Displaying publications 1 - 20 of 53 in total

Abstract:
Sort:
  1. Mustapa MA, Yuzir A, Latif AA, Ambran S, Abdullah N
    PMID: 38310743 DOI: 10.1016/j.saa.2024.123977
    A rapid, simple, sensitive, and selective point-of-care diagnosis tool kit is vital for detecting the coronavirus disease (COVID-19) based on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain. Currently, the reverse transcriptase-polymerase chain reaction (RT-PCR) is the best technique to detect the disease. Although a good sensitivity has been observed in RT-PCR, the isolation and screening process for high sample volume is limited due to the time-consuming and laborious work. This study introduced a nucleic acid-based surface-enhanced Raman scattering (SERS) sensor to detect the nucleocapsid gene (N-gene) of SARS-CoV-2. The Raman scattering signal was amplified using gold nanoparticles (AuNPs) possessing a rod-like morphology to improve the SERS effect, which was approximately 12-15 nm in diameter and 40-50 nm in length. These nanoparticles were functionalised with the single-stranded deoxyribonucleic acid (ssDNA) complemented with the N-gene. Furthermore, the study demonstrates method selectivity by strategically testing the same virus genome at different locations. This focused approach showcases the method's capability to discern specific genetic variations, ensuring accuracy in viral detection. A multivariate statistical analysis technique was then applied to analyse the raw SERS spectra data using the principal component analysis (PCA). An acceptable variance amount was demonstrated by the overall variance (82.4 %) for PC1 and PC2, which exceeded the desired value of 80 %. These results successfully revealed the hidden information in the raw SERS spectra data. The outcome suggested a more significant thymine base detection than other nitrogenous bases at wavenumbers 613, 779, 1219, 1345, and 1382 cm-1. Adenine was also less observed at 734 cm-1, and ssDNA-RNA hybridisations were presented in the ketone with amino base SERS bands in 1746, 1815, 1871, and 1971 cm-1 of the fingerprint. Overall, the N-gene could be detected as low as 0.1 nM within 10 mins of incubation time. This approach could be developed as an alternative point-of-care diagnosis tool kit to detect and monitor the COVID-19 disease.
    Matched MeSH terms: Nucleic Acids*
  2. Garland SM, Iftner T, Cuschieri K, Kaufmann AM, Arbyn M, de Sanjose S, et al.
    J Clin Virol, 2023 Feb;159:105349.
    PMID: 36584621 DOI: 10.1016/j.jcv.2022.105349
    We advise that only clinically validated HPV assays which have fulfilled internationally accepted performance criteria be used for primary cervical screening. Further, assays should be demonstrated to be fit for purpose in the laboratory in which they will ultimately be performed, and quality materials manuals and frameworks will be helpful in this endeavor. Importantly, there is a fundamental shortage of well validated, low-cost, low complexity HPV tests that have demonstrated utility in a near-patient setting; representing a significant challenge and focus for future development in order to reach the WHO's goal of eliminating cervical cancer.
    Matched MeSH terms: Nucleic Acids*
  3. Al Qabbani A, Rani KGA, Syarif J, AlKawas S, Sheikh Abdul Hamid S, Samsudin AR, et al.
    PLoS One, 2023;18(4):e0283922.
    PMID: 37018321 DOI: 10.1371/journal.pone.0283922
    Current immunological issues in bone grafting regarding the transfer of xenogeneic donor bone cells into the recipient are challenging the industry to produce safer acellular natural matrices for bone regeneration. The aim of this study was to investigate the efficacy of a novel decellularization technique for producing bovine cancellous bone scaffold and compare its physicochemical, mechanical, and biological characteristics with demineralized cancellous bone scaffold in an in-vitro study. Cancellous bone blocks were harvested from a bovine femoral head (18-24 months old) subjected to physical cleansing and chemical defatting, and further processed in two ways. Group I was subjected to demineralization, while Group II underwent decellularization through physical, chemical, and enzymatic treatments. Both were then freeze-dried, and gamma radiated, finally producing a demineralized bovine cancellous bone (DMB) scaffold and decellularized bovine cancellous bone (DCC) scaffold. Both DMB and DCC scaffolds were subjected to histological evaluation, scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), fourier-transform infrared spectroscopy (FTIR), quantification of lipid, collagen, and residual nucleic acid content, and mechanical testing. The osteogenic potential was investigated through the recellularization of scaffolds with human osteoblast cell seeding and examined for cell attachment, proliferation, and mineralization by Alizarin staining and gene expression. DCC produced a complete acellular extracellular matrix (ECM) with the absence of nucleic acid content, wider pores with extensive interconnectivity and partially retaining collagen fibrils. DCC demonstrated a higher cell proliferation rate, upregulation of osteogenic differentiation markers, and substantial mineralized nodules production. Our findings suggest that the decellularization technique produced an acellular DCC scaffold with minimal damage to ECM and possesses osteogenic potential through the mechanisms of osteoconduction, osteoinduction, and osteogenesis in-vitro.
