oxide/metabolism; Nitric Oxide Synthase Type II/metabolism
  5. Inayat A, Rocha-Meneses L, Ayoub M, Ullah S, Abdullah AZ, Naqvi SR, et al.
    Environ Sci Pollut Res Int, 2023 Jun;30(28):72224-72235.
    PMID: 37170050 DOI: 10.1007/s11356-023-27371-w
    This study investigated the effect of different Co3O4-based catalysts on the catalytic decomposition of nitrous oxide (N2O) and on nitric oxide (NO) conversion. The experiments were carried out using various reaction temperatures, alkaline solutions, pH, mixing conditions, aging times, space velocities, impregnation loads, and compounds. The results showed that Co3O4 catalysts prepared by precipitation methods have the highest catalytic activity and N2O conversion, even at low reaction temperatures, while the commercial nano and powder forms of Co3O4 (CS) have the lowest performance. The catalysts become inactive at temperatures below 400 °C, and their activity is strongly influenced by the mixing temperature. Samples without stirring during the aging process have higher catalytic activity than those with stirring, even at low reaction temperatures (200-300 °C). The catalytic activity of Co3O4 PM1 decreases with low W/F values and low reaction temperatures. Additionally, the catalyst's performance tends to increase with the reduction process. The study suggests that cobalt-oxide-based catalysts are effective in N2O catalytic decomposition and NO conversion. The findings may be useful in the design and optimization of catalytic systems for N2O and NO control. The results obtained provide important insights into the development of highly efficient, low-cost, and sustainable catalysts for environmental protection.
    Matched MeSH terms: Nitric Oxide*
  6. Majeed QA, Alshammari A, Alanazi AD
    Trop Biomed, 2023 Jun 01;40(2):259-265.
    PMID: 37650415 DOI: 10.47665/tb.40.2.019
    Leishmaniasis is an infectious disease with various clinical manifestations. We studied the therapeutic effects of Elettaria cardamomum essential oil (ECEO) against Leishmania major infection. In vitro effects of ECEO against L. major were examined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and macrophage assays. Nitric oxide (NO) production, infection inhibition in macrophages, and the apoptotic activity of ECEO in treated parasites were also measured. By calculating the 50% cytotoxic concentrations (CC50), we studied the cytotoxicity effects of ECEO on human macrophage cells (THP-1). The efficacy of ECEO for improving cutaneous leishmaniasis (CL) lesions in mice (BALB/c) was determined by evaluating the size of lesions and the number of amastigotes before and after four weeks of treatment. The effects of ECEO on liver and kidney function in the tested mice were also evaluated. ECEO dose-dependently (p<0.001) inhibited the viability and the mean number of promastigotes and amastigote forms of L. tropica. Four weeks of treatment with ECEO at the doses of 2.5 and 5 mg/kg/ day significantly (p<0.001) improved the CL lesions and reduced the number of parasites in the infected mice. ECEO significantly increased NO production, apoptosis induction, and infection rate in parasites. The CC50 value for ECEO and MA was 303.4 µg/mL and 835.2 µg/mL, respectively. In the mice receiving ECEO at the doses of 2.5 and 5 mg/kg/day for 28 days, no significant change was reported between the serum level of liver enzymes and kidney factors when compared with the control group. ECEO displayed promising efficacy in parasite reduction in vitro and in the animal model. ECEO can thus be used as an alternative medicine to treat CL.
    Matched MeSH terms: Nitric Oxide
  7. Abdullah Alwi AH, Zahedi FD, Husain S, Wan Hamizan AK, Abdullah B
    Am J Rhinol Allergy, 2023 May;37(3):307-312.
    PMID: 36537140 DOI: 10.1177/19458924221145084
    PURPOSE: Nitric oxide (NO) is a potential marker in the diagnosis and monitoring of treatment for the management of patients with allergic rhinitis (AR). The study aimed to determine the value of nasal fractional exhaled nitric oxide (FeNO) in the diagnosis and treatment response of AR patients.

