Displaying publications 1 - 20 of 624 in total

Abstract:
Sort:
  1. A. Tang, S.K. Wong, O.H. Ahmed, N.M. Majid
    ASM Science Journal, 2013;7(1):23-26.
    MyJurnal
    Widespread deforestation has resulted in soil degradation that is often linked to environmental and ecological changes. Rehabilitation of degraded forest is essential to prevent further degradation of the soil. Abundance of soil microbiota could serve as an essential biological indicator of soil health for rehabilitation success. An investigation was conducted to study the relationship between cellulolytic, nitrogen-fixing and phosphate-solubilizing microbial counts and age of rehabilitated forest. A random sampling design was used to obtain four replicates of five composite soil of 0–10 cm depth soil samples of 4, 9, 14 and 19-year-old rehabilitated forest. Three selective media: Congo red cellulose, nitrogen-free malate and calcium phosphate media were used for the enumerations of cellulolytic, nitrogen-fixing and phosphate-solubilizing microbes, respectively. Cellulolytic and phosphate-solubilizing microbes were counted based on the formation of clearing zones, while nitrogen-fixing microbes were based on the formation of blue halo on the respective media. There was positive linear relationship between age of the rehabilitated forest and microbial count. These findings revealed that the potentials of cellulolytic, nitrogen-fixing and phosphate-solubilizing microbial populations could be used as biological indicators of forest soil rehabilitation.
    Matched MeSH terms: Nitrogen
  2. AIDA NADIA A.RAMLEE, WAN ZALIHA WAN SEMBOK
    MyJurnal
    Fresh-cut pineapple has experienced an increase in demand due to its great health benefits and is rich in vitamins A, B and C. Moreover, pineapple is known as a source of the enzyme bromelain, which has therapeutic applications, such as reducing inflammation, improving digestion and treating osteoarthritis. However, bromelain generally affects the pineapple’s flavour and is less preferred by consumers due to the uncomfortable prickling and tingling sensations it brings. In the present study, two types of gases and their combination, nitrogen (N2) and carbon dioxide (CO2), were used to evaluate their impacts on reducing the tingling and prickling sensations, as well as maintaining the postharvest qualities of fresh-cut pineapple stored at 5°C for 12 days. The parameters being evaluated were the bromelain enzyme activity, flesh colour, ascorbic acid concentration, flesh firmness, soluble solids concentration (SSC), titratable acidity (TA) and sensory evaluation. No significant differences were recorded for all parameters tested. Based on the sensory evaluations, all the attributes, such as colour, aroma, texture, sweetness, sourness, tingling and prickling sensations, and overall acceptance were not affected by the different gases application. Even though no apparent effect was observed, the 30 panellists preferred the aforementioned attributes, except sourness. In conclusion, the fumigation treatments with N2 and CO2 gases were not effective in reducing the tingling and prickling sensations of pineapples cv. Morris.
    Matched MeSH terms: Nitrogen
  3. Ab Halim MH, Nor Anuar A, Abdul Jamal NS, Azmi SI, Ujang Z, Bob MM
    J Environ Manage, 2016 Dec 15;184(Pt 2):271-280.
    PMID: 27720606 DOI: 10.1016/j.jenvman.2016.09.079
    The effect of temperature on the efficiency of organics and nutrients removal during the cultivation of aerobic granular sludge (AGS) in biological treatment of synthetic wastewater was studied. With this aim, three 3 L sequencing batch reactors (SBRs) with influent loading rate of 1.6 COD g (L d)(-1) were operated at different high temperatures (30, 40 and 50 °C) for simultaneous COD, phosphate and ammonia removal at a complete cycle time of 3 h. The systems were successfully started up and progressed to steady state at different cultivation periods. The statistical comparison of COD, phosphate and ammonia for effluent from the three SBRs revealed that there was a significant difference between groups of all the working temperatures of the bioreactors. The AGS cultivated at different high temperatures also positively correlated with the accumulation of elements including carbon, oxygen, phosphorus, silicon, iron, aluminium, calcium and magnesium that played important roles in the granulation process.
