Displaying publications 1 - 20 of 619 in total

Abstract:
Sort:
  1. Graham LE, Knack JJ, Graham ME, Graham JM, Zulkifly S
    J Phycol, 2015 Jun;51(3):408-18.
    PMID: 26986658 DOI: 10.1111/jpy.12296
    Periphyton dominated by the cellulose-rich filamentous green alga Cladophora forms conspicuous growths along rocky marine and freshwater shorelines worldwide, providing habitat for diverse epibionts. Bacterial epibionts have been inferred to display diverse functions of biogeochemical significance: N-fixation and other redox reactions, phosphorus accumulation, and organic degradation. Here, we report taxonomic diversity of eukaryotic and prokaryotic epibionts and diversity of genes associated with materials cycling in a Cladophora metagenome sampled from Lake Mendota, Dane Co., WI, USA, during the growing season of 2012. A total of 1,060 distinct 16S, 173 18S, and 351 28S rRNA operational taxonomic units, from which >220 genera or species of bacteria (~60), protists (~80), fungi (6), and microscopic metazoa (~80), were distinguished with the use of reference databases. We inferred the presence of several algal taxa generally associated with marine systems and detected Jaoa, a freshwater periphytic ulvophyte previously thought endemic to China. We identified six distinct nifH gene sequences marking nitrogen fixation, >25 bacterial and eukaryotic cellulases relevant to sedimentary C-cycling and technological applications, and genes encoding enzymes in aerobic and anaerobic pathways for vitamin B12 biosynthesis. These results emphasize the importance of Cladophora in providing habitat for microscopic metazoa, fungi, protists, and bacteria that are often inconspicuous, yet play important roles in ecosystem biogeochemistry.
    Matched MeSH terms: Nitrogen Fixation
  2. Kiyasudeen K, Ibrahim MH, Muhammad SA, Ismail SA, Gonawan FN, Zuknik MH
    Environ Sci Pollut Res Int, 2018 Nov;25(31):31062-31070.
    PMID: 30187407 DOI: 10.1007/s11356-018-3074-z
    Earthworms are commonly referred as environmental engineers and their guts are often compared with chemical reactors. However, modeling experiments to substantiate it are lacking. The aim of this study was to use established reactor models, particularly PFR, on the gut of the vermicomposting earthworm Eudrilus eugeniae to understand more on its digestion. To achieve the objective, a mathematical model based on first-order kinetics was framed and used to determine the pattern of digestion rates of nutrient indicators, namely total carbon (%), total nitrogen (%), C/N ratio, 13C (‰), and 15N (‰) at five intersections (pre-intestine, foregut, midgut A, midgut B, and hindgut) along the gut of E. eugeniae. The experimental results revealed that the concentrations of TC, TN, 13C, and 15N decreased during gut transit, whereas C/N ratio increased. The first-order model demonstrated that all the nutrients exhibit a linear pattern of digestion during gut transit, which supports the PFR model. On this basis, the present study concludes that the gut of E. eugeniae functions as PFR.
    Matched MeSH terms: Nitrogen/metabolism
  3. Nur Hasyimah Ramli, Zuhrah Aini Sulaiman
    MyJurnal
    Fertilizers are the most important and complex nutrients for crop plants in particular for grain yield and quality. The composition of the fertilizer as well as the essential elements that influence the growth of the crop need to be clearly identified. Due to that, this study was carried out to investigate the effect of different fertilizer formulation on the leaf mustard (Brassica juncea) growth. High nitrogen, phosphorus and potassium fertilizers were used to investigate their effects on the morphometric size of the leaves, plant height and the leaf area index of the leaf mustard. Results showed that the application of different formulation of fertilizer improves the growth of leaf mustard compared to control. Leaf mustard with the high phosphorus treatment recorded an increase in plant height and the leaf area index (LAI). Lamina length (LL) range is shown between phosphorus and control (1.11 cm), while the range of lamina width (LW), left width (WL) and right width (WR) are between potassium and control about
    0.57 cm, 0.28 cm and 0.28 cm, respectively. Overall, there is a significant difference between the leaf mustard leaves in different high element fertilizers compared with all of the variable, F(15,1024) = 29.26, p0.05, no significant difference). The highest mean in LAI was obtained when treated with a high phosphorus fertilizer (0.47 m2). The mean difference of LAI of high phosphorus compared to high potassium, high nitrogen and control is 0.02 m2, 0.08 m2 and 0.12 m2. There is no significant differences between the LAI in different high element fertilizers with F(3,176) = 0.15; p>0.05. Further study should be conducted to determine the effects of different fertilizers on the growth of other vegetables and fruit quality.