    METHODS: The participants were divided into control and allergic rhinitis groups based on the clinical symptoms and skin prick tests. The AR group was treated with intranasal corticosteroid after the diagnosis. The nasal fractional exhaled nitric oxide (FENO) levels were compared between control and AR groups. In the AR group, the visual analogue scale (VAS), Nasal Obstruction Symptoms Evaluation (NOSE) questionnaire, and nasal fractional exhaled nitric oxide (FeNO) were assessed pre- and post-treatment.

    RESULTS: One hundred ten adults were enrolled. The nasal FeNO level was significantly higher in AR compared to control (p 

    Matched MeSH terms: Nitric Oxide
  8. Pang KL, Chin KY, Nirwana SI
    PMID: 36597600 DOI: 10.2174/1871530323666230103153134
    BACKGROUND: The immunomodulatory effects of plants have been utilised to enhance the immunity of humans against infections. However, evidence of such effects of agarwood leaves is very limited despite the long tradition of consuming the leaves as tea.

    OBJECTIVE: This study aimed to investigate the immuno-modulatory effects of agarwood leaf extract (ALE) derived from Aquilaria malaccensis using RAW264.7 murine macrophages.

    METHODS: In this study, RAW264.7 macrophages were incubated with ALE alone for 26 hours or ALE for 2 hours, followed by bacterial lipopolysaccharide for 24 hours. The nitrite and cytokine production (tumour necrosis factor-alpha (TNFα), interleukin (IL)-1β, IL-6, and IL-10), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX2) expression in the macrophages were assayed.

    RESULTS: The study showed that ALE alone was immunostimulatory on the macrophages by increasing the nitrite, TNFα, and IL-6 production and COX2 expression (p<0.05 vs. untreated unstimulated cells). Pre-treatment of ALE suppressed nitrite level and iNOS expression but enhanced TNFα and IL-6 production and COX2 expression (p<0.05 vs. untreated lipopolysaccharides (LPS)-stimulated cells). ALE also increased IL-10 production regardless of LPS stimulation (p<0.05 vs. untreated cells).

    CONCLUSION: ALE was able to promote the immune response of macrophages by upregulating pro-inflammatory cytokine levels and COX2 expression. It also regulated the extent of the inflammation by reducing iNOS expression and increasing IL-10 levels. Thus, ALE may have a role in enhancing the innate immune system against infection; however, its validation from in vivo studies is still pending.

