Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Abdullah F, Khan Nor-Ashikin MN, Agarwal R, Kamsani YS, Abd Malek M, Bakar NS, et al.
    Asian J Androl, 2021 1 22;23(3):281-287.
    PMID: 33473013 DOI: 10.4103/aja.aja_81_20
    Diabetes mellitus (DM) is known to cause reproductive impairment. In men, it has been linked to altered sperm quality and testicular damage. Oxidative stress (OS) plays a pivotal role in the development of DM complications. Glutathione (GSH) is a part of a nonenzymatic antioxidant defense system that protects lipid, protein, and nucleic acids from oxidative damage. However, the protective effects of exogenous GSH on the male reproductive system have not been comprehensively examined. This study determined the impact of GSH supplementation in ameliorating the adverse effect of type 1 DM on sperm quality and the seminiferous tubules of diabetic C57BL/6NTac mice. GSH at the doses of 15 mg kg-1 and 30 mg kg-1 was given intraperitoneally to mice weekly for 6 consecutive weeks. The mice were then weighed, euthanized, and had their reproductive organs excised. The diabetic (D Group) showed significant impairment of sperm quality and testicular histology compared with the nondiabetic (ND Group). Diameters of the seminiferous lumen in diabetic mice treated with 15 mg kg-1 GSH (DGSH15) were decreased compared with the D Group. Sperm motility was also significantly increased in the DGSH15 Group. Improvement in testicular morphology might be an early indication of the protective roles played by the exogenous GSH in protecting sperm quality from effects of untreated type 1 DM or diabetic complications. Further investigation using different doses and different routes of GSH is necessary to confirm this suggestion.
    Matched MeSH terms: Nucleic Acids
  2. Ahmad Faris AN, Ahmad Najib M, Mohd Nazri MN, Hamzah ASA, Aziah I, Yusof NY, et al.
    Int J Environ Res Public Health, 2022 Aug 25;19(17).
    PMID: 36078284 DOI: 10.3390/ijerph191710570
    Water- and food-related health issues have received a lot of attention recently because food-poisoning bacteria, in particular, are becoming serious threats to human health. Currently, techniques used to detect these bacteria are time-consuming and laborious. To overcome these challenges, the colorimetric strategy is attractive because it provides simple, rapid and accurate sensing for the detection of Salmonella spp. bacteria. The aim of this study is to review the progress regarding the colorimetric method of nucleic acid for Salmonella detection. A literature search was conducted using three databases (PubMed, Scopus and ScienceDirect). Of the 88 studies identified in our search, 15 were included for further analysis. Salmonella bacteria from different species, such as S. Typhimurium, S. Enteritidis, S. Typhi and S. Paratyphi A, were identified using the colorimetric method. The limit of detection (LoD) was evaluated in two types of concentrations, which were colony-forming unit (CFU) and CFU per mL. The majority of the studies used spiked samples (53%) rather than real samples (33%) to determine the LoDs. More research is needed to assess the sensitivity and specificity of colorimetric nucleic acid in bacterial detection, as well as its potential use in routine diagnosis.
    Matched MeSH terms: Nucleic Acids*
  3. Al Qabbani A, Rani KGA, Syarif J, AlKawas S, Sheikh Abdul Hamid S, Samsudin AR, et al.
    PLoS One, 2023;18(4):e0283922.
    PMID: 37018321 DOI: 10.1371/journal.pone.0283922
    Current immunological issues in bone grafting regarding the transfer of xenogeneic donor bone cells into the recipient are challenging the industry to produce safer acellular natural matrices for bone regeneration. The aim of this study was to investigate the efficacy of a novel decellularization technique for producing bovine cancellous bone scaffold and compare its physicochemical, mechanical, and biological characteristics with demineralized cancellous bone scaffold in an in-vitro study. Cancellous bone blocks were harvested from a bovine femoral head (18-24 months old) subjected to physical cleansing and chemical defatting, and further processed in two ways. Group I was subjected to demineralization, while Group II underwent decellularization through physical, chemical, and enzymatic treatments. Both were then freeze-dried, and gamma radiated, finally producing a demineralized bovine cancellous bone (DMB) scaffold and decellularized bovine cancellous bone (DCC) scaffold. Both DMB and DCC scaffolds were subjected to histological evaluation, scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), fourier-transform infrared spectroscopy (FTIR), quantification of lipid, collagen, and residual nucleic acid content, and mechanical testing. The osteogenic potential was investigated through the recellularization of scaffolds with human osteoblast cell seeding and examined for cell attachment, proliferation, and mineralization by Alizarin staining and gene expression. DCC produced a complete acellular extracellular matrix (ECM) with the absence of nucleic acid content, wider pores with extensive interconnectivity and partially retaining collagen fibrils. DCC demonstrated a higher cell proliferation rate, upregulation of osteogenic differentiation markers, and substantial mineralized nodules production. Our findings suggest that the decellularization technique produced an acellular DCC scaffold with minimal damage to ECM and possesses osteogenic potential through the mechanisms of osteoconduction, osteoinduction, and osteogenesis in-vitro.