    Matched MeSH terms: Nitrogen
  4. Raza A, Ejaz S, Saleem MS, Hejnak V, Ahmad F, Ahmed MAA, et al.
    PLoS One, 2021;16(12):e0261468.
    PMID: 34919599 DOI: 10.1371/journal.pone.0261468
    Nitrogen (N) is a macronutrient desired by crop plants in large quantities. However, hiking fertilizer prices need alternative N sources for reducing its requirements through appropriate management practices. Plant growth promoting rhizobacteria (PGPR) are well-known for their role in lowering N requirements of crop plants. This study assessed the impact of PGPR inoculation on growth, allometry and biochemical traits of chili under different N doses. Two PGPR, i.e., Azospirillum 'Er-20' (nitrogen fixing) and Agrobacterium 'Ca-18' (phosphorous solubilizing) were used for inoculation, while control treatment had no PGPR inoculation. Six N doses, i.e., 100, 80, 75, 70, 60 and 50% of the N required by chili were included in the study. Data relating to growth traits, biochemical attributes and yield related traits were recorded. Interaction among N doses and PGPR inoculation significantly altered all growth traits, biochemical attributes and yield related traits. The highest values of the recorded traits were observed for 100% N with and without PGPR inoculation and 75% N with PGPR inoculation. The lowest values of the recorded traits were noted for 50% N without PGPR inoculation. The PGPR inoculation improved the measured traits compared to the traits recorded noted in same N dose without PGPR inoculation. Results revealed that PGPR had the potential to lower 25% N requirement for chili. Therefore, it is recommended that PGPR must be used in chili cultivation to lower N requirements.
    Matched MeSH terms: Nitrogen/analysis*; Nitrogen Fixation/physiology
  5. Hui-hui Wang, Jing-lan Liu, Rong Zhang, Jia-kai Liu, Yu-qi Zou, Zhen-ming Zhang
    Sains Malaysiana, 2017;46:2375-2381.
    This paper had selected watermifoil (Myriophyllum veticillatum Linn.), softstem bulrush (Scirpus validus Vahl) and yellow-flowered iris (Iris wilsonii), in showing the water purification through different configuration. AFIs with different combination of aquatic plants were set up to purify the water quality for 50 days. This paper aimed to evaluate chemical and vegetative characteristics of each type of plant and also to find configuration of aquatic plants to maximize the contaminants removal efficiency by artificial floating island (AFI). The result indicated that the trophic waterbody promote the growth of plants and all of the AFIs have the ability to purify water and reduce contaminants. However, the most effective way is by combination of these three aquatic plants which has strong capacity to remove COD, NO3-, total nitrogen, total phosphorous and improve pH levels. Watermifoil (Myriophyllum verticillatum Linn.) is better than yellow-flowered iris (Iris wilsonii) and softstem bulrush (Scirpus validus Vahl) in disposing water pollutants.
    Matched MeSH terms: Nitrogen
  6. Yuejun He, Changhong Jiang, Hao Yang, Yongjian Wang, Zhangcheng Zhong
    Sains Malaysiana, 2017;46:1701-1708.