    Matched MeSH terms: Nitric Oxide/metabolism
  9. Mohd Sabri NA, Lee SK, Murugan DD, Ling WC
    Sci Rep, 2022 Oct 21;12(1):17633.
    PMID: 36271015 DOI: 10.1038/s41598-022-21107-5
    Epigallocatechin gallate (EGCG) has been shown to have antihypertensive activity. However, the role of epigallocatechin gallate (EGCG) in improving vascular function via modulation of endothelial nitric oxide synthase (eNOS) in hypertensive subjects is not well researched. Angiotensin II-infused hypertensive mice (8-10 weeks old) received EGCG (50 mg/kg/day) for 14 days via oral gavage. The arterial systolic blood pressure (SBP) was measured using the tail-cuff method every three days. At the end of the treatment, the vascular reactivity of the isolated aortae was studied using wire myographs. The level of nitric oxide (NO), cyclic guanosine monophosphate (cGMP) and tetrahydrobiopterine (BH4) were determined using assay kits while the presence of proteins (NOS, p-eNOS and NOx-2) were determined using by Western blotting. In vivo treatment with EGCG for 14 days significantly attenuated the increase in SBP, alleviated the vascular dysfunction, increased the vascular cGMP and BH4 level as well as the expression of p-eNOS and decreased elevated ROS level and NOx-2 protein in angiotensin II-infused hypertensive mice. Collectively, treatment with EGCG in hypertensive mice exerts a blood pressure lowering effect which is partly attributed to the improvement in the vascular function due to its ability to reduce vascular oxidative stress in the aortic tissue leading to a decrease in eNOS uncoupling thus increasing NO bioavailability.
    Matched MeSH terms: Nitric Oxide/metabolism
  10. Mohd Isa KN, Jalaludin J, Mohd Elias S, Mohamed N, Hashim JH, Hashim Z
    PMID: 35457448 DOI: 10.3390/ijerph19084580
    Numerous epidemiological studies have evaluated the association of fractional exhaled nitric oxide (FeNO) and indoor air pollutants, but limited information available of the risks between schools located in suburban and urban areas. We therefore investigated the association of FeNO levels with indoor particulate matter (PM10 and PM2.5), and nitrogen dioxide (NO2) exposure in suburban and urban school areas. A comparative cross-sectional study was undertaken among secondary school students in eight schools located in the suburban and urban areas in the district of Hulu Langat, Selangor, Malaysia. A total of 470 school children (aged 14 years old) were randomly selected, their FeNO levels were measured, and allergic skin prick tests were conducted. The PM2.5, PM10, NO2, and carbon dioxide (CO2), temperature, and relative humidity were measured inside the classrooms. We found that the median of FeNO in the school children from urban areas (22.0 ppb, IQR = 32.0) were slightly higher as compared to the suburban group (19.5 ppb, IQR = 24.0). After adjustment of potential confounders, the two-level hierarchical multiple logistic regression models showed that the concentrations of PM2.5 were significantly associated with elevated of FeNO (>20 ppb) in school children from suburban (OR = 1.42, 95% CI = 1.17−1.72) and urban (OR = 1.30, 95% CI = 1.10−1.91) areas. Despite the concentrations of NO2 being below the local and international recommendation guidelines, NO2 was found to be significantly associated with the elevated FeNO levels among school children from suburban areas (OR = 1.11, 95% CI = 1.06−1.17). The findings of this study support the evidence of indoor pollutants in the school micro-environment associated with FeNO levels among school children from suburban and urban areas.
    Matched MeSH terms: Nitric Oxide/analysis
  11. Khaing A, Swe AT, Aung CL, Thwin MM, Sein MT
    Rev Bras Ginecol Obstet, 2022 Feb;44(2):125-132.
    PMID: 35213910 DOI: 10.1055/s-0042-1742317
    OBJECTIVE:  To investigate the expression of endothelin-1 (ET-1) and endothelial nitric oxide (NO) synthase (eNOS) in normal and preeclamptic (PE) placentae.

    METHODS:  The present cross-sectional analytical study was performed in normal and PE primigravidae (n = 10 in each group) who were admitted to the North Okkalapa General and Teaching Hospital from February 2019 to February 2020. Serum samples were collected immediately before delivery, and placental tissues were collected immediately after emergency or elective cesarean section. The expression of placental eNOS was measured by western blot, and the levels of ET-1 in placental tissue homogenates and in the serum were measured by enzyme-linked immunosorbent assay (ELISA).

    RESULTS:  The PE group had significantly higher serum levels of ET-1 (median: 116.56 pg/mL; IQR: 89.14-159.62 pg/mL) than the normal group (median: 60.02 pg/mL; IQR: 50.89-94.37 pg/mL) (p 

