Displaying publications 1 - 20 of 96 in total

Abstract:
Sort:
  1. Škalamera D, Dahmer-Heath M, Stevenson AJ, Pinto C, Shah ET, Daignault SM, et al.
    Oncotarget, 2016 Sep 20;7(38):61000-61020.
    PMID: 27876705 DOI: 10.18632/oncotarget.11314
    Epithelial to mesenchymal transition (EMT) is a developmental program that has been implicated in progression, metastasis and therapeutic resistance of some carcinomas. To identify genes whose overexpression drives EMT, we screened a lentiviral expression library of 17000 human open reading frames (ORFs) using high-content imaging to quantitate cytoplasmic vimentin. Hits capable of increasing vimentin in the mammary carcinoma-derived cell line MDA-MB-468 were confirmed in the non-tumorigenic breast-epithelial cell line MCF10A. When overexpressed in this model, they increased the rate of cell invasion through Matrigel™, induced mesenchymal marker expression and reduced expression of the epithelial marker E-cadherin. In gene-expression datasets derived from breast cancer patients, the expression of several novel genes correlated with expression of known EMT marker genes, indicating their in vivo relevance. As EMT-associated properties are thought to contribute in several ways to cancer progression, genes identified in this study may represent novel targets for anti-cancer therapy.
    Matched MeSH terms: Open Reading Frames
  2. Zemla A, Kostova T, Gorchakov R, Volkova E, Beasley DW, Cardosa J, et al.
    Bioinform Biol Insights, 2014 Jan 8;8:1-16.
    PMID: 24453480 DOI: 10.4137/BBI.S13076
    A computational approach for identification and assessment of genomic sequence variability (GeneSV) is described. For a given nucleotide sequence, GeneSV collects information about the permissible nucleotide variability (changes that potentially preserve function) observed in corresponding regions in genomic sequences, and combines it with conservation/variability results from protein sequence and structure-based analyses of evaluated protein coding regions. GeneSV was used to predict effects (functional vs. non-functional) of 37 amino acid substitutions on the NS5 polymerase (RdRp) of dengue virus type 2 (DENV-2), 36 of which are not observed in any publicly available DENV-2 sequence. 32 novel mutants with single amino acid substitutions in the RdRp were generated using a DENV-2 reverse genetics system. In 81% (26 of 32) of predictions tested, GeneSV correctly predicted viability of introduced mutations. In 4 of 5 (80%) mutants with double amino acid substitutions proximal in structure to one another GeneSV was also correct in its predictions. Predictive capabilities of the developed system were illustrated on dengue RNA virus, but described in the manuscript a general approach to characterize real or theoretically possible variations in genomic and protein sequences can be applied to any organism.
    Matched MeSH terms: Open Reading Frames
  3. Yong HY, Bakar FD, Illias RM, Mahadi NM, Murad AM
    Braz J Microbiol, 2013 Dec;44(4):1241-50.
    PMID: 24688518
    The mitogen-activated protein (MAP) kinase pathways has been implicated in the pathogenicity of various pathogenic fungi and plays important roles in regulating pathogenicity-related morphogenesis. This work describes the isolation and characterization of MAP kinase gene, Cgl-SLT2, from Colletotrichum gloeosporioides. A DNA sequence, including 1,633 bp of Cgl-SLT2 open-reading frame and its promoter and terminator regions, was isolated via DNA walking and cloned. To analyze gene function, a gene disruption cassette containing hygromycin-resistant gene was constructed, and Cgl-SLT2 was inactivated via gene deletion. Analysis on Cgl-slt2 mutant revealed a defect in vegetative growth and sporulation as compared to the wild-type strain. When grown under nutrient-limiting conditions, hyperbranched hyphal morphology was observed in the mutant. Conidia induction for germination on rubber wax-coated hard surfaces revealed no differences in the percentage of conidial germination between the wild-type and Cgl-slt2 mutant. However, the percentage of appressorium formation in the mutant was greatly reduced. Bipolar germination in the mutant was higher than in the wild-type at 8-h post-induction. A pathogenicity assay revealed that the mutant was unable to infect either wounded or unwounded mangoes. These results suggest that the Cgl-SLT2 MAP kinase is required for C. gloeosporioides conidiation, polarized growth, appressorium formation and pathogenicity.