    Matched MeSH terms: Nitrogen/metabolism; Nitrogen/chemistry
  4. Ab Hamid S, Md Rawi CS
    Trop Life Sci Res, 2017 Jul;28(2):89-105.
    PMID: 28890763 MyJurnal DOI: 10.21315/tlsr2017.28.2.7
    Leaf litter decomposition in a tropical stream was examined in two types of leaf packs; single species leaf packs of Pometia pinnata and two species leaf packs of equal combination of Pometia pinnata and Dolichandrone spathacea leaves. Both leaf packs were immersed in a river and weekly examined for remains of decomposed leaves and presence of EPT. In the control leaf packs, leaves in the two species leaf packs treatments decomposed within 35 days, faster than in single species leaf packs which decomposed after 42 days. In the presence of EPT, the leaf breakdown took 28 days in two species and 35 days for single species leaf packs. Higher abundance of EPT was observed in single species leaf packs but its diversity was higher in two species leaf packs. Litter breakdown in the stream was faster in the presence of EPT and softer leaves of D. spathacea with higher nitrogen content underwent faster decomposition and sustained higher numbers of EPT.
    Matched MeSH terms: Nitrogen
  5. Abd AA, Othman MR, Kim J
    Environ Sci Pollut Res Int, 2021 Aug;28(32):43329-43364.
    PMID: 34189695 DOI: 10.1007/s11356-021-15121-9
    The atmosphere security and regulation of climate change are being continuously highlighted as a pressing issue. The crisis of climate change owing to the anthropogenic carbon dioxide emission has led many governments at federal and provincial levels to promulgate policies to address this concern. Among them is regulating the carbon dioxide emission from major industrial sources such as power plants, petrochemical industries, cement plants, and other industries that depend on the combustion of fossil fuels for energy to operate. In view of this, various CO2 capture and sequestration technologies have been investigated and presented. From this review, adsorption of CO2 on porous solid materials has been gaining increasing attention due to its cost-effectiveness, ease of application, and comparably low energy demand. Despite the myriad of advanced materials such as zeolites, carbons-based, metal-organic frameworks, mesoporous silicas, and polymers being researched, research on activated carbons (ACs) continue to be in the mainstream. Therefore, this review is endeavored to elucidate the adsorption properties of CO2 on activated carbons derived from different sources. Selective adsorption based on pore size/shape and surface chemistry is investigated. Accordingly, the effect of surface modifications of the ACs with NH3, amines, and metal oxides on adsorption performance toward CO2 is evaluated. The adsorption performance of the activated carbons under humid conditions is also reviewed. Finally, activated carbon-based composite has been surveyed and recommended as a feasible strategy to improve AC adsorption properties toward CO2. The activated carbon surface in the graphical abstract is nitrogen rich modified using ammonia through thermal treatment. The values of CO2 emissions by sources are taken from (Yoro and Daramola 2020).
    Matched MeSH terms: Nitrogen
  6. Abd Aziz A, Yong KS, Ibrahim S, Pichiah S
    J Hazard Mater, 2012 Jan 15;199-200:143-50.
    PMID: 22100220 DOI: 10.1016/j.jhazmat.2011.10.069
    An enhanced ferromagnetic property, visible light active TiO(2) photocatalyst was successfully synthesized by supporting strontium ferrite (SrFe(12)O(19)) onto TiO(2) doped with nitrogen (N) and compared with N-doped TiO(2). The synthesized catalysts were further characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDS), BET surface area analysis, vibrating sample magnetometer (VSM), X-ray photon spectroscopy (XPS) and visible light spectroscopy analysis for their respective properties. The XRD and EDS revealed the structural and inorganic composition of N-TiO(2) supported on SrFe(12)O(19). The supported N-TiO(2) exhibited a strong ferromagnetic property with tremendous stability against magnetic property losses. It also resulted in reduced band gap (2.8 eV) and better visible light absorption between 400 and 800 nm compared to N-doped TiO(2). The photocatalytic activity was investigated with a recalcitrant phenolic compound namely 2,4-dichlorophenol (2,4-DCP) as a model pollutant under direct bright and diffuse sunlight exposure. A complete degradation of 2,4-DCP was achieved with an initial concentration of 50mg/L for both photocatalysts in 180 min and 270 min respectively under bright sunlight. Similarly the diffuse sunlight study resulted in complete degradation for supported N-TiO(2) and >85% degradation N-TiO(2), respectively. Finally the supported photocatalyst was separated under permanent magnetic field with a mass recovery ≈ 98% for further reuse.