    Matched MeSH terms: Nitric Oxide Synthase Type III
  12. Ong HM, Azmi AFA, Leong SW, Abas F, Perimal EK, Farouk AAO, et al.
    Sci Rep, 2021 12 16;11(1):24121.
    PMID: 34916536 DOI: 10.1038/s41598-021-02961-1
    A novel synthetic compound from the 2-benzoyl-6-benzylidenecyclohexanone analogue, namely 2-benzoyl-6-(3-bromo-4-hydroxybenzylidene)cyclohexen-1-ol (BBHC), showed pronounced nitric oxide inhibition in IFN-γ/LPS-induced RAW 264.7 cells. Based on this previous finding, our present study aimed to investigate the antinociceptive effects of BBHC via chemical and thermal stimuli in vivo. The investigation of the antinociceptive activity of BBHC (0.1, 0.3, 1.0 and 3.0 mg/kg, i.p.) was initiated with 3 preliminary screening tests, then BBHC was subjected to investigate its possible involvement with excitatory neurotransmitters and opioid receptors. The potential acute toxicity of BBHC administration was also studied. Administration of BBHC significantly inhibited acetic acid-induced abdominal constrictions, formalin-induced paw licking activity and developed notable increment in the latency time. BBHC's ability to suppress capsaicin- and glutamate-induced paw licking activities, as well as to antagonise the effect of naloxone, had indicated the possible involvement of its antinociception with TRPV1, glutamate and opioid receptors, respectively. The antinociceptive activities of BBHC was not related to any sedative action and no evidence of acute toxic effect was detected. The present study showed that BBHC possessed significant peripheral and central antinociceptive activities via chemical- and thermal-induced nociceptive murine models without any locomotor alteration and acute toxicity.
    Matched MeSH terms: Nitric Oxide/antagonists & inhibitors
  13. Wee CL, Mokhtar SS, Banga Singh KK, Rasool AHG
    Microvasc Res, 2021 Nov;138:104227.
    PMID: 34324883 DOI: 10.1016/j.mvr.2021.104227
    This study examined the effects of vitamin D deficiency on vascular function and tissue oxidative status in the microcirculation; and whether or not these effects can be ameliorated with calcitriol, the active vitamin D metabolite. Three groups (n = 10 each) of male Sprague Dawley rats were fed for 10 weeks with control diet (CR), vitamin D-deficient diet without (DR), or with oral calcitriol supplementation (0.15 μg/kg) for the last four weeks (DSR). After 10 weeks, rats were sacrificed; mesenteric arterial rings were studied using wire myograph. Oxidative stress biomarkers malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured in the mesenteric arterial tissue. Vascular protein expression of endothelial nitric oxide synthase (eNOS) was determined by Western blotting. Acetylcholine-induced endothelium-dependent relaxation of DR was lower than CR. eNOS expression and SOD activity were lower in mesenteric arterial tissue of DR compared to CR. Calcitriol supplementation to DSR did not ameliorate the above parameters; in fact, augmented endothelium-dependent contraction was observed. Serum calcium was higher in DSR compared to CR and DR. In conclusion, vitamin D deficiency impaired microvascular vasodilation, associated with eNOS downregulation and reduced antioxidant activity. Calcitriol supplementation to vitamin D-deficient rats at the dosage used augmented endothelium-dependent contraction, possibly due to hypercalcaemia.
    Matched MeSH terms: Nitric Oxide Synthase Type III/metabolism*
  14. Azemi AK, Mokhtar SS, Hou LJ, Sharif SET, Rasool AHG
    Biotech Histochem, 2021 Oct;96(7):498-506.
    PMID: 32957845 DOI: 10.1080/10520295.2020.1823480
    We used a type 2 diabetes rat model produced by a high fat diet (HFD) followed by low dose streptozotocin (STZ) to study diabetic vasculopathy. Animals were evaluated for early vascular structural changes, endothelial function, inflammation, lipid profile and oxidative stress. We used 20 male Sprague-Dawley rats divided equally into control and diabetic groups. Diabetic rats were fed an HFD for 4 weeks, injected intraperitoneally with STZ, then sacrificed at week 15. Aortic endothelial nitric oxide synthase (eNOS), aortic superoxide dismutase (SOD), endothelial-dependent and independent relaxation and contraction, intima-media thickness (IMT), malondialdehyde (MDA) and tumor necrosis factor-alpha (TNF-α) were measured. Histopathological characteristics also were assessed. Diabetic rats exhibited higher fasting blood glucose (FBG), low density lipoprotein, total cholesterol and triglycerides compared to the control group. Aortic endothelium-dependent relaxation due to acetylcholine (ACh) was lower, while aortic endothelium-dependent contraction due to calcium ionophore and endothelium-independent contraction due to phenylephrine (PE) were higher for the diabetic group. eNOS expression was lower in the diabetic group compared to controls. IMT and MDA levels were increased, while SOD activity was decreased in the diabetic group compared to controls. TNF-α was higher in the diabetic group than for controls. Our type 2 diabetes model exhibited endothelial dysfunction associated with early vascular structural changes, dyslipidemia, increased vascular oxidative stress, and inflammation. Therefore, the model is suitable for studying diabetic atherosclerosis.
    Matched MeSH terms: Nitric Oxide; Nitric Oxide Synthase Type III/metabolism
  15. Kumar MR, Yeap SK, Mohamad NE, Abdullah JO, Masarudin MJ, Khalid M, et al.
    BMC Complement Med Ther, 2021 Jul 01;21(1):183.
    PMID: 34210310 DOI: 10.1186/s12906-021-03358-3
    BACKGROUND: In recent years, researchers are interested in the discovery of active compounds from traditional remedies and natural sources, as they reveal higher therapeutic efficacies and improved toxicological profiles. Among the various traditional treatments that have been widely studied and explored for their potential therapeutic benefits, kefir, a fermented beverage, demonstrates a broad spectrum of pharmacological properties, including antioxidant, anti-inflammation, and healing activities. These health-promoting properties of kefir vary among the kefir cultures found at the different part of the world as different media and culture conditions are used for kefir maintenance and fermentation.