    How the composition of the arbuscular mycorrhizal (AM) fungal community affects plant traits of different plant species in karst environments is poorly understood. Broussonetia papyrifera (a woody shrub) and Bidens pilosa (a herbaceous plant) growing in pots in limestone soil were inoculated with an AM fungus, either Funneliformis mosseae (FM), Diversispora versiformis (DV) or Glomus diaphanum (GD) or with an inoculum mixture of all three AM fungi (bn). B. papyrifera and B. pilosa seedlings inoculated with AM fungi showed a significant increase in biomass and nitrogen and phosphorus acquisition compared with the controls, which lacked mycorrhiza. Mixed fungal inoculations significantly enhanced biomass and nitrogen and phosphorus acquisition by B. papyrifera seedlings compared with single fungal inoculations. Nitrogen and phosphorus acquisition by B. papyrifera mycorrhizal seedlings was significantly greater than that of B. pilosa mycorrhizal seedlings. Fungal composition significantly influenced the mycorrhizal benefits of biomass and phosphorus acquisition and mixed fungal inoculations enhanced nitrogen acquisition. Plant species significantly affected nitrogen acquisition but did not have an effect on biomass and phosphorus benefits. We concluded that AM fungal associations increased plant growth and nutrient absorption and that in general a mixed inoculation of AM fungi enhanced biomass and nutrient acquisition more than a single AM fungal inoculation. In addition, a mycorrhizal association was more beneficial for B. papyrifera seedlings in terms of biomass and nutrient acquisition than for B. pilosa seedlings.
    Matched MeSH terms: Nitrogen
  7. Hussain H, Yusoff MK, Ramli MF, Abd Latif P, Juahir H, Zawawi MA
    Pak J Biol Sci, 2013 Nov 15;16(22):1524-30.
    PMID: 24511695
    Nitrate-nitrogen leaching from agricultural areas is a major cause for groundwater pollution. Polluted groundwater with high levels of nitrate is hazardous and cause adverse health effects. Human consumption of water with elevated levels of NO3-N has been linked to the infant disorder methemoglobinemia and also to non-Hodgkin's disease lymphoma in adults. This research aims to study the temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy soil at Ladang Merdeka Ismail Mulong in Kelantan, Malaysia. The complex data matrix (128 x 16) of nitrate-nitrogen parameters was subjected to multivariate analysis mainly Principal Component Analysis (PCA) and Discriminant Analysis (DA). PCA extracted four principal components from this data set which explained 86.4% of the total variance. The most important contributors were soil physical properties confirmed using Alyuda Forecaster software (R2 = 0.98). Discriminant analysis was used to evaluate the temporal variation in soil nitrate-nitrogen on leaching process. Discriminant analysis gave four parameters (hydraulic head, evapotranspiration, rainfall and temperature) contributing more than 98% correct assignments in temporal analysis. DA allowed reduction in dimensionality of the large data set which defines the four operating parameters most efficient and economical to be monitored for temporal variations. This knowledge is important so as to protect the precious groundwater from contamination with nitrate.
    Matched MeSH terms: Nitrogen/analysis*
  8. Velu, S., Abu Bakar, F., Mahyudin, N.A., Saari, N., Zaman, M.Z.
    MyJurnal
    Modified atmosphere packaging (MAP) has become a popular method for packaging foods as it can extend the shelf life of food with minimal quality defect. Oxygen, nitrogen and carbon dioxide are the common gases used in MAP, Oxygen and carbon dioxide inclusive as only these two gaseous have the preservative effects on the packed food product. Their effect on microbial changes of any food product throughout storage period is highly depend on type of the product and packaging materials, appropriate gas composition, storage temperature, the ratio between gas and product volume, and hygienic manner during processing and packaging. MAP with highest percentage of carbon dioxide is proven to be more effective than vacuum packaging in inhibiting the growth of spoilage and pathogenic bacteria in many fishery products. This article reviews the consequences of MAP towards microbial changes in fishery products.
    Matched MeSH terms: Nitrogen
  9. Yahya N, Zakariah MH
    J Nanosci Nanotechnol, 2012 Oct;12(10):8147-52.