    Matched MeSH terms: Nucleic Acids*
  4. Wong ZW, New SY
    Mikrochim Acta, 2022 Dec 08;190(1):16.
    PMID: 36480078 DOI: 10.1007/s00604-022-05591-0
    A fluorescence biosensor has been developed based on hybridisation chain reaction (HCR) amplification coupled with silver nanoclusters (AgNCs) for nucleic acid detection. The fluorescence was activated via end-to-end transfer of dark AgNCs caged within a DNA template to another DNA sequence that could enhance their red fluorescence emission at 611 nm. Such cluster-transfer approach allows us to introduce fluorogenic AgNCs as external signal transducers, thereby enabling HCR to perform in a predictable manner. The resulted HCR-AgNC biosensor was able to detect target DNA with a detection limit of 3.35 fM, and distinguish the DNA target from single-base mismatch sequences. Moreover, the bright red fluorescence emission was detectable with the naked eye, with concentration of target DNA down to 1 pM. The biosensor also performed well in human serum samples with good recovery. Overall, our cluster-transfer approach provides a good alternative to construct HCR-AgNC assay with less risk of circuit leakage and produce AgNCs in a controllable manner.
    Matched MeSH terms: Nucleic Acids*
  5. Ahmad Faris AN, Ahmad Najib M, Mohd Nazri MN, Hamzah ASA, Aziah I, Yusof NY, et al.
    Int J Environ Res Public Health, 2022 Aug 25;19(17).
    PMID: 36078284 DOI: 10.3390/ijerph191710570
    Water- and food-related health issues have received a lot of attention recently because food-poisoning bacteria, in particular, are becoming serious threats to human health. Currently, techniques used to detect these bacteria are time-consuming and laborious. To overcome these challenges, the colorimetric strategy is attractive because it provides simple, rapid and accurate sensing for the detection of Salmonella spp. bacteria. The aim of this study is to review the progress regarding the colorimetric method of nucleic acid for Salmonella detection. A literature search was conducted using three databases (PubMed, Scopus and ScienceDirect). Of the 88 studies identified in our search, 15 were included for further analysis. Salmonella bacteria from different species, such as S. Typhimurium, S. Enteritidis, S. Typhi and S. Paratyphi A, were identified using the colorimetric method. The limit of detection (LoD) was evaluated in two types of concentrations, which were colony-forming unit (CFU) and CFU per mL. The majority of the studies used spiked samples (53%) rather than real samples (33%) to determine the LoDs. More research is needed to assess the sensitivity and specificity of colorimetric nucleic acid in bacterial detection, as well as its potential use in routine diagnosis.
    Matched MeSH terms: Nucleic Acids*
  6. Atchison S, Shilling H, Balgovind P, Machalek DA, Hawkes D, Garland SM, et al.
    J Appl Microbiol, 2021 Nov;131(5):2592-2599.
    PMID: 33942451 DOI: 10.1111/jam.15126
    AIM: Validate the Roche, MagNAPure96 (MP96) nucleic acid extraction platform for Seegene Anyplex II HPV28 (Anyplex28) detection of Human Papillomavirus.