    Matched MeSH terms: Nucleic Acids*
  4. Anderios F, Zulaikah Mohamed, Ratnam S, Mohd Yusof Ibrahim, Tajul Ariffin Mohd Awang
    Sains Malaysiana, 2008;37(2).
    The emergence of primate malaria known as Plasmodium knowlesi in humans, which is always misdiagnosed by microscopy as P. malariae, has contribute to the needs of nucleic acid based technology to be applied in detection and differentiation of malaria parasites. The target DNA sequence of the 18SrRNA gene was amplified by a nested PCR assay for detection and identification of Plasmodium species in 31 Giemsa-stained blood smears examined as P. malariae. The assay demonstrated three samples identified as positive to genus-specific primers but negative to all species-specific primers. Three cases of misdiagnosed species were detected. The samples were diagnosed as P. malariae microscopically, but detected as P. falciparum by PCR assay. Twenty five out of 31 samples were detected as P. knowlesi. None of the samples diagnosed microscopically as P. malariae were identified as P. malariae with the nested PCR assay. Over 80.6% of all malaria cases in this study showed naturally acquired P. knowlesi infections.
    Matched MeSH terms: Nucleic Acids
  5. Ang GY, Yu CY, Chan KG, Singh KK, Chan Yean Y
    J Microbiol Methods, 2015 Nov;118:99-105.
    PMID: 26342435 DOI: 10.1016/j.mimet.2015.08.024
    In this study, we report for the first time the development of a dry-reagent-based nucleic acid-sensing platform by combining a thermostabilised linear-after-the-exponential (LATE)-PCR assay with a one-step, hybridisation-based nucleic acid lateral flow biosensor. The nucleic acid-sensing platform was designed to overcome the need for stringent temperature control during transportation or storage of reagents and reduces the dependency on skilled personnel by decreasing the overall assay complexity and hands-on time. The platform was developed using toxigenic Vibrio cholerae as the model organism due to the bacterium's propensity to cause epidemic and pandemic cholera. The biosensor generates result which can be visualised with the naked eyes and the limit of detection was found to be 1pg of pure genomic DNA and 10CFU/ml of toxigenic V. cholerae. The dry-reagent-based nucleic acid-sensing platform was challenged with 95 toxigenic V. cholerae, 7 non-toxigenic V. cholerae and 66 other bacterial strains in spiked stool sample and complete agreement was observed when the results were compared to that of monosialoganglioside (GM1)-ELISA. Heat-stability of the thermostabilised LATE-PCR reaction mixes at different storage temperatures (4-56°C) was investigated for up to 90days. The dry-reagent-based genosensing platform with ready-to-use assay components provides an alternative method for sequence-specific detection of nucleic acid without any cold chain restriction that is associated with conventional molecular amplification techniques.
    Matched MeSH terms: Nucleic Acids
  6. Ariffin EY, Lee YH, Futra D, Tan LL, Karim NHA, Ibrahim NNN, et al.
    Anal Bioanal Chem, 2018 Mar;410(9):2363-2375.
    PMID: 29504083 DOI: 10.1007/s00216-018-0893-1
    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10-12-1.0×10-2 μM, with a low detection limit of 8.17×10-14 μM (R2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.
    Matched MeSH terms: Immobilized Nucleic Acids/genetics; Immobilized Nucleic Acids/chemistry
  7. Atchison S, Shilling H, Balgovind P, Machalek DA, Hawkes D, Garland SM, et al.
    J Appl Microbiol, 2021 Nov;131(5):2592-2599.
    PMID: 33942451 DOI: 10.1111/jam.15126
    AIM: Validate the Roche, MagNAPure96 (MP96) nucleic acid extraction platform for Seegene Anyplex II HPV28 (Anyplex28) detection of Human Papillomavirus.