    PMID: 23421192
    Electromagnetic (EM) waves transmitted by Horizontal Electric Dipole (HED) source to detect contrasts in subsurface resistivity termed Seabed Logging (SBL) is now an established method for hydrocarbon exploration. However, currently used EM wave detectors for SBL have several challenges including the sensitivity and its bulk size. This work exploits the benefit of superconductor technology in developing a magnetometer termed Superconducting Quantum Interference Device (SQUID) which can potentially be used for SBL. A SQUID magnetometer was fabricated using hexagon shape-niobium wire with YBa2Cu37O, (YBCO) as a barrier. The YBa2Cu37O, samples were synthesized by sol-gel method and were sintered using a furnace and conventional microwave oven. The YBCO gel was dried at 120 degrees C in air for 72 hours. It was then ground and divided into 12 parts. Four samples were sintered at 750 degrees C, 850 degrees C, 900 degrees C, and 950 degrees C for 12 hours in a furnace to find the optimum temperature. The other eight samples were sintered in a microwave with 1100 Watt (W) with a different sintering time, 5, 15, 45 minutes, 1 hour, 1 hour 15 minutes, 1 hour 30 minutes, 1 hour 45 minutes and 2 hours. A DEWAR container was designed and fabricated using fiberglass material. It was filled with liquid nitrogen (LN2) to ensure the superconducting state of the magnetometer. XRD results showed that the optimum sintering temperature for the formation of orthorhombic Y-123 phase was at 950 degrees C with the crystallite size of 67 nm. The morphology results from Field Emission Scanning Electron Microscopy (FESEM) showed that the grains had formed a rod shape with an average diameter of 60 nm. The fabricated SQUID magnetometer was able to show an increment of approximately 249% in the intensity of the EM waves when the source receiver offset was one meter apart.
    Matched MeSH terms: Nitrogen
  10. Adam Y, Somchit MN, Sulaiman MR, Nasaruddin AA, Zuraini A, Bustamam AA, et al.
    J Ethnopharmacol, 2009 Jul 6;124(1):154-8.
    PMID: 19375494 DOI: 10.1016/j.jep.2009.04.014
    Orthosiphon stamineus has been used in traditional medicine for centuries especially to treat diseases of the urinary system.
    Matched MeSH terms: Blood Urea Nitrogen
  11. Jhonson P, Goh HW, Chan DJC, Juiani SF, Zakaria NA
    Environ Sci Pollut Res Int, 2023 Feb;30(9):24562-24574.
    PMID: 36336739 DOI: 10.1007/s11356-022-23605-5
    Bioretention systems are among the most popular stormwater best management practices (BMPs) for urban runoff treatment. Studies on plant performance using bioretention systems have been conducted, especially in developed countries with a temperate climate, such as the USA and Australia. However, these results might not be applicable in developing countries with tropical climates due to the different rainfall regimes and the strength of runoff pollutants. Thus, this study focuses on the performance of tropical plants in treating urban runoff polluted with greywater using a bioretention system. Ten different tropical plant species were triplicated and planted in 30 mesocosms with two control mesocosms without vegetation. One-way ANOVA was used to analyze the performance of plants, which were then ranked based on their performance in removing pollutants using the total score obtained for each water quality test. Results showed that vetiver topped the table with 86.4% of total nitrogen (TN) removal, 93.5% of total phosphorus (TP) removal, 89.8% of biological oxygen demand (BOD) removal, 90% of total suspended solids (TSS) removal, and 92.5% of chemical oxygen demand (COD) removal followed by blue porterweed, Hibiscus, golden trumpet, and tall sedge which can be recommended to be employed in future bioretention studies.
    Matched MeSH terms: Nitrogen/analysis
  12. Goh HW, Lem KS, Azizan NA, Chang CK, Talei A, Leow CS, et al.
    Environ Sci Pollut Res Int, 2019 May;26(15):14904-14919.
    PMID: 30977005 DOI: 10.1007/s11356-019-05041-0
    Bioretention systems have been implemented as stormwater best management practices (BMPs) worldwide to treat non-point sources pollution. Due to insufficient research, the design guidelines for bioretention systems in tropical countries are modeled after those of temperate countries. However, climatic factors and stormwater runoff characteristics are the two key factors affecting the capacity of bioretention system. This paper reviews and compares the stormwater runoff characteristics, bioretention components, pollutant removal requirements, and applications of bioretention systems in temperate and tropical countries. Suggestions are given for bioretention components in the tropics, including elimination of mulch layer and submerged zone. More research is required to identify suitable additives for filter media, study tropical shrubs application while avoiding using grass and sedges, explore function of soil faunas, and adopt final discharged pollutants concentration (mg/L) on top of percentage removal (%) in bioretention design guidelines.