    Matched MeSH terms: Open Reading Frames
  4. Yong HS, Song SL, Lim PE, Eamsobhana P, Suana IW
    Genetica, 2016 Oct;144(5):513-521.
    PMID: 27502829
    Zeugodacus caudatus is a pest of pumpkin flowers. It has a Palearctic and Oriental distribution. We report here the complete mitochondrial genome of the Malaysian and Indonesian samples of Z. caudatus determined by next-generation sequencing of genomic DNA and determine their taxonomic status as sibling species and phylogeny with other taxa of the genus Zeugodacus. The whole mitogenome of both samples possessed 37 genes (13 protein-coding genes-PCGs, 2 rRNA and 22 tRNA genes) and a control region. The mitogenome of the Indonesian sample (15,885 bp) was longer than that of the Malaysian sample (15,866 bp). In both samples, TΨC-loop was absent in trnF and DHU-loop was absent in trnS1. Molecular phylogeny based on 13 PCGs was concordant with 15 mitochondrial genes (13 PCGs and 2 rRNA genes), with the two samples of Z. caudatus forming a sister group and the genus Zeugodacus was monophyletic. The Malaysian and Indonesian samples of Z. caudatus have a genetic distance of p = 7.8 % based on 13 PCGs and p = 7.0 % based on 15 mitochondrial genes, indicating status of sibling species. They are proposed to be accorded specific status as members of a species complex.
    Matched MeSH terms: Open Reading Frames
  5. Yong HS, Song SL, Chua KO, Wayan Suana I, Eamsobhana P, Tan J, et al.
    Sci Rep, 2021 May 21;11(1):10680.
    PMID: 34021208 DOI: 10.1038/s41598-021-90162-1
    Spiders of the genera Nephila and Trichonephila are large orb-weaving spiders. In view of the lack of study on the mitogenome of these genera, and the conflicting systematic status, we sequenced (by next generation sequencing) and annotated the complete mitogenomes of N. pilipes, T. antipodiana and T. vitiana (previously N. vitiana) to determine their features and phylogenetic relationship. Most of the tRNAs have aberrant clover-leaf secondary structure. Based on 13 protein-coding genes (PCGs) and 15 mitochondrial genes (13 PCGs and two rRNA genes), Nephila and Trichonephila form a clade distinctly separated from the other araneid subfamilies/genera. T. antipodiana forms a lineage with T. vitiana in the subclade containing also T. clavata, while N. pilipes forms a sister clade to Trichonephila. The taxon vitiana is therefore a member of the genus Trichonephila and not Nephila as currently recognized. Studies on the mitogenomes of other Nephila and Trichonephila species and related taxa are needed to provide a potentially more robust phylogeny and systematics.
    Matched MeSH terms: Open Reading Frames
  6. Yap HY, Fung SY, Ng ST, Tan CS, Tan NH
    Int J Med Sci, 2015;12(1):23-31.
    PMID: 25552915 DOI: 10.7150/ijms.10019
    Lignosus rhinocerotis (Cooke) Ryvarden (Polyporales, Basidiomycota), also known as the tiger milk mushroom, has received much interest in recent years owing to its wide-range ethnobotanical uses and the recent success in its domestication. The sclerotium is the part with medicinal value. Using two-dimensional gel electrophoresis coupled with mass spectrometry analysis, a total of 16 non-redundant, major proteins were identified with high confidence level in L. rhinocerotis sclerotium based on its genome as custom mapping database. Some of these proteins, such as the putative lectins, immunomodulatory proteins, superoxide dismutase, and aegerolysin may have pharmaceutical potential; while others are involved in nutrient mobilization and the protective antioxidant mechanism in the sclerotium. The findings from this study provide a molecular basis for future research on potential pharmacologically active proteins of L. rhinocerotis.