    METHODS: This study investigated the microbial composition and readily found bioactive compounds in water kefir fermented in Malaysia using 16S rRNA microbiome and UHPLC sequencing approaches. The toxicity effects of the kefir water administration in BALB/c mice were analysed based on the mice survival, body weight index, biochemistry profile, and histopathological changes. The antioxidant activities were evaluated using SOD, FRAP, and NO assays.

    RESULTS: The 16S rRNA amplicon sequencing revealed the most abundant species found in the water kefir was Lactobacillus hilgardii followed by Lactobacillus harbinensis, Acetobacter lovaniensis, Lactobacillus satsumensis, Acetobacter tropicalis, Lactobacillus zeae, and Oenococcus oeni. The UHPLC screening showed flavonoid and phenolic acid derivatives as the most important bioactive compounds present in kefir water which has been responsible for its antioxidant activities. Subchronic toxicity study showed no toxicological signs, behavioural changes, or adverse effects by administrating 10 mL/kg/day and 2.5 mL/kg/day kefir water to the mice. Antioxidants assays demonstrated enhanced SOD and FRAP activities and reduced NO level, especially in the brain and kidney samples.

    CONCLUSIONS: This study will help to intensify the knowledge on the water kefir microbial composition, available phytochemicals and its toxicological and antioxidant effects on BALB/c mice since there are very limited studies on the water kefir grain fermented in Malaysia.

    Matched MeSH terms: Nitric Oxide/metabolism
  16. El Saftawy EA, Shash RY, Aboulhoda BE, Arsanyos SF, Albadawi EA, Abou-Fandoud SM, et al.
    Trop Biomed, 2021 Jun 01;38(2):53-62.
    PMID: 33973573 DOI: 10.47665/tb.38.2.037
    BACKGROUND: toxoplasmosis is a cosmopolitan protozoan disease with a wide range of neuropathology. Recent studies identified its potential association with several mental disorders e.g. schizophrenia dependable on apoptosis in their pathogenesis. We investigated value of toxoplasmosis to induce apoptosis of the neuronal cells.

    METHODS: per-orally infected C57BL/6 mice with 15-20 cysts of the avirulent T. gondii Beverly strain at 9-11 weeks of age were examined 12 weeks later during parasite establishment. Distributions of the parasite's cysts and the histopathological lesions in the brains were analyzed using Image J software. Relative expression of TNF-α and iNOS of cell-mediated immunity (CMI), Bax (pro-apoptosis) and Bcl-2 (anti-apoptosis) were all assessed using immunohistochemistry.