    Matched MeSH terms: Nitrogen/analysis; Nitrogen/isolation & purification
  13. Mohamed Zubi WS, Mohd MH, Mohamed Nor NMI, Zakaria L
    Microorganisms, 2021 Feb 26;9(3).
    PMID: 33652900 DOI: 10.3390/microorganisms9030497
    Fusarium genus comprises important saprophytic and phytopathogenic fungi and is widespread in nature. The present study reports the occurrence of Fusarium spp. in soils from two mangrove forests in northern Peninsular Malaysia and analyzed physico-chemical properties of the mangrove soil. Based on TEF-1α sequences, nine Fusarium species were identified: Fusarium solani species complex (FSSC) (n = 77), Fusarium verticillioides (n = 20), Fusarium incarnatum (n = 10), Fusarium proliferatum (n = 7), Fusarium lateritium (n = 4), Fusarium oxysporum (n = 3), Fusarium rigidiuscula (n = 2), Fusarium chlamydosporum (n = 1), and Fusarium camptoceras (n = 1); FSSC isolates were the most prevalent. Phylogenetic analysis of the combined TEF-1α and ITS sequences revealed diverse phylogenetic affinities among the FSSC isolates and potentially new phylogenetic clades of FSSC. Soil analysis showed varied carbon content, pH, soil moisture, and salinity, but not nitrogen content, between sampling locations. Regardless of the physico-chemical properties, various Fusarium species were recovered from the mangrove soils. These were likely saprophytes; however, some were well-known plant pathogens and opportunistic human pathogens. Thus, mangrove soils might serve as inoculum sources for plant and human pathogenic Fusarium species. The present study demonstrates the occurrence of various Fusarium species in the extreme environment of mangrove soil, thereby contributing to the knowledge on species diversity in Fusarium.
    Matched MeSH terms: Nitrogen
  14. Abdul-Rahman R, Tsuno H, Zainol N
    Water Sci Technol, 2002;45(12):197-204.
    PMID: 12201103
    Elevated levels of nutrients in agroindustry wastewaters, and higher reliance on chlorination pose health threats due to formation of chlorinated organics as well as increased chlorination costs. Removals of ammonium and nitrate compounds were studied using activated carbon from palm shells, as adsorbent and support media. Experiments were carried out at several loadings, F:M from 0.31 to 0.58, and hydraulic residence times (HRT) of 24 h, 12 h and 8 h. Results show that the wastewater treatment process achieved removals of over 90% for COD and 62% for Total-N. Studies on removals from river water were carried out in sequencing batch reactor (SBR) and activated carbon biofilm (ACB) reactor. Removals achieved by the SBR adsorption-biodegradation combination were 67.0% for COD, 58.8% for NH3-N and 25.5% for NO3-N while for adsorption alone the removals were only 37.0% for COD, 35.2% for NH3-N and 13.8% for NO3-N. In the ACB reactor, at HRT of 1.5 to 6 h, removals ranged from 12.5 to 100% for COD, 16.7 to 100% for NO3-N and 13.5 to 100% for NH3-N. Significant decrease in removals was shown at lower HRT. The studies have shown that substantial removals of COD, NO3-N and NH3-N from both wastewater and river water may be achieved via adsorption-biodegradation by biofilm on activated carbon processes.
    Matched MeSH terms: Nitrogen/metabolism; Nitrogen/chemistry*
  15. Dzulkefli NA, Zainol N
    Data Brief, 2018 Oct;20:1710-1720.
    PMID: 30263925 DOI: 10.1016/j.dib.2018.09.008
    In this article, five variables including type of substrates, sizes of substrates, mass ratio of spawn to substrates (SP/SS), temperature and pretreatment of substrates were used to model mycelium growth in Pleurotus sp. (oyster mushroom) cultivation by using agricultural wastes via two level factorial analysis. Two different substrates which were empty fruit bunch (EFB) and sugarcane bagasse (SB) were used. Analysis of Variance (ANOVA) for both mycelium extension rate (M) and nitrogen concentration in mycelium (N) showed that the confidence level was greater than 95% while p-value of both models were less than 0.05 which is significant. The coefficient of determination (R2) for both M and N were 0.8829 and 0.9819 respectively. From the experiment, the best condition to achieve maximum M (0.8 cm/day) and N (656 mg/L) was by using substrate B, 2.5 cm size of substrate, 1:14 for SP/SS, incubated at ambient temperature and application of steam treatment. The data showed that EFB can be used to replace sawdust as a media for the oyster mushroom cultivation. Data analysis was performed using Design Expert version 7.0.