    Matched MeSH terms: Open Reading Frames
  7. Wong KK, Noor-Arniwati Mat-Daud, Roohaida Othman, Zubir Din, Wan KL, Salmijah Surif
    The cockle, Anadara granosa, was experimentally exposed to low (0.1 mg/L) and sublethal (1.0 mg/L) doses of copper (Cu) for a period of 24 hrs. Significant increase in Cu concentrations in whole tissues and hepatopancreas compared to control animals were observed. In order to study the effect of copper exposure at molecular levels, a subtractive cDNA library was constructed from the hepatopancreas of cockles exposed to 1.0 mg/L Cu. Screening of the subtractive cDNA library using reverse northern analysis resulted in several differentially expressed genes, including one that codes for metallothionein (MT). The complete coding sequence of the MT gene (designated as AnaMT2) reveals an open reading frame of 234 bp in length that encodes a 77 amino acid polypeptide as revealed by the deduced amino acid composition. Although showing similarities with other molluscan MTs, AnaMT2 can be distinguished by its lower glycine and higher asparagine and proline content. Expression analysis of the AnaMT2 by northern analysis indicated higher mRNA level in cockle exposed to 1.0 mg/L Cu and was undetectable in those treated with 0.1 mg/L. This suggests that AnaMT2 represents a primarily inducible MT not highly expressed under basal conditions.
    Matched MeSH terms: Open Reading Frames
  8. Wong CM, Tam HK, Ng WM, Boo SY, González M
    Plasmid, 2013 Mar;69(2):186-93.
    PMID: 23266397 DOI: 10.1016/j.plasmid.2012.12.002
    A cryptic plasmid, pMWHK1 recovered from an Antarctic bacterium Pedobacter cryoconitis BG5 was sequenced and characterised. The plasmid is a circular 6206bp molecule with eight putative open reading frames designated as orf1, orf2, orf3, orf4, orf5, orf6, orf7 and orf8. All the putative open reading frames of pMWHK1 are found to be actively transcribed. Proteins encoded by orf2 and orf4 are predicted to be responsible for the mobilization and replication of the plasmid respectively. orf4 shares 55% and 61% identities with the theta-type Rep proteins from two strains of Riemerella anatipestifer. This suggests that pMWHK1 could be a member of the theta-type replicating plasmid. The origin of replication is located within the AT-rich region upstream of orf4. orf5 and orf6 encode bacterial toxin-antitoxin proteins predicted to maintain plasmid stability. orf3 encodes an entry exclusion protein that is hypothetically involved in reducing the frequency of DNA transfer through conjugation. orf1, orf7 and orf8 encode proteins with unknown functions. Plasmid, pMWHK1 is stably maintained in P. cryoconitis BG5 at 20°C.
    Matched MeSH terms: Open Reading Frames/genetics
  9. Wang Z, Zhang F, Liang Y, Zheng K, Gu C, Zhang W, et al.
    Microbiol Spectr, 2021 10 31;9(2):e0046321.
    PMID: 34643440 DOI: 10.1128/Spectrum.00463-21
    Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplankton-associated marine member of the Gammaproteobacteria with a range extending from tropical waters to polar regions and including hadal zones. Here, we describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA molecule with 50.1% G+C content and 47 putative open reading frames (ORFs). Three auxiliary metabolic genes were identified, encoding metal-dependent phosphohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase. The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z) in phage genomes and help phages to evade attack from host restriction enzymes. The nucleotide pyrophosphohydrolase enables the host cells to stop programmed cell death and improves the survival rate of the host in a nutrient-depleted environment. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis revealed that ZP6 is most closely related to Enhodamvirus but with low similarity (shared genes, <30%, and average nucleotide sequence identity, <65%); it is distinct from other bacteriophages. Together, these results suggest that ZP6 could represent a novel viral genus, here named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a diaminopurine genome-biosynthetic system, and its representativeness of an understudied viral group, ZP6 could be an important and novel model system for marine virus research. IMPORTANCE Alteromonas is an important symbiotic bacterium of phytoplankton, but research on its bacteriophages is still at an elementary level. Our isolation and genome characterization of a novel Alteromonas podovirus, ZP6, identified a new viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diaminopurine genome-biosynthetic system, is different from those of other isolated Alteromonas phages and will bring new impetus to the development of virus classification and provide important insights into novel viral sequences from metagenomic data sets.