    Matched MeSH terms: Nitrogen/chemistry*
  7. Abd Jalil SN, Wang DK, Yacou C, Motuzas J, Smart S, Diniz da Costa JC
    Materials (Basel), 2016 Nov 18;9(11).
    PMID: 28774057 DOI: 10.3390/ma9110938
    This work investigates the structural formation and analyses of titania membranes (TM) prepared using different vacuum exposure times for molecular weight (MW) cut-off performance and oil/water separation. Titania membranes were synthesized via a sol-gel method and coated on macroporous alumina tubes followed by exposure to a vacuum between 30 and 1200 s and then calcined at 400 °C. X-ray diffraction and nitrogen adsorption analyses showed that the crystallite size and particle size of titania increased as a function of vacuum time. All the TM membranes were mesoporous with an average pore diameter of ~3.6 nm with an anatase crystal morphology. Water, glucose, sucrose, and polyvinylpyrrolidone with 40 and 360 kDa (PVP-40 kDa and PVP-360 kDa) were used as feed solutions for MW cut-off and hexadecane solution for oil filtration investigation. The TM membranes were not able to separate glucose and sucrose, thus indicating the membrane pore sizes are larger than the kinetic diameter of sucrose of 0.9 nm, irrespective of vacuum exposure time. They also showed only moderate rejection (20%) of the smaller PVP-40 kDa, however, all the membranes were able to obtain an excellent rejection of near 100% for the larger PVP-360 kDa molecule. Furthermore, the TM membranes were tested for the separation of oil emulsions with a high concentration of oil (3000 ppm), reaching high oil rejections of more than 90% of oil. In general, the water fluxes increased with the vacuum exposure time indicating a pore structural tailoring effect. It is therefore proposed that a mechanism of pore size tailoring was formed by an interconnected network of Ti-O-Ti nanoparticles with inter-particle voids, which increased as TiO₂ nanoparticle size increased as a function of vacuum exposure time, and thus reduced the water transport resistance through the TM membranes.
    Matched MeSH terms: Nitrogen
  8. Abd Rahim MH, Lim EJ, Hasan H, Abbas A
    J Microbiol Methods, 2019 09;164:105672.
    PMID: 31326443 DOI: 10.1016/j.mimet.2019.105672
    PURPOSE: This study aimed to assess the effect of nitrogen, salt and pre-culture conditions on the production of lovastatin in A. terreus ATCC 20542.

    METHODS: Different combinations of nitrogen sources, salts and pre-culture combinations were applied in the fermentation media and lovastatin yield was analysed chromatographically.

    RESULT: The exclusion of MnSO4 ·5H2O, CuSO4·5H2O and FeCl3·6H2O were shown to significantly improve lovastatin production (282%), while KH2PO4, MgSO4·7H2O, and NaCl and ZnSO4·7H2O were indispensable for good lovastatin production. Simple nitrogen source (ammonia) was unfavourable for morphology, growth and lovastatin production. In contrast, yeast extract (complex nitrogen source) produced the highest lovastatin yield (25.52 mg/L), while powdered soybean favoured the production of co-metabolites ((+)-geodin and sulochrin). Intermediate lactose: yeast extract (5:4) ratio produced the optimal lovastatin yield (12.33 mg/L) during pre-culture, while high (5:2) or low (5:6) lactose to yeast extract ratio produced significantly lower lovastatin yield (7.98 mg/L and 9.12 mg/L, respectively). High spore concentration, up to 107 spores/L was shown to be beneficial for lovastatin, but not for co-metabolite production, while higher spore age was shown to be beneficial for all of its metabolites.

    CONCLUSION: The findings from these investigations could be used for future cultivation of A. terreus in the production of desired metabolites.