    RESULTS: higher parasite burden was seen in the forebrain with p value <= 0.05. Dramatically increased TNF-α, iNOS, and Bax expressions with Bax/Bcl-2 ratio 2.42:0.52 were reported (p value <= 0.05). The significant correlation between Bax data and different CMI biomarkers including TNF-α and i-NOS was evaluated. Interestingly, no significant correlation was seen between TNF-α, iNOS, Bax and Bcl-2 expressions and location of the parasite. However, Bax/Bcl-2 ratio was statistically correlated with CMI biomarkers and whole sample mean parasite burden, p value <= 0.05.

    CONCLUSION: Chronic toxoplasmosis exhibits an immense pro-apoptotic signal on the cerebral tissues of experimental mice.

    Matched MeSH terms: Nitric Oxide Synthase Type II
  17. Siti HN, Jalil J, Asmadi AY, Kamisah Y
    Int J Mol Sci, 2021 May 11;22(10).
    PMID: 34064664 DOI: 10.3390/ijms22105063
    Rutin is a flavonoid with antioxidant property. It has been shown to exert cardioprotection against cardiomyocyte hypertrophy. However, studies regarding its antihypertrophic property are still lacking, whether it demonstrates similar antihypertrophic effect to its metabolite, quercetin. Hence, this study aimed to investigate the effects of both flavonoids on oxidative stress and mitogen-activated protein kinase (MAPK) pathway in H9c2 cardiomyocytes that were exposed to angiotensin II (Ang II) to induce hypertrophy. Cardiomyocytes were exposed to Ang II (600 nM) with or without quercetin (331 μM) or rutin (50 μM) for 24 h. A group given vehicle served as the control. The concentration of the flavonoids was chosen based on the reported effective concentration to reduce cell hypertrophy or cardiac injury in H9c2 cells. Exposure to Ang II increased cell surface area, intracellular superoxide anion level, NADPH oxidase and inducible nitric oxide synthase activities, and reduced cellular superoxide dismutase activity and nitrite level, which were similarly reversed by both rutin and quercetin. Rutin had no significant effects on phosphorylated proteins of extracellular signal-related kinases (ERK1/2) and p38 but downregulated phosphorylated c-Jun N-terminal kinases (JNK1/2), which were induced by Ang II. Quercetin, on the other hand, had significantly downregulated the phosphorylated proteins of ERK1/2, p38, and JNK1/2. The quercetin inhibitory effect on JNK1/2 was stronger than the rutin. In conclusion, both flavonoids afford similar protective effects against Ang II-induced cardiomyocyte hypertrophy, but they differently modulate MAPK pathway.
    Matched MeSH terms: Nitric Oxide/metabolism
  18. Kim JK, Choi E, Hong YH, Kim H, Jang YJ, Lee JS, et al.
    J Ethnopharmacol, 2021 May 10;271:113887.
    PMID: 33539951 DOI: 10.1016/j.jep.2021.113887
    ETHNOPHARMACOLOGICAL RELEVANCE: Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever.

    AIM OF THE STUDY: The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages.

    MATERIALS AND METHODS: We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS.

    RESULTS: Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1β, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1β and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin.

    CONCLUSIONS: Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.

    Matched MeSH terms: Nitric Oxide/metabolism; Nitric Oxide Synthase Type II/genetics
  19. Srivastava N, Mishra S, Iqbal H, Chanda D, Shanker K
    J Ethnopharmacol, 2021 May 10;271:113911.
    PMID: 33571614 DOI: 10.1016/j.jep.2021.113911
    ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga L. rhizome (KGR) is part of more than sixty-one Ayurvedic formulations and commonly known as 'Chandramula'. KGR is widely used in traditional Indian medicines to treat fever (jwar), rheumatism (Amavata), respiratory (Shwasa), hypertension (Vyanabala vaishamya) and cardiovascular disorders (Vyanavayu Dushtijanya Hrudrog). Although ethnomedicinal properties have extensively been demonstrated in traditional medicines of south-east countries i.e. China, India, Indonesia, and Malaysia, the chemico-biological validation are still lacking.