    Matched MeSH terms: Open Reading Frames
  10. Wang H, Ren L, Liang Y, Zheng K, Guo R, Liu Y, et al.
    Microbiol Spectr, 2023 Aug 17;11(4):e0533522.
    PMID: 37272818 DOI: 10.1128/spectrum.05335-22
    Psychrobacter is an important bacterial genus that is widespread in Antarctic and marine environments. However, to date, only two complete Psychrobacter phage sequences have been deposited in the NCBI database. Here, the novel Psychrobacter phage vB_PmaS_Y8A, infecting Psychrobacter HM08A, was isolated from sewage in the Qingdao area, China. The morphology of vB_PmaS_Y8A was characterized by transmission electron microscopy, revealing an icosahedral head and long tail. The genomic sequence of vB_PmaS_Y8A is linear, double-stranded DNA with a length of 40,226 bp and 44.1% G+C content, and encodes 69 putative open reading frames. Two auxiliary metabolic genes (AMGs) were identified, encoding phosphoadenosine phosphosulfate reductase and MarR protein. The first AMG uses thioredoxin as an electron donor for the reduction of phosphoadenosine phosphosulfate to phosphoadenosine phosphate. MarR regulates multiple antibiotic resistance mechanisms in Escherichia coli and is rarely found in viruses. No tRNA genes were identified and no lysogeny-related feature genes were detected. However, many similar open reading frames (ORFs) were found in the host genome, which may indicate that Y8A also has a lysogenic stage. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis indicate that vB_PmaS_Y8A contains a novel genomic architecture similar only to that of Psychrobacter phage pOW20-A, although at a low similarity. vB_PmaS_Y8A represents a new family-level virus cluster with 22 metagenomic assembled viral genomes, here named Minviridae. IMPORTANCE Although Psychrobacter is a well-known and important bacterial genus that is widespread in Antarctic and marine environments, genetic characterization of its phages is still rare. This study describes a novel Psychrobacter phage containing an uncharacterized antibiotic resistance gene and representing a new virus family, Minviridae. The characterization provided here will bolster current understanding of genomes, diversity, evolution, and phage-host interactions in Psychrobacter populations.
    Matched MeSH terms: Open Reading Frames
  11. Wang H, Zheng K, Wang M, Ma K, Ren L, Guo R, et al.
    Microbiol Spectr, 2024 Feb 06;12(2):e0336723.
    PMID: 38214523 DOI: 10.1128/spectrum.03367-23
    Shewanella is a prevalent bacterial genus in deep-sea environments including marine sediments, exhibiting diverse metabolic capabilities that indicate its significant contributions to the marine biogeochemical cycles. However, only a few Shewanella phages were isolated and deposited in the NCBI database. In this study, we report the isolation and characterization of a novel Shewanella phage, vB_SbaS_Y11, that infects Shewanella KR11 and was isolated from the sewage in Qingdao, China. Transmission electron microscopy revealed that vB_SbaS_Y11 has an icosahedral head and a long tail. The genome of vB_SbaS_Y11 is a linear, double-stranded DNA with a length of 62,799 bp and a G+C content of 46.9%, encoding 71 putative open reading frames. No tRNA genes or integrase-related feature genes were identified. An uncharacterized anti-CRISPR AcrVA2 gene was detected in its genome. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analyses indicate that vB_SbaS_Y11 has a novel genomic architecture and shares low similarity to Pseudomonas virus H66 and Pseudomonas phage F116. vB_SbaS_Y11 represents a potential new family-level virus cluster with eight metagenomic assembled viral genomes named Ranviridae.IMPORTANCEThe Gram-negative Shewanella bacterial genus currently includes about 80 species of mostly aquatic Gammaproteobacteria, which were isolated around the globe in a multitude of environments, such as freshwater, seawater, coastal sediments, and the deepest trenches. Here, we present a Shewanella phage vB_SbaS_Y11 that contains an uncharacterized anti-CRISPR AcrVA2 gene and belongs to a potential virus family, Ranviridae. This study will enhance the knowledge about the genome, diversity, taxonomic classification, and global distribution of Shewanella phage populations.