    Matched MeSH terms: Nitrogen
  9. Abdelwahab SI, Hassan LE, Sirat HM, Yagi SM, Koko WS, Mohan S, et al.
    Fitoterapia, 2011 Dec;82(8):1190-7.
    PMID: 21871542 DOI: 10.1016/j.fitote.2011.08.002
    The in vivo and in vitro mechanistic anti-inflammatory actions of cucurbitacin E (CE) (Citrullus lanatus var. citroides) were examined. The results showed that LPS/INF-γ increased NO production in RAW264.7 macrophages, whereas L-NAME and CE curtailed it. CE did not reveal any cytotoxicity on RAW264.7 and WRL-68 cells. CE inhibited both COX enzymes with more selectivity toward COX-2. Intraperitoneal injection of CE significantly suppressed carrageenan-induced rat's paw edema. ORAC and FRAP assays showed that CE is not a potent ROS scavenger. It could be concluded that CE is potentially useful in treating inflammation through the inhibition of COX and RNS but not ROS.
    Matched MeSH terms: Reactive Nitrogen Species/metabolism*
  10. Abdelwahab SI, Hassan LE, Abdul Majid AM, Yagi SM, Mohan S, Elhassan Taha MM, et al.
    PMID: 22685485 DOI: 10.1155/2012/490136
    Emerging evidence suggests that reactive oxygen (ROS) and nitrogen (RNS) species can contribute to diverse signalling pathways of inflammatory and tumour cells. Cucurbitacins are a group of highly oxygenated triterpenes. Many plants used in folk medicine to treat cancer have been found to contain cucurbitacins displaying potentially important anti-inflammatory actions. The current study was designed to investigate the anti-ROS and -RNS effects of cucurbitacin L 2-O-β-glucoside (CLG) and the role of these signaling factors in the apoptogenic effects of CLG on human colon cancer cells (HT-29). This natural cucurbitacin was isolated purely from Citrullus lanatus var. citroides (Cucurbitaceae). The results revealed that CLG was cytotoxic to HT-29. CLG increased significantly (P < 0.05) RNA and protein levels of caspase-3 in HT-29 cells when verified using a colorimetric assay and realtime qPCR, respectively. The results showed that lipopolysaccharide/interferon-gamma (LPS/INF-γ) increased nitrous oxide (NO) production inR AW264.7macrophages, whereas N(G)-nitro-L-argininemethyl ester (L-NAME) and CLG curtailed it. This compound did not reveal any cytotoxicity on RAW264.7 macrophages and human normal liver cells (WRL-68) when tested using the MTT assay. Findings of ferric reducing antioxidant power (FRAP) and oxygen radical absorption capacity (ORAC) assays demonstrate the antioxidant properties of CLG. The apoptogenic property of CLG on HT-29 cells is thus related to inhibition of reactive nitrogen and oxygen reactive species and the triggering of caspase-3-regulated apoptosis.
    Matched MeSH terms: Nitrogen
  11. Abdul Hamid SH, Lananan F, Kasan NA, Yasmin Sayid Abdullah SH, Endut A
    Chemosphere, 2022 Nov;307(Pt 4):136005.
    PMID: 35973500 DOI: 10.1016/j.chemosphere.2022.136005
    The physical profile and chemical composition of growing media are vital in evaluating fish waste filtration efficiency and plant growth performance in aquaponics. The present study reported and compared the physical and chemical evaluation of the novel fabricated Kaolina, gravel, and commercially used lightweight expanded clay aggregate (LECA) as growing medias in aquaponics. Field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy (FESEM-EDX) was utilized to analyze the growing media's chemical composition and structural characterization. The resultant effect of these growing medias on water quality and the growth performance of Clarias gariepinus and Lactuca sativa were also reported. Kaolina exhibited an excellent physical profile (42.95 ± 1.39%) in water absorption capacity as compared to LECA (35.90 ± 1.28%) and gravel (1.97 ± 0.25%), showing a significant difference at p 
    Matched MeSH terms: Nitrogen Dioxide*
  12. Abdul-Hamid H, Mencuccini M
    Tree Physiol, 2009 Jan;29(1):27-38.