    Matched MeSH terms: Nitrogen
  16. Ramalingam A, Santhanathas T, Shaukat Ali S, Zainalabidin S
    PMID: 31726798 DOI: 10.3390/ijerph16224445
    Prolonged exposure to nicotine accelerates onset and progression of renal diseases in habitual cigarette smokers. Exposure to nicotine, either via active or passive smoking is strongly shown to enhance renal oxidative stress and augment kidney failure in various animal models. In this study, we investigated the effects of resveratrol supplementation on nicotine-induced kidney injury and oxidative stress in a rat model. Male Sprague-Dawley rats were given nicotine (0.6 mg/kg, i.p.) alone or in combination with either resveratrol (8 mg/kg, i.p.), or angiotensin II type I receptor blocker, irbesartan (10 mg/kg, p.o.) for 28 days. Upon completion of treatment, kidneys were investigated for changes in structure, kidney injury markers and oxidative stress. Administration of nicotine alone for 28 days resulted in significant renal impairment as shown by marked increase in plasma creatinine, blood urea nitrogen (BUN) and oxidative stress. Co-administration with resveratrol however successfully attenuated these changes, with a concomitant increase in renal antioxidants such as glutathione similar to the conventionally used angiotensin II receptor blocker, irbesartan. These data altogether suggest that targeting renal oxidative stress with resveratrol could alleviate nicotine-induced renal injury. Antioxidants may be clinically important for management of renal function in habitual smokers.
    Matched MeSH terms: Blood Urea Nitrogen
  17. Nasir S, Hussein MZ, Yusof NA, Zainal Z
    Nanomaterials (Basel), 2017 Jul 13;7(7).
    PMID: 28703757 DOI: 10.3390/nano7070182
    Herein, a new approach was proposed to produce reduced graphene oxide (rGO) from graphene oxide (GO) using various oil palm wastes: oil palm leaves (OPL), palm kernel shells (PKS) and empty fruit bunches (EFB). The effect of heating temperature on the formation of graphitic carbon and the yield was examined prior to the GO and rGO synthesis. Carbonization of the starting materials was conducted in a furnace under nitrogen gas for 3 h at temperatures ranging from 400 to 900 °C and a constant heating rate of 10 °C/min. The GO was further synthesized from the as-carbonized materials using the 'improved synthesis of graphene oxide' method. Subsequently, the GO was reduced by low-temperature annealing reduction at 300 °C in a furnace under nitrogen gas for 1 h. The IG/ID ratio calculated from the Raman study increases with the increasing of the degree of the graphitization in the order of rGO from oil palm leaves (rGOOPL) < rGO palm kernel shells (rGOPKS) < rGO commercial graphite (rGOCG) < rGO empty fruit bunches (rGOEFB) with the IG/ID values of 1.06, 1.14, 1.16 and 1.20, respectively. The surface area and pore volume analyses of the as-prepared materials were performed using the Brunauer Emmett Teller-Nitrogen (BET-N₂) adsorption-desorption isotherms method. The lower BET surface area of 8 and 15 m2 g-1 observed for rGOCG and rGOOPL, respectively could be due to partial restacking of GO layers and locally-blocked pores. Relatively, this lower BET surface area is inconsequential when compared to rGOPKS and rGOEFB, which have a surface area of 114 and 117 m² g-1, respectively.