    METHODS AND RESULTS: Comparisons were made for Anyplex28 genotyping from 115 cervical samples extracted on the Hamilton, STARlet and the MP96. Two DNA concentrations were used for the MP96, one matched for sample input to the STARlet and another 5× concentration (laboratory standard). Agreement of HPV detection was 89·8% (κ = 0·798; P = 0·007), with HPV detected in 10 more samples for the MP96. There was a high concordance of detection for any oncogenic HPV genotype (κ = 0·77; P = 0·007) and for any low-risk HPV genotype (κ = 0·85; P = 0·008). DNA extracted at laboratory standard had a lower overall agreement 85·2% (κ = 0·708; P 

    Matched MeSH terms: Nucleic Acids*
  7. Wong XK, Yeong KY
    Curr Med Chem, 2021 Oct 27;28(34):7076-7121.
    PMID: 33588718 DOI: 10.2174/0929867328666210215113828
    Nucleobases represent key structural motifs in biologically active molecules, including synthetic and natural products. Molecular modifications made on nucleobases or their isolation from natural sources are being widely investigated for the development of drugs with improved potency for the treatment of different diseases, such as cancer, as well as viral and bacterial infections. This review article focuses on the nucleobase analogue drug developments of the past 20 years (2000-2020). Various pharmacological and medicinal aspects of nucleobases and their analogues are discussed. The current state and limitations are also highlighted.
    Matched MeSH terms: Nucleic Acids*
  8. Haniffa MACM, Munawar K, Chee CY, Pramanik S, Halilu A, Illias HA, et al.
    Carbohydr Polym, 2021 Sep 01;267:118136.
    PMID: 34119125 DOI: 10.1016/j.carbpol.2021.118136
    Cellulose and its forms are widely used in biomedical applications due to their biocompatibility, biodegradability and lack of cytotoxicity. It provides ample opportunities for the functionalization of supported magnetic nanohybrids (CSMNs). Because of the abundance of surface hydroxyl groups, they are surface tunable in either homogeneous or heterogeneous solvents and thus act as a substrate or template for the CSMNs' development. The present review emphasizes on the synthesis of various CSMNs, their physicomagnetic properties, and potential applications such as stimuli-responsive drug delivery systems, MRI, enzyme encapsulation, nucleic acid extraction, wound healing and tissue engineering. The impact of CSMNs on cytotoxicity, magnetic hyperthermia, and folate-conjugates is highlighted in particular, based on their structures, cell viability, and stability. Finally, the review also discussed the challenges and prospects of CSMNs' development. This review is expected to provide CSMNs' development roadmap in the context of 21st-century demands for biomedical therapeutics.
    Matched MeSH terms: Nucleic Acids/isolation & purification
  9. Liu Z, Gopinath SCB, Wang Z, Li Y, Anbu P, Zhang W
    Mikrochim Acta, 2021 05 15;188(6):187.
    PMID: 33990848 DOI: 10.1007/s00604-021-04834-w
    A new zeolite-iron oxide nanocomposite (ZEO-IO) was extracted from waste fly ash of a thermal power plant and utilized for capturing aptamers used to quantify the myocardial infarction (MI) biomarker N-terminal prohormone B-type natriuretic peptide (NT-ProBNP); this was used in a probe with an integrated microelectrode sensor. High-resolution microscopy revealed that ZEO-IO displayed a clubbell structure and a particle size range of 100-200 nm. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirmed the presence of Si, Al, Fe, and O in the synthesized ZEO-IO. The limit of detection for NT-ProBNP was 1-2 pg/mL (0.1-0.2 pM) when the aptamer was sandwiched with antibody and showed the doubled current response even at a low NT-ProBNP abundance. A dose-dependent interaction was identified for this sandwich with a linear plot in the concentration range 1 to 32 pg/mL (0.1-3.2 pM) with a determination coefficient R2 = 0.9884; y = 0.8425x-0.5771. Without  sandwich, the detection limit was 2-4 pg/mL (0.2-0.4 pM) and the determination coefficient was R2 = 0.9854; y = 1.0996x-1.4729. Stability and nonfouling assays in the presence of bovine serum albumin, cardiac troponin I, and myoglobin revealed that the aptamer-modified surface is stable and specific for NT-Pro-BNP. Moreover, NT-ProBNP-spiked human serum exhibited selective detection. This new nanocomposite-modified surface helps in detecting NT-Pro-BNP and diagnosing MI at stages of low expression.