    PMID: 19203930 DOI: 10.1093/treephys/tpn001
    Forest growth is an important factor both economically and ecologically, and it follows a predictable trend with age. Generally, growth accelerates as canopies develop in young forests and declines substantially soon after maximum leaf area is attained. The causes of this decline are multiple and may be linked to age- or size-related processes, or both. Our objective was to determine the relative effects of tree age and tree size on the physiological attributes of two broadleaf species. As age and size are normally coupled during growth, an approach based on grafting techniques to separate the effects of size from those of age was adopted. Genetically identical grafted seedlings were produced from scions taken from trees of four age classes, ranging from 4 to 162 years. We found that leaf-level net photosynthetic rate per unit of leaf mass and some other leaf structural and biochemical characteristics had decreased substantially with increasing size of the donor trees in the field, whereas other gas exchange parameters expressed on a leaf area basis did not. In contrast, these parameters remained almost constant in grafted seedlings, i.e., scions taken from donor trees with different meristematic ages show no age-related trend after they were grafted onto young rootstocks. In general, the results suggested that size-related limitations triggered the declines in photosynthate production and tree growth, whereas less evidence was found to support a role of meristematic age.
    Matched MeSH terms: Nitrogen/physiology
  13. Abdul-Rahman R, Tsuno H, Zainol N
    Water Sci Technol, 2002;45(12):197-204.
    PMID: 12201103
    Elevated levels of nutrients in agroindustry wastewaters, and higher reliance on chlorination pose health threats due to formation of chlorinated organics as well as increased chlorination costs. Removals of ammonium and nitrate compounds were studied using activated carbon from palm shells, as adsorbent and support media. Experiments were carried out at several loadings, F:M from 0.31 to 0.58, and hydraulic residence times (HRT) of 24 h, 12 h and 8 h. Results show that the wastewater treatment process achieved removals of over 90% for COD and 62% for Total-N. Studies on removals from river water were carried out in sequencing batch reactor (SBR) and activated carbon biofilm (ACB) reactor. Removals achieved by the SBR adsorption-biodegradation combination were 67.0% for COD, 58.8% for NH3-N and 25.5% for NO3-N while for adsorption alone the removals were only 37.0% for COD, 35.2% for NH3-N and 13.8% for NO3-N. In the ACB reactor, at HRT of 1.5 to 6 h, removals ranged from 12.5 to 100% for COD, 16.7 to 100% for NO3-N and 13.5 to 100% for NH3-N. Significant decrease in removals was shown at lower HRT. The studies have shown that substantial removals of COD, NO3-N and NH3-N from both wastewater and river water may be achieved via adsorption-biodegradation by biofilm on activated carbon processes.
    Matched MeSH terms: Nitrogen/metabolism; Nitrogen/chemistry*
  14. Abdul-Talib S, Hvitved-Jacobsen T, Vollertsen J, Ujang Z
    Water Sci Technol, 2002;45(3):53-60.
    PMID: 11902481
    The sewer is an integral part of the urban wastewater system: the sewer, the wastewater treatment plant and the local receiving waters. The sewer is a reactor for microbial changes of the wastewater during transport, affecting the quality of the wastewater and thereby the successive treatment processes or receiving water impacts during combined sewer overflows. This paper presents the results of studies on anoxic processes, namely denitrification, in the bulk water phase of wastewater as it occurs in sewers. Experiments conducted on 12 different wastewater samples have shown that the denitrification process in the bulk wastewater can be simplified by the reduction of nitrate to nitrogen with significant accumulation of nitrite in the water phase. Utilization of nitrate was observed not to be limited by nitrate for concentrations above 5 gNO3-N/m3. The denitrification rates, under conditions of excess substrate and electron acceptor, were found to be in the range of 0.8-2.0 g NO3-N/(m3h). A discussion on the interaction of the sewer processes and the effects on a downstream located wastewater treatment plant (WWTP) is provided.
    Matched MeSH terms: Nitrogen/metabolism*
  15. Abdullah Issa M, Z Abidin Z
    Molecules, 2020 Aug 03;25(15).