    METHODS AND RESULTS: Comparisons were made for Anyplex28 genotyping from 115 cervical samples extracted on the Hamilton, STARlet and the MP96. Two DNA concentrations were used for the MP96, one matched for sample input to the STARlet and another 5× concentration (laboratory standard). Agreement of HPV detection was 89·8% (κ = 0·798; P = 0·007), with HPV detected in 10 more samples for the MP96. There was a high concordance of detection for any oncogenic HPV genotype (κ = 0·77; P = 0·007) and for any low-risk HPV genotype (κ = 0·85; P = 0·008). DNA extracted at laboratory standard had a lower overall agreement 85·2% (κ = 0·708; P 

    Matched MeSH terms: Nucleic Acids*
  8. Azri FA, Eissa S, Zourob M, Chinnappan R, Sukor R, Yusof NA, et al.
    Mikrochim Acta, 2020 04 12;187(5):266.
    PMID: 32279134 DOI: 10.1007/s00604-020-4218-7
    An electrochemical aptasensor is described for determination of the phytohormone of zearalenone (ZEA). The gold electrode was modified with ZEA via covalent attachment using cysteamine-hydrochloride and 1,4-phenylene diisocyanate linker. A truncated ZEA aptamer with a dissociation constant of 13.4 ± 2.1 nM was used in an aptasensor. The electrochemical property was investigated using square wave voltammetry for monitoring the change in the electron transfer using the ferro/ferricyanide system as redox probe. Under optimal experimental conditions, the response was best measured at a potential of 0.20 V (vs. Ag/AgCl). The signals depended on the competitive mechanism between the immobilised ZEA and free ZEA for the aptamer binding site. The aptasensor works in the range 0.01 to 1000 ng·mL-1 ZEA concentration, with a detection limit of 0.017 ng·mL-1. High degree of cross-reactivity with the other analogues of ZEA was observed, whereas none towards other mycotoxins. The aptasensor was further applied for the determination of ZEA in the extract of maize grain and showed good recovery percentages between 87 and 110%. Graphical abstract Schematic representation of the electrochemical determination of zearalenone based on indirect competitive assay. Step a Immobilisation of ZEA on the surface of gold electrode via covalent attachment, b competition for the ZEA aptamer binding site between immobilised and free ZEA, and c current signal of the binding event based on SWV technique.
    Matched MeSH terms: Immobilized Nucleic Acids/chemistry
  9. Bakhtiar A, Chowdhury EH
    Asian J Pharm Sci, 2021 Mar;16(2):236-252.
    PMID: 33995617 DOI: 10.1016/j.ajps.2020.11.002
    Genetic intervention via the delivery of functional genes such as plasmid DNA (pDNA) and short-interfering RNA (siRNA) offers a great way to treat many single or multiple genetic defects effectively, including mammary carcinoma. Delivery of naked therapeutic genes or siRNAs is, however, short-lived due to biological clearance by scavenging nucleases and circulating monocytes. Low cellular internalization of negatively-charged nucleic acids further causes low transfection or silencing activity. Development of safe and effectual gene vectors is therefore undeniably crucial to the success of nucleic acid delivery. Inorganic nanoparticles have attracted considerable attention in the recent years due to their high loading capacity and encapsulation activity. Here we introduce strontium salt-based nanoparticles, namely, strontium sulfate, strontium sulfite and strontium fluoride as new inorganic nanocarriers. Generated strontium salt particles were found to be nanosized with high affinity towards negatively-charged pDNA and siRNA. Degradation of the particles was seen with a drop in pH, suggesting their capacity to respond to pH change and undergo dissolution at endosomal pH to release the genetic materials. While the particles are relatively nontoxic towards the cells, siRNA-loaded SrF2 and SrSO3 particles exerted superior transgene expression and knockdown activity of MAPK and AKT, leading to inhibition of their phosphorylation to a distinctive extent in both MCF-7 and 4T1 cells. Strontium salt nanoparticles have thus emerged as a promising tool for applications in cancer gene therapy.
    Matched MeSH terms: Nucleic Acids
  10. Banerjee S, Gupta N, Kodan P, Mittal A, Ray Y, Nischal N, et al.
    Intractable Rare Dis Res, 2019 Feb;8(1):1-8.