    Matched MeSH terms: Immobilized Nucleic Acids/chemistry
  10. Yan G, Li Q, Hong X, Gopinath SCB, Anbu P, Li C, et al.
    Mikrochim Acta, 2021 05 11;188(6):185.
    PMID: 33977395 DOI: 10.1007/s00604-021-04836-8
    An abdominal aortic aneurysm (AAA) is abnormal swelling in the abdominal aorta and a prevalent life-threatening disease. This research introduces a new interdigitated microelectrode (IDME)-sensing surface modified by iron oxide nanoworms (IONWs) for detecting the AAA biomarker insulin-like growth factor-1 (IGF1). A sandwich pattern was formulated with the IGF1 aptamer and IGFBP1 (IGF binding protein-1) on the IONW-constructed IDME hybrid to identify IGF1. The surface morphology of the IONWs revealed a uniform distribution of worm-like structures (80-100 nm) as confirmed by FESEM and FETEM analyses. Further, the presence of the major elements, Fe and O, was confirmed by EDX and XPS studies. The crystal planes that appeared in the IONW reflect cubic magnetite. IONW-modified IDME attained a limit of detection for IGF1 of 1 fM (3σ) with an aptamer-IGF1-IGFBP1 sandwich. This sandwich with IGFBP1 enhanced the current level at all concentrations of IGF1 and displayed linearity in the range 1 fM to 100 pM with a determination coefficient of R2 = 0.9373 [y = 3.38221x - 4.79]. Control experiments with complementary aptamer sequences, IGF2 and IGFBP3 did not show notable signal changes, indicating the specific detection of IGF1. This IONW constructed electrode helps to achieve the detection of low amounts of IGF1 and diagnose AAA at the stage prior to rupture.
    Matched MeSH terms: Immobilized Nucleic Acids/chemistry
  11. Yang SK, Yusoff K, Ajat M, Yap WS, Lim SE, Lai KS
    J Pharm Anal, 2021 Apr;11(2):210-219.
    PMID: 34012697 DOI: 10.1016/j.jpha.2020.05.014
    Mining of plant-derived antimicrobials is the major focus at current to counter antibiotic resistance. This study was conducted to characterize the antimicrobial activity and mode of action of linalyl anthranilate (LNA) against carbapenemase-producing Klebsiella pneumoniae (KPC-KP). LNA alone exhibited bactericidal activity at 2.5% (V/V), and in combination with meropenem (MPM) at 1.25% (V/V). Comparative proteomic analysis showed a significant reduction in the number of cytoplasmic and membrane proteins, indicating membrane damage in LNA-treated KPC-KP cells. Up-regulation of oxidative stress regulator proteins and down-regulation of oxidative stress-sensitive proteins indicated oxidative stress. Zeta potential measurement and outer membrane permeability assay revealed that LNA increases both bacterial surface charge and membrane permeability. Ethidium bromide influx/efflux assay showed increased uptake of ethidium bromide in LNA-treated cells, inferring membrane damage. Furthermore, intracellular leakage of nucleic acid and proteins was detected upon LNA treatment. Scanning and transmission electron microscopies again revealed the breakage of bacterial membrane and loss of intracellular materials. LNA was found to induce oxidative stress by generating reactive oxygen species (ROS) that initiate lipid peroxidation and damage the bacterial membrane. In conclusion, LNA generates ROS, initiates lipid peroxidation, and damages the bacterial membrane, resulting in intracellular leakage and eventually killing the KPC-KP cells.
    Matched MeSH terms: Nucleic Acids
  12. Bakhtiar A, Chowdhury EH
    Asian J Pharm Sci, 2021 Mar;16(2):236-252.