    PMID: 32756377 DOI: 10.3390/molecules25153541
    As a remedy for environmental pollution, a versatile synthetic approach has been developed to prepare polyvinyl alcohol (PVA)/nitrogen-doped carbon dots (CDs) composite film (PVA-CDs) for removal of toxic cadmium ions. The CDs were first synthesized using carboxymethylcellulose (CMC) of oil palms empty fruit bunch wastes with the addition of polyethyleneimine (PEI) and then the CDs were embedded with PVA. The PVA-CDs film possess synergistic functionalities through increasing the content of hydrogen bonds for chemisorption compared to the pure CDs. Optical analysis of PVA-CDs film was performed by ultraviolet-visible and fluorescence spectroscopy. Compared to the pure CDs, the solid-state PVA-CDs displayed a bright blue color with a quantum yield (QY) of 47%; they possess excitation-independent emission and a higher Cd2+ removal efficiency of 91.1%. The equilibrium state was achieved within 10 min. It was found that adsorption data fit well with the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption uptake was 113.6 mg g-1 at an optimal pH of 7. Desorption experiments showhe that adsorbent can be reused fruitfully for five adsorption-desorption cycles using 0.1 HCl elution. The film was successfully applied to real water samples with a removal efficiency of 95.34% and 90.9% for tap and drinking water, respectively. The fabricated membrane is biodegradable and its preparation follows an ecofriendly green route.
    Matched MeSH terms: Nitrogen/chemistry
  16. Abdullah L, Khalid ND
    Environ Monit Assess, 2012 Nov;184(11):6957-65.
    PMID: 22160435 DOI: 10.1007/s10661-011-2472-1
    Proper identification of environment's air quality based on limited observations is an essential task to meet the goals of environmental management. Various classification methods have been used to estimate the change of air quality status and health. However, discrepancies frequently arise from the lack of clear distinction between each air quality, the uncertainty in the quality criteria employed and the vagueness or fuzziness embedded in the decision-making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies when describing integrated air quality conditions with respect to various pollutants. Therefore, this paper presents two fuzzy multiplication synthetic techniques to establish classification of air quality. The fuzzy multiplication technique empowers the max-min operations in "or" and "and" in executing the fuzzy arithmetic operations. Based on a set of air pollutants data carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matter (PM(10)) collected from a network of 51 stations in Klang Valley, East Malaysia, Sabah, and Sarawak were utilized in this evaluation. The two fuzzy multiplication techniques consistently classified Malaysia's air quality as "good." The findings indicated that the techniques may have successfully harmonized inherent discrepancies and interpret complex conditions. It was demonstrated that fuzzy synthetic multiplication techniques are quite appropriate techniques for air quality management.
    Matched MeSH terms: Nitrogen Dioxide/analysis
  17. Abdullah N, Chin NL
    Bioresour Technol, 2010 Nov;101(21):8205-10.
    PMID: 20624604 DOI: 10.1016/j.biortech.2010.05.068
    Composting is a good recycling method to fully utilise all the organic wastes present in kitchen waste due to its high nutritious matter within the waste. In this present study, the optimised mixture proportions of kitchen waste containing vegetable scraps (V), fish processing waste (F) and newspaper (N) or onion peels (O) were determined by applying the simplex-centroid mixture design method to achieve the desired initial moisture content and carbon-to-nitrogen (CN) ratio for effective composting process. The best mixture was at 48.5% V, 17.7% F and 33.7% N for blends with newspaper while for blends with onion peels, the mixture proportion was 44.0% V, 19.7% F and 36.2% O. The predicted responses from these mixture proportions fall in the acceptable limits of moisture content of 50% to 65% and CN ratio of 20-40 and were also validated experimentally.
    Matched MeSH terms: Nitrogen/analysis
  18. Abg Ahmad DFB, Wasli ME, Tan CSY, Musa Z, Chin SF
    Sci Rep, 2023 Nov 22;13(1):20453.