    PMID: 30881850 DOI: 10.5582/irdr.2018.01130
    Nipah virus, an enveloped ribonucleic acid virus, has been a major cause of encephalitis out-breaks with high mortality, primarily in the Indo-Bangladesh regions. Except for the first outbreak in Malaysia-Singapore, which was related to contact with pigs and the outbreak in Philippines associated with horse slaughter, most other outbreaks have affected the Indo- Bangladesh regions. The Indo-Bangladesh outbreaks were associated with consumption of raw date palm sap contaminated by fruit bats and had a very high secondary attack rate. The patient usually presents with fever, encephalitis and/or respiratory involvement with or without thrombocytopenia, leukopenia and transaminitis. Diagnosis can be confirmed by isolation and nucleic acid amplification in the acute phase or antibody detection during the convalescent phase. Treatment is mostly limited to supportive care and syndromic management of acute encephalitis syndrome. Ribavirin, m102.4 monoclonal antibody and favipiravir are the only anti-virals with some activity against Nipah virus. Standard precautions, hand hygiene and personal protective equipments are the cornerstone of comprehensive infection prevention and control strategy. With the recent outbreaks affecting newer geographical areas, there is a need for physicians to be aware of this disease and keep abreast of its current detection and management strategies.
    Matched MeSH terms: Nucleic Acids
  11. Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, et al.
    Anal Chem, 2016 06 21;88(12):6254-64.
    PMID: 27012657 DOI: 10.1021/acs.analchem.6b00195
    In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future.
    Matched MeSH terms: Nucleic Acids/analysis*; Nucleic Acids/metabolism
  12. Chong ZX, Yeap SK, Ho WY
    PeerJ, 2021;9:e11165.
    PMID: 33976969 DOI: 10.7717/peerj.11165
    Transfection is a modern and powerful method used to insert foreign nucleic acids into eukaryotic cells. The ability to modify host cells' genetic content enables the broad application of this process in studying normal cellular processes, disease molecular mechanism and gene therapeutic effect. In this review, we summarized and compared the findings from various reported literature on the characteristics, strengths, and limitations of various transfection methods, type of transfected nucleic acids, transfection controls and approaches to assess transfection efficiency. With the vast choices of approaches available, we hope that this review will help researchers, especially those new to the field, in their decision making over the transfection protocol or strategy appropriate for their experimental aims.
    Matched MeSH terms: Nucleic Acids
  13. Damayanti TA, Alabi OJ, Rauf A, Naidu RA
    Plant Dis, 2010 Apr;94(4):478.
    PMID: 30754487 DOI: 10.1094/PDIS-94-4-0478B
    Yardlong bean (Vigna unguiculata subsp. sesquipedalis) is extensively cultivated in Indonesia for consumption as a green vegetable. During the 2008 season, a severe outbreak of a virus-like disease occurred in yardlong beans grown in farmers' fields in Bogor, Bekasi, Subang, Indramayu, and Cirebon of West Java, Tanggerang of Banten, and Pekalongan and Muntilan of Central Java. Leaves of infected plants showed severe mosaic to bright yellow mosaic and vein-clearing symptoms, and pods were deformed and also showed mosaic symptoms on the surface. In cv. 777, vein-clearing was observed, resulting in a netting pattern on symptomatic leaves followed by death of the plants as the season advanced. Disease incidence in the Bogor region was approximately 80%, resulting in 100% yield loss. Symptomatic leaf samples from five representative plants tested positive in antigen-coated plate-ELISA with potyvirus group-specific antibodies (AS-573/1; DSMZ, German Resource Center for Biological Material, Braunschweig, Germany) and antibodies to Cucumber mosaic virus (CMV; AS-0929). To confirm these results, viral nucleic acids eluted from FTA classic cards (FTA Classic Card, Whatman International Ltd., Maidstone, UK) were subjected to reverse transcription (RT)-PCR using potyvirus degenerate primers (CIFor: 5'-GGIVVIGTIGGIWSIGGIAARTCIAC-3' and CIRev: 5'-ACICCRTTYTCDATDATRTTIGTIGC-3') (3) and degenerate primers (CMV-1F: 5'-ACCGCGGGTCTTATTATGGT-3' and CMV-1R: 5' ACGGATTCAAACTGGGAGCA-3') specific for CMV subgroup I (1). A single DNA product of approximately 683 base pairs (bp) with the potyvirus-specific primers and a 382-bp fragment with the CMV-specific primers were amplified from ELISA-positive