    PMID: 33995617 DOI: 10.1016/j.ajps.2020.11.002
    Genetic intervention via the delivery of functional genes such as plasmid DNA (pDNA) and short-interfering RNA (siRNA) offers a great way to treat many single or multiple genetic defects effectively, including mammary carcinoma. Delivery of naked therapeutic genes or siRNAs is, however, short-lived due to biological clearance by scavenging nucleases and circulating monocytes. Low cellular internalization of negatively-charged nucleic acids further causes low transfection or silencing activity. Development of safe and effectual gene vectors is therefore undeniably crucial to the success of nucleic acid delivery. Inorganic nanoparticles have attracted considerable attention in the recent years due to their high loading capacity and encapsulation activity. Here we introduce strontium salt-based nanoparticles, namely, strontium sulfate, strontium sulfite and strontium fluoride as new inorganic nanocarriers. Generated strontium salt particles were found to be nanosized with high affinity towards negatively-charged pDNA and siRNA. Degradation of the particles was seen with a drop in pH, suggesting their capacity to respond to pH change and undergo dissolution at endosomal pH to release the genetic materials. While the particles are relatively nontoxic towards the cells, siRNA-loaded SrF2 and SrSO3 particles exerted superior transgene expression and knockdown activity of MAPK and AKT, leading to inhibition of their phosphorylation to a distinctive extent in both MCF-7 and 4T1 cells. Strontium salt nanoparticles have thus emerged as a promising tool for applications in cancer gene therapy.
    Matched MeSH terms: Nucleic Acids
  13. Abdullah F, Khan Nor-Ashikin MN, Agarwal R, Kamsani YS, Abd Malek M, Bakar NS, et al.
    Asian J Androl, 2021 1 22;23(3):281-287.
    PMID: 33473013 DOI: 10.4103/aja.aja_81_20
    Diabetes mellitus (DM) is known to cause reproductive impairment. In men, it has been linked to altered sperm quality and testicular damage. Oxidative stress (OS) plays a pivotal role in the development of DM complications. Glutathione (GSH) is a part of a nonenzymatic antioxidant defense system that protects lipid, protein, and nucleic acids from oxidative damage. However, the protective effects of exogenous GSH on the male reproductive system have not been comprehensively examined. This study determined the impact of GSH supplementation in ameliorating the adverse effect of type 1 DM on sperm quality and the seminiferous tubules of diabetic C57BL/6NTac mice. GSH at the doses of 15 mg kg-1 and 30 mg kg-1 was given intraperitoneally to mice weekly for 6 consecutive weeks. The mice were then weighed, euthanized, and had their reproductive organs excised. The diabetic (D Group) showed significant impairment of sperm quality and testicular histology compared with the nondiabetic (ND Group). Diameters of the seminiferous lumen in diabetic mice treated with 15 mg kg-1 GSH (DGSH15) were decreased compared with the D Group. Sperm motility was also significantly increased in the DGSH15 Group. Improvement in testicular morphology might be an early indication of the protective roles played by the exogenous GSH in protecting sperm quality from effects of untreated type 1 DM or diabetic complications. Further investigation using different doses and different routes of GSH is necessary to confirm this suggestion.
    Matched MeSH terms: Nucleic Acids
  14. Yu CY, Chan KG, Yean CY, Ang GY
    Diagnostics (Basel), 2021 Jan 01;11(1).
    PMID: 33401392 DOI: 10.3390/diagnostics11010053
    The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began as a cluster of pneumonia cases in Wuhan, China before spreading to over 200 countries and territories on six continents in less than six months. Despite rigorous global containment and quarantine efforts to limit the transmission of the virus, COVID-19 cases and deaths have continued to increase, leaving devastating impacts on the lives of many with far-reaching effects on the global society, economy and healthcare system. With over 43 million cases and 1.1 million deaths recorded worldwide, accurate and rapid diagnosis continues to be a cornerstone of pandemic control. In this review, we aim to present an objective overview of the latest nucleic acid-based diagnostic tests for the detection of SARS-CoV-2 that have been authorized by the Food and Drug Administration (FDA) under emergency use authorization (EUA) as of 31 October 2020. We systematically summarize and compare the principles, technologies, protocols and performance characteristics of amplification- and sequencing-based tests that have become alternatives to the CDC 2019-nCoV Real-Time RT-PCR Diagnostic Panel. We highlight the notable features of the tests including authorized settings, along with the advantages and disadvantages of the tests. We conclude with a brief discussion on the current challenges and future perspectives of COVID-19 diagnostics.