    AIM OF THE STUDY: Chemico-biological standardization with respect to its vasorelaxation potential is the main objective of the present study. To investigate the vasorelaxation potential of key phytochemical of KGR, i.e., ethyl-p-methoxycinnamate (EPMC) and to study it's the mechanism of action.

    MATERIALS AND METHODS: A HPLC method was developed and validated for the quality assessment of KGR using its two major phytochemicals i.e. ethyl-p-methoxycinnamate (EPMC) and ethyl cinnamate (EC) in KGR. The vasorelaxation effect of major phytochemicals of KGR was evaluated on the main mesenteric arteries isolated from male Wistar rats. Specific BKca channel blocker tetraethylammonium (TEA), receptor antagonist, nitric oxide scavenging capacity, and antioxidant potential were also evaluated for its plausible mechanism.

    RESULTS: Present validated HPLC method facilitates simultaneous quantitation of EPMC and EC faster than classical GC techniques. EPMC has shown a dose-dependent relaxation in rat main mesenteric arteries (MMA) contracted by U46619 with an Emax of 58.68 ± 3.31%. Similarly, in endothelium-denuded MMA rings, relaxation was also observed (Emax of 61.83 ± 3.38%). Moreover, relaxation response to EPMC has strongly inhibited (Emax 14.76 ± 2.29%) when the tissue exposed to depolarizing high K+ containing buffer for the contraction. The point correlation dimension (pD2) values were also significantly decreased in high K+ treated arterial rings compared to control. Interestingly, when MMA rings incubated with a specific BKca channel blocker (TEA, 1 mM), the relaxation response to EPMC was also significantly blocked.

    CONCLUSIONS: The first time this study demonstrated the chemical standardization of K. galanga rhizome and EPMC is responsible for its vasorelaxation potential as demonstrated by the endothelium-independent response mediated by Ca2+ dependent potassium channels.

    Matched MeSH terms: Nitric Oxide/antagonists & inhibitors
  20. Ooi TC, Yaacob M, Rajab NF, Shahar S, Sharif R
    Saudi J Biol Sci, 2021 May;28(5):2987-2994.
    PMID: 34025176 DOI: 10.1016/j.sjbs.2021.02.039
    Oxidative stress, DNA damage, and unresolved inflammation are the predisposing factors of many chronic and degenerative diseases, including cancer. Stingless bee honey (SBH) is recognized to have high medicinal value by traditional medicine practitioners and has been used to treat various illnesses traditionally. This study aimed to determine the antioxidant, anti-inflammatory, and genoprotective effects of SBH by using in vitro cell culture models. The sugar content, total phenolic content, radical scavenging activity, and ferric reducing antioxidant power (FRAP) of SBH were determined in this study. Then, the protective effect of SBH against hydrogen peroxide (H2O2)-induced cell death and DNA damage was studied by using WIL2-NS human lymphoblastoid cell line, while the lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages cell line was used to study the anti-inflammatory effects of SBH. Results from this present study showed that the major sugar contents of SBH were fructose (19.39 + 0.01%) and glucose (14.03 ± 0.03%). Besides, the total phenolic content, the radical scavenging activity, and the FRAP value of SBH were 15.38 ± 0.02 mg GAE/100 g of honey, 34.04 ± 0.21%, and 206.77 + 1.76 μM AAE/100 g honey respectively. Pretreatment with SBH protected WIL2-NS cells from H2O2-induced cell death and DNA damage (p nitric oxide by inhibiting the expression of inducible nitric oxide synthase in LPS-induced RAW 264.7 cells (p 
    Matched MeSH terms: Nitric Oxide; Nitric Oxide Synthase Type II
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links