samples. These results indicated the presence of a potyvirus and CMV as mixed infections in all five samples. The amplified fragments specific to potyvirus (four samples) and CMV (three samples) were cloned separately into pCR2.1 (Invitrogen Corp., Carlsbad, CA). Two independent clones per amplicon were sequenced from both orientations. Pairwise comparison of these sequences showed 93 to 100% identity among the cloned amplicons produced using the potyvirus-specific primers (GenBank Accessions Nos. FJ653916, FJ653917, FJ653918, FJ653919, FJ653920, FJ653921, FJ653922, FJ653923, FJ653924, FJ653925, and FJ653926) and 92 to 97% with a corresponding nucleotide sequence of Bean common mosaic virus (BCMV) from Taiwan (No. AY575773) and 88 to 90% with BCMV sequences from China (No. AJ312438) and the United States (No. AY863025). The sequence analysis indicated that BCMV isolates from yardlong bean are more closely related to an isolate from Taiwan than with isolates from China and the United States. The CMV isolates (GenBank No. FJ687054) each were 100% identical and 96% identical with corresponding sequences of CMV subgroup I isolates from Thailand (No. AJ810264) and Malaysia (No. DQ195082). Both BCMV and CMV have been documented in soybean, mungbean, and peanut in East Java of Indonesia (2). Previously, BCMV, but not CMV, was documented on yardlong beans in Guam (4). To our knowledge, this study represents the first confirmed report of CMV in yardlong bean in Indonesia and is further evidence that BCMV is becoming established in Indonesia. References: (1) J. Aramburu et al. J. Phytopathol. 155:513, 2007. (2) S. K. Green et al. Plant Dis. 72:994, 1988. (3) C. Ha et al. Arch. Virol. 153:25, 2008. (4) G. C. Wall et al. Micronesica 29:101, 1996.
    Matched MeSH terms: Nucleic Acids
  14. Foo PC, Nurul Najian AB, Muhamad NA, Ahamad M, Mohamed M, Yean Yean C, et al.
    BMC Biotechnol, 2020 Jun 22;20(1):34.
    PMID: 32571286 DOI: 10.1186/s12896-020-00629-8
    BACKGROUND: This study reports the analytical sensitivity and specificity of a Loop-mediated isothermal amplification (LAMP) and compares its amplification performance with conventional PCR, nested PCR (nPCR) and real-time PCR (qPCR). All the assays demonstrated in this study were developed based on Serine-rich Entamoeba histolytica protein (SREHP) gene as study model.

    RESULTS: A set of SREHP gene specific LAMP primers were designed for the specific detection of Entamoeba histolytica. This set of primers recorded 100% specificity when it was evaluated against 3 medically important Entamoeba species and 75 other pathogenic microorganisms. These primers were later modified for conventional PCR, nPCR and qPCR applications. Besides, 3 different post-LAMP analyses including agarose gel electrophoresis, nucleic acid lateral flow immunoassay and calcein-manganese dye techniques were used to compare their limit of detection (LoD). One E. histolytica trophozoite was recorded as the LoD for all the 3 post-LAMP analysis methods when tested with E. histolytica DNA extracted from spiked stool samples. In contrast, none of the PCR method outperformed LAMP as both qPCR and nPCR recorded LoD of 100 trophozoites while the LoD of conventional PCR was 1000 trophozoites.

    CONCLUSIONS: The analytical sensitivity comparison among the conventional PCR, nPCR, qPCR and LAMP reveals that the LAMP outperformed the others in terms of LoD and amplification time. Hence, LAMP is a relevant alternative DNA-based amplification platform for sensitive and specific detection of pathogens.

    Matched MeSH terms: Nucleic Acids
  15. Garland SM, Iftner T, Cuschieri K, Kaufmann AM, Arbyn M, de Sanjose S, et al.
    J Clin Virol, 2023 Feb;159:105349.
    PMID: 36584621 DOI: 10.1016/j.jcv.2022.105349
    We advise that only clinically validated HPV assays which have fulfilled internationally accepted performance criteria be used for primary cervical screening. Further, assays should be demonstrated to be fit for purpose in the laboratory in which they will ultimately be performed, and quality materials manuals and frameworks will be helpful in this endeavor. Importantly, there is a fundamental shortage of well validated, low-cost, low complexity HPV tests that have demonstrated utility in a near-patient setting; representing a significant challenge and focus for future development in order to reach the WHO's goal of eliminating cervical cancer.
    Matched MeSH terms: Nucleic Acids*
  16. Hameed AM, Asiyanbi-H T, Idris M, Fadzillah N, Mirghani MES
    Trop Life Sci Res, 2018 Jul;29(2):213-227.