    Matched MeSH terms: Nucleic Acids
  15. Yang SK, Yusoff K, Ajat M, Wee CY, Yap PS, Lim SH, et al.
    Front Microbiol, 2021;12:635016.
    PMID: 33815320 DOI: 10.3389/fmicb.2021.635016
    Antibiotic-adjuvant combinatory therapy serves as a viable treatment option in addressing antibiotic resistance in the clinical setting. This study was carried out to assess and characterize the adjuvant potential and mode of action of linalool against carbapenemase-producing Klebsiella pneumoniae (KPC-KP). Linalool exhibited bactericidal activity alone (11,250 μg/ml) and in combination with meropenem (5,625 μg/ml). Comparative proteomic analysis showed significant reduction in the number of cytoplasmic and membrane proteins, indicating membrane damage in linalool-treated KPC-KP cells. Upregulation of oxidative stress regulator proteins and downregulation of oxidative stress-sensitive proteins indicated oxidative stress. Zeta potential measurement and outer membrane permeability assay revealed that linalool increases the bacterial surface charge as well as the membrane permeability. Intracellular leakage of nucleic acid and proteins was detected upon linalool treatment. Scanning and transmission electron microscopies further revealed the breakage of bacterial membrane and loss of intracellular materials. Linalool induced oxidative stress by generating reactive oxygen species (ROS) which initiates lipid peroxidation, leading to damage of the bacterial membrane. This leads to intracellular leakage, eventually killing the KPC-KP cells. Our study demonstrated that linalool possesses great potential in future clinical applications as an adjuvant along with existing antibiotics attributed to their ability in disrupting the bacterial membrane by inducing oxidative stress. This facilitates the uptake of antibiotics into the bacterial cells, enhancing bacterial killing.
    Matched MeSH terms: Nucleic Acids
  16. Chong ZX, Yeap SK, Ho WY
    PeerJ, 2021;9:e11165.
    PMID: 33976969 DOI: 10.7717/peerj.11165
    Transfection is a modern and powerful method used to insert foreign nucleic acids into eukaryotic cells. The ability to modify host cells' genetic content enables the broad application of this process in studying normal cellular processes, disease molecular mechanism and gene therapeutic effect. In this review, we summarized and compared the findings from various reported literature on the characteristics, strengths, and limitations of various transfection methods, type of transfected nucleic acids, transfection controls and approaches to assess transfection efficiency. With the vast choices of approaches available, we hope that this review will help researchers, especially those new to the field, in their decision making over the transfection protocol or strategy appropriate for their experimental aims.
    Matched MeSH terms: Nucleic Acids
  17. Higashi SL, Rozi N, Hanifah SA, Ikeda M
    Int J Mol Sci, 2020 Dec 12;21(24).
    PMID: 33322664 DOI: 10.3390/ijms21249458
    Supramolecular architectures that are built artificially from biomolecules, such as nucleic acids or peptides, with structural hierarchical orders ranging from the molecular to nano-scales have attracted increased attention in molecular science research fields. The engineering of nanostructures with such biomolecule-based supramolecular architectures could offer an opportunity for the development of biocompatible supramolecular (nano)materials. In this review, we highlighted a variety of supramolecular architectures that were assembled from both nucleic acids and peptides through the non-covalent interactions between them or the covalently conjugated molecular hybrids between them.
    Matched MeSH terms: Nucleic Acids/ultrastructure; Nucleic Acids/chemistry*; Peptide Nucleic Acids/ultrastructure; Peptide Nucleic Acids/chemistry*
  18. Raja Jamaluddin RZA, Tan LL, Chong KF, Heng LY
    Nanotechnology, 2020 Nov 27;31(48):485501.