    PMID: 37993538 DOI: 10.1038/s41598-023-47922-y
    The effect of urea-loaded cellulose hydrogel, a controlled-release fertilizer (CRF) on growth and yield of upland rice were investigated in upland rice. As with the initial research, nitrogen (N) treatments were applied as CRF treatments; T2H (30 kg N ha-1), T3H (60 kg N ha-1), T4H (90 kg N ha-1), T5H (120 kg N ha-1) and recommended dose of fertilizer (RDF) at 120 kg N ha-1 RDF (T6U) in split application and T1 (0 N) as control. Results from this study indicated that applying CRF at the optimum N rate, T4H resulted in maximum grain yield, increasing by 71%. The analysis of yield components revealed that higher grain yield in T4H CRF was associated with an increase in panicle number and number of grains per panicle. Maximum grain N uptake of 0.25 g kg-1 was also observed in T4H CRF. In addition, T4H CRF recorded the highest harvest index (HI) and N harvest index (NHI) of 45.5% and 67.9%, respectively. Application of T4H CRF also recorded the highest N use efficiency (NUE) and N agronomic efficiency (NAE), 52.6% and 12.8 kg kg-1, respectively. Observations show that CRF with only 75% N applied (T4H) in soil improved grain yield when compared to CRF with 100% N and 100% RDF in farmers' conventional split application. This suggested that CRF with a moderate N application might produce the highest potential yield and improved N efficiencies while enhancing crop production and further increase in N supply did not increase yield and N efficiencies. The results suggest that the application of T4H CRF for upland rice would enhance HI, N efficiencies and improve the yield of upland rice. Also, all growth parameters and yield were positively influenced by the application of CRF as a basal dose compared to split application of conventional urea fertilizers.
    Matched MeSH terms: Nitrogen/analysis
  19. Abu Amr SS, Aziz HA, Adlan MN
    Waste Manag, 2013 Jun;33(6):1434-41.
    PMID: 23498721 DOI: 10.1016/j.wasman.2013.01.039
    The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities (<0.0001): COD, color, NH3-N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m(3) ozone, 1g/1g COD0/S2O8(2-) ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH3-N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O3/kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S2O8(2-) only, to evaluate its effectiveness. The combined method (i.e., O3/S2O8(2-)) achieved higher removal efficiencies for COD, color, and NH3-N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate.
    Matched MeSH terms: Nitrogen/chemistry
  20. Abu Tawila ZM, Ismail S, Dadrasnia A, Usman MM
    Molecules, 2018 Oct 18;23(10).
    PMID: 30340415 DOI: 10.3390/molecules23102689
    The production, optimization, and characterization of the bioflocculant QZ-7 synthesized by a novel Bacillus salmalaya strain 139SI isolated from a private farm soil in Selangor, Malaysia, are reported. The flocculating activity of bioflocculant QZ-7 present in the selected strain was found to be 83.3%. The optimal culture for flocculant production was achieved after cultivation at 35.5 °C for 72 h at pH 7 ± 0.2, with an inoculum size of 5% (v/v) and sucrose and yeast extract as carbon and nitrogen sources. The maximum flocculating activity was found to be 92.6%. Chemical analysis revealed that the pure bioflocculant consisted of 79.08% carbohydrates and 15.4% proteins. The average molecular weight of the bioflocculant was calculated to be 5.13 × 10⁵ Da. Infrared spectrometric analysis showed the presence of carboxyl (COO-), hydroxyl (-OH), and amino (-NH₂) groups, polysaccharides and proteins. The bioflocculant QZ-7 exhibited a wide pH stability range from 4 to 7, with a flocculation activity of 85% at pH 7 ± 0.2. In addition, QZ-7 was thermally stable and retained more than 80% of its flocculating activity after being heated at 80 °C for 30 min. SEM analysis revealed that QZ-7 exhibited a clear crystalline brick-shaped structure. After treating wastewater, the bioflocculant QZ-7 showed significant flocculation performance with a COD removal efficiency of 93%, whereas a BOD removal efficiency of 92.4% was observed in the B. salmalaya strain 139SI. These values indicate the promising applications of the bioflocculant QZ-7 in wastewater treatment.
    Matched MeSH terms: Nitrogen/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links