    PMID: 30112151 MyJurnal DOI: 10.21315/tlsr2018.29.2.15
    Gelatin is a very popular pharmaceutical and food ingredient and the most studied ingredient in Halal researches. Interest in source gelatin authentication is based on religious and cultural beliefs, food fraud prevention and health issues. Seven gelatin authentication methods that have been developed include: nucleic acid based, immunochemical, electrophoretic analysis, spectroscopic, mass-spectrometric, chromatographic-chemometric and chemisorption methods. These methods are time consuming, and require capital intensive equipment with huge running cost. Reliability of gelatin authentication methods is challenged mostly by transformation of gelatin during processing and close similarities among gelatin structures. This review concisely presents findings and challenges in this research area and suggests needs for more researches on development of rapid authentication method and process-transformed gelatins.
    Matched MeSH terms: Nucleic Acids
  17. Haniffa MACM, Munawar K, Chee CY, Pramanik S, Halilu A, Illias HA, et al.
    Carbohydr Polym, 2021 Sep 01;267:118136.
    PMID: 34119125 DOI: 10.1016/j.carbpol.2021.118136
    Cellulose and its forms are widely used in biomedical applications due to their biocompatibility, biodegradability and lack of cytotoxicity. It provides ample opportunities for the functionalization of supported magnetic nanohybrids (CSMNs). Because of the abundance of surface hydroxyl groups, they are surface tunable in either homogeneous or heterogeneous solvents and thus act as a substrate or template for the CSMNs' development. The present review emphasizes on the synthesis of various CSMNs, their physicomagnetic properties, and potential applications such as stimuli-responsive drug delivery systems, MRI, enzyme encapsulation, nucleic acid extraction, wound healing and tissue engineering. The impact of CSMNs on cytotoxicity, magnetic hyperthermia, and folate-conjugates is highlighted in particular, based on their structures, cell viability, and stability. Finally, the review also discussed the challenges and prospects of CSMNs' development. This review is expected to provide CSMNs' development roadmap in the context of 21st-century demands for biomedical therapeutics.
    Matched MeSH terms: Nucleic Acids/isolation & purification
  18. Hassan R, Husin A, Sulong S, Yusoff S, Johan MF, Yahaya BH, et al.
    Malays J Pathol, 2015 Aug;37(2):165-73.
    PMID: 26277676 MyJurnal
    Matched MeSH terms: Nucleic Acids/analysis*
  19. Higashi SL, Rozi N, Hanifah SA, Ikeda M
    Int J Mol Sci, 2020 Dec 12;21(24).
    PMID: 33322664 DOI: 10.3390/ijms21249458
    Supramolecular architectures that are built artificially from biomolecules, such as nucleic acids or peptides, with structural hierarchical orders ranging from the molecular to nano-scales have attracted increased attention in molecular science research fields. The engineering of nanostructures with such biomolecule-based supramolecular architectures could offer an opportunity for the development of biocompatible supramolecular (nano)materials. In this review, we highlighted a variety of supramolecular architectures that were assembled from both nucleic acids and peptides through the non-covalent interactions between them or the covalently conjugated molecular hybrids between them.
    Matched MeSH terms: Nucleic Acids/ultrastructure; Nucleic Acids/chemistry*; Peptide Nucleic Acids/ultrastructure; Peptide Nucleic Acids/chemistry*
  20. Hon KW, Abu N, Ab Mutalib NS, Jamal R
    Front Pharmacol, 2017;8:583.
    PMID: 28894420 DOI: 10.3389/fphar.2017.00583
    The number of colorectal cancer (CRC) cases have increased gradually year by year. In fact, CRC is one of the most widely diagnosed cancer in men and women today. This disease is usually diagnosed at a later stage of the development, and by then, the chance of survival has declined significantly. Even though substantial progress has been made in understanding the basic molecular mechanism of CRC, there is still a lack of understanding in using the available information for diagnosing CRC effectively. Liquid biopsies are minimally invasive and have become the epitome of a good screening source for stage-specific diagnosis, measuring drug response and severity of the disease. There are various circulating entities that can be found in biological fluids, and among them, exosomes, have been gaining considerable attention. Exosomes can be found in almost all biological fluids including serum, urine, saliva, and breast milk. Furthermore, exosomes carry valuable molecular information such as proteins and nucleic acids that directly reflects the source of the cells. Nevertheless, the inconsistent yield and isolation process and the difficulty in obtaining pure exosomes have become major obstacles that need to be addressed. The potential usage of exosomes as biomarkers have not been fully validated and explored yet. This review attempts to uncover the potential molecules that can be derived from CRC-exosomes as promising biomarkers or molecular targets for effective diagnosing of CRC.
    Matched MeSH terms: Nucleic Acids
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links