    PMID: 32748805 DOI: 10.1088/1361-6528/abab2e
    Graphene decorated with graphitic nanospheres functionalized with pyrene butyric acid (PBA) is used for the first time to fabricate a DNA biosensor. The electrode was formed by attaching a DNA probe onto PBA, which had been stacked onto a graphene material decorated with graphene nanospheres (GNSs). The nanomaterial was drop-coated onto a carbon screen-printed electrode (SPE) to create the GNS-PBA modified electrode (GNS-PBA/SPE). A simple method was used to produce GNS by annealing graphene oxide (GO) solution at high temperature. Field emission scanning electron micrographs confirmed the presence of a spherical shape of GNS with a diameter range of 40-80 nm. A stable and uniform PBA-modified GNS (GNS-PBA) was obtained with a facile ultrasonication step. Thus allowing aminated DNA probes of genetically modified (GM) soybean to be attached to the nanomaterials to form the DNA biosensor. The GNS-PBA/SPE exhibited excellent electrical conductivity via cyclic voltammetry (CV) and differential pulse voltammetry (DPV) tests using potassium ferricyanide (K3[Fe(CN)6]) as the electroactive probe. By employing an anthraquinone monosulfonic acid (AQMS) redox intercalator as the DNA hybridization indicator, the biosensor response was evaluated using the DPV electrochemical method. A good linear relationship between AQMS oxidation peak current and target DNA concentrations from 1.0 × 10-16 to 1.0 × 10-8 M with a limit of detection (LOD) of less than 1.0 × 10-16 M was obtained. Selectivity experiments revealed that the voltammetric GM DNA biosensor could discriminate complementary sequences of GM soybean from non-complementary sequences and hence good recoveries were obtained for real GM soybean sample analysis. The main advantage of using GNS is an improvement of the DNA biosensor analytical performance.
    Matched MeSH terms: Immobilized Nucleic Acids/chemistry
  19. Chandru K, Jia TZ, Mamajanov I, Bapat N, Cleaves HJ
    Sci Rep, 2020 10 16;10(1):17560.
    PMID: 33067516 DOI: 10.1038/s41598-020-74223-5
    Prebiotic chemists often study how modern biopolymers, e.g., peptides and nucleic acids, could have originated in the primitive environment, though most contemporary biomonomers don't spontaneously oligomerize under mild conditions without activation or catalysis. However, life may not have originated using the same monomeric components that it does presently. There may be numerous non-biological (or "xenobiological") monomer types that were prebiotically abundant and capable of facile oligomerization and self-assembly. Many modern biopolymers degrade abiotically preferentially via processes which produce thermodynamically stable ring structures, e.g. diketopiperazines in the case of proteins and 2', 3'-cyclic nucleotide monophosphates in the case of RNA. This weakness is overcome in modern biological systems by kinetic control, but this need not have been the case for primitive systems. We explored here the oligomerization of a structurally diverse set of prebiotically plausible xenobiological monomers, which can hydrolytically interconvert between cyclic and acyclic forms, alone or in the presence of glycine under moderate temperature drying conditions. These monomers included various lactones, lactams and a thiolactone, which varied markedly in their stability, propensity to oligomerize and apparent modes of initiation, and the oligomeric products of some of these formed self-organized microscopic structures which may be relevant to protocell formation.
    Matched MeSH terms: Nucleic Acids
  20. Thevendran R, Sarah S, Tang TH, Citartan M
    J Control Release, 2020 07 10;323:530-548.
    PMID: 32380206 DOI: 10.1016/j.jconrel.2020.04.051
    Aptamers are a class of folded nucleic acid strands capable of binding to different target molecules with high affinity and selectivity. Over the years, they have gained a substantial amount of interest as promising molecular tools for numerous medical applications, particularly in targeted therapeutics. However, only the different treatment approaches and current developments of aptamer-drug therapies have been discussed so far, ignoring the crucial technical and functional aspects of constructing a therapeutically effective aptamer-driven drug delivery system that translates to improved in-vivo performance. Hence, this paper provides a comprehensive review of the strategies used to improve the therapeutic performance of aptamer-guided delivery systems. We focus on the different functional features such as drug deployment, payload capacity, in-vivo stability and targeting efficiency to further our knowledge in enhancing the cell-specific delivery of aptamer-drug conjugates. Each reported strategy is critically discussed to emphasize both the benefits provided in comparison with other similar techniques and to outline their potential drawbacks with respect to the molecular properties of the aptamers, the drug and the system to be designed. The molecular architecture and design considerations for an efficient aptamer-based delivery system are also briefly elaborated.
    Matched MeSH terms: Nucleic Acids
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links