    Matched MeSH terms: Nitrogen
  18. Mohd. Sanusi Che Kadir, Jamaliah Md. Jahim, Nurina Anuar, Mohd. Sobri Takrif, Zahira Yaakub
    MyJurnal
    In this study, an anaerobic mesophilic bacterial strain, namely Clostridium butyricum KBH1, was isolated from a natural source. This strain grew well and produced biogas with an average hydrogen concentration of 60% (v/v) in the Reinforced Clostridial Media (RCM). To study the basic nutrient requirements, three main nutrients namely peptone (Pep), yeast extracts (Yes) and glucose (Glu) were chosen as factors, using an experimental design. The experiments were run according to 23 Full Factorial Design, followed by the Response Surface Method (RSM). The fermentation was performed in 30 ml serum bottles with 20 ml working volume in a sterile and anaerobic condition at 37°C with 5% inoculums. The results from the Analysis of Variance (ANOVA) for the factorial design showed that all the three factors had significantly affected the gas production by the C. butyricum. The response surface plot of the gas production by C. butyricum showed that the gas production could be enhanced by increasing peptone and yeast extract concentrations up to 15 g/l and 24 g/l respectively, without showing any substrate inhibition. Meanwhile, the glucose concentration showed an optimum at the middle point (8 g/l) with possible substrate inhibition at a high concentration (12 g/l). The total biogas production could be correlated to the three factors, using the quadratic equation: Gas =0.17 + 7.11Glu - 0.02Pep + 0.77Yes - 0.53Glu2 + 0.09Glu*Pep. The experimental results showed that the strain could grow well in substrate with high organic nitrogen content such as POME and might be not suitable for substrate with high sugar content due to substrate inhibition.
    Matched MeSH terms: Nitrogen
  19. Mohajeri L, Aziz HA, Isa MH, Zahed MA
    Bioresour Technol, 2010 Feb;101(3):893-900.
    PMID: 19773160 DOI: 10.1016/j.biortech.2009.09.013
    This work studied the bioremediation of weathered crude oil (WCO) in coastal sediment samples using central composite face centered design (CCFD) under response surface methodology (RSM). Initial oil concentration, biomass, nitrogen and phosphorus concentrations were used as independent variables (factors) and oil removal as dependent variable (response) in a 60 days trial. A statistically significant model for WCO removal was obtained. The coefficient of determination (R(2)=0.9732) and probability value (P<0.0001) demonstrated significance for the regression model. Numerical optimization based on desirability function were carried out for initial oil concentration of 2, 16 and 30 g per kg sediment and 83.13, 78.06 and 69.92 per cent removal were observed respectively, compare to 77.13, 74.17 and 69.87 per cent removal for un-optimized results.
    Matched MeSH terms: Nitrogen/analysis
  20. Hossain Molla A, Fakhru'l-Razi A, Zahangir Alam M
    Water Res, 2004 Nov;38(19):4143-52.
    PMID: 15491662
    Natural and environmental-friendly disposal of wastewater sludge is a great concern. Recently, biological treatment has played prominent roles in bioremediation of complex hydrocarbon- rich contaminants. Composting is quite an old biological-based process that is being practiced but it could not create a great impact in the minds of concerned researchers. The present study was conducted to evaluate the feasibility of the solid-state bioconversion (SSB) processes in the biodegradation of wastewater sludge by exploiting this promising technique to rejuvenate the conventional process. The Indah Water Konsortium (IWK) domestic wastewater treatment plant (DWTP) sludge was considered for evaluation of SSB by monitoring the microbial growth and its subsequent roles in biodegradation under two conditions: (i) flask (F) and (ii) composting bin (CB) cultures. Sterile and semi-sterile environments were allowed in the F and the CB, respectively, using two mixed fungal cultures, Trichoderma harzianum with Phanerochaete chrysosporium 2094 (T/P) and T. harzianum with Mucor hiemalis (T/M) and two bulking materials, sawdust (SD) and rice straw (RS). The significant growth and multiplication of both the mixed fungal cultures were reflected in soluble protein, glucosamine and color intensity measurement of the water extract. The color intensity and pH of the water extract significantly increased and supported the higher growth of microbes and bioconversion. The most encouraging results of microbial growth and subsequent bioconversion were exhibited in the RS than the SD. A comparatively higher decrease of organic matter (OM) % and C/N ratio were attained in the CB than the F, which implied a higher bioconversion. But the measurement of soluble protein, glucosamine and color intensity exhibited higher values in the F than the CB. The final pH drop was higher in the CB than the F, which implied that a higher nitrification occurred in the CB associated with a higher release of H+ ions. Both the mixed cultures performed almost equal roles in all cases except the changes in moisture content.
    Matched MeSH terms: Nitrogen/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links