    Matched MeSH terms: Open Reading Frames
  12. Wan KL, Chang TL, Ajioka JW
    J. Biochem. Mol. Biol., 2004 Jul 31;37(4):474-9.
    PMID: 15469736
    The expressed sequence tag (EST) effort in Toxoplasma gondii has generated a substantial amount of gene information. To exploit this valuable resource, we chose to study tgd057, a novel gene identified by a large number of ESTs that otherwise show no significant match to known sequences in the database. Northern analysis showed that tgd057 is transcribed in this tachyzoite. The complete cDNA sequence of tgd057 is 1169 bp in length. Sequence analysis revealed that tgd057 possibly adopts two polyadenylation sites, utilizes the fourth in-frame ATG for translation initiation, and codes for a secretory protein. The longest open reading frame for the tgd057 gene was cloned and expressed as a recombinant protein (rd57) in Escherichia coli. Western analysis revealed that serum against rd57 recognized a molecule of ~21 kDa in the tachyzoite protein extract. This suggests that the tgd057 gene is expressed in vivo in the parasite.
    Matched MeSH terms: Open Reading Frames
  13. Vale FF, Nunes A, Oleastro M, Gomes JP, Sampaio DA, Rocha R, et al.
    Sci Rep, 2017 02 16;7:42471.
    PMID: 28205536 DOI: 10.1038/srep42471
    Helicobacter pylori genetic diversity is known to be influenced by mobile genomic elements. Here we focused on prophages, the least characterized mobile elements of H. pylori. We present the full genomic sequences, insertion sites and phylogenetic analysis of 28 prophages found in H. pylori isolates from patients of distinct disease types, ranging from gastritis to gastric cancer, and geographic origins, covering most continents. The genome sizes of these prophages range from 22.6-33.0 Kbp, consisting of 27-39 open reading frames. A 36.6% GC was found in prophages in contrast to 39% in H. pylori genome. Remarkably a conserved integration site was found in over 50% of the cases. Nearly 40% of the prophages harbored insertion sequences (IS) previously described in H. pylori. Tandem repeats were frequently found in the intergenic region between the prophage at the 3' end and the bacterial gene. Furthermore, prophage genomes present a robust phylogeographic pattern, revealing four distinct clusters: one African, one Asian and two European prophage populations. Evidence of recombination was detected within the genome of some prophages, resulting in genome mosaics composed by different populations, which may yield additional H. pylori phenotypes.
    Matched MeSH terms: Open Reading Frames
  14. Tsai WS, Shih SL, Green SK, Jan FJ
    Plant Dis, 2007 Jul;91(7):907.
    PMID: 30780410 DOI: 10.1094/PDIS-91-7-0907A
    Whitefly-transmitted, cucurbit-infecting begomoviruses (genus Begomovirus, family Geminiviridae) have been detected on cucurbit crops in Bangladesh, China, Egypt, Israel, Malaysia, Mexico, the Philippines, Thailand, United States, and Vietnam. Pumpkin plants showing leaf curling, blistering, and yellowing symptoms were observed in the AVRDC fields (Tainan, Taiwan) during 2001 and in nearby farmers' fields during 2005. Two samples from symptomatic plants were collected in 2001 and six collected in 2005. Viral DNAs were extracted (2), and the PCR, with previously described primers, was used to detect the presence of begomoviral DNA-A (4), DNA-B (3), and associated satellite DNA (1). Begomoviral DNA-A was detected in one of the 2001 samples and in all 2005 samples. The PCR-amplified 1.5 kb viral DNA-A from one positive sample each from the 2001 and 2005 collections was cloned and sequenced. On the basis of the 1.5-kb DNA-A sequences, specific primers were designed to completely sequence the DNA-A component. The overlap between fragments obtained using primer walking ranged from 43 to 119 bp with 100% nt identities. The complete DNA-A sequences were determined for the two isolates as 2,734 bp (2001) (GenBank Accession No. DQ866135) and 2,733 bp (2005) (GenBank Accession No. EF199774). Sequence comparisons and analyses were performed using the DNAMAN Sequence Analysis Software (Lynnon Corporation, Vaudreuil, Quebec, Canada). The DNA-A of the begomovirus isolates each contained the conserved nanosequence-TAATATTAC and six open reading frames, including two in the virus sense and four in the complementary sense. On the basis of a 99% shared nucleotide sequence identity, they are considered isolates of the same species. BLASTn analysis and a comparison of the sequence with others available in the GenBank database ( http://www.ncbi.nlm.nih.gov ) indicated that the Taiwan virus shared its highest nt identity (more than 95%) with the Squash leaf curl Philippines virus (GenBank Accession No. AB085793). Virus-associated satellite DNA was not found in any of the samples. DNA-B was found in both samples, providing further evidence that the virus was the same as the bipartite Squash leaf curl Philippines virus. To our knowledge, this is the first report of Squash leaf curl Philippines virus in Taiwan. References: (1) R. W. Briddon et al. Virology 312:106, 2003. (2) R. L. Gilbertson et al. J. Gen. Virol. 72:2843, 1991. (3) S. K. Green et al. Plant Dis. 85:1286, 2001. (4) M. R. Rojas et al. Plant Dis. 77:340, 1993.
    Matched MeSH terms: Open Reading Frames
  15. Tan Y, Neo PC, Najimudin N, Sudesh K, Muhammad TS, Othman AS, et al.
    J Basic Microbiol, 2010 Apr;50(2):179-89.
    PMID: 20082371 DOI: 10.1002/jobm.200900138
    Pseudomonas sp. USM 4-55 is a locally isolated bacterium that possesses the ability to produce polyhydroxyalkanoates (PHA) consisting of both poly(3-hydroxybutyrate) [P(3HB)] homopolymer and medium-chain length (mcl) monomers (6 to 14 carbon atoms) when sugars or fatty acids are utilized as the sole carbon source. In this study, the P(3HB) biosynthesis operon carrying the phbC(Ps) P(3HB) synthase was successfully cloned and sequenced using a homologous probe. Three open reading frames encoding NADPH-dependent acetoacetyl-coenzyme A reductase (PhbB(Ps)), beta-ketothiolase (PhbA(Ps)) and P(3HB) synthase (PhbC(Ps)) were found in the phb operon. The genetic organization of phb operon showed a putative promoter region, followed by phbB(Ps)-phbA(Ps)-phbC(Ps). phbR(Ps)which encoded a putative transcriptional activator was located in the opposite orientation, upstream of phbBAC(Ps). Heterologous expression of pGEM''ABex harboring phbC(Ps) in Escherichia coli JM109 resulted in P(3HB) accumulation of up to 40% of dry cell weight (DCW).
    Matched MeSH terms: Open Reading Frames
  16. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25103431 DOI: 10.3109/19401736.2014.947587
    The mitochondrial genome sequence of the stone crab, Myomenippe fornasinii, second of the superfamily Eriphioidea is documented. Myomenippe fornasinii has a mitogenome of 15,658 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The base composition of the M. fornasinii mitogenome is 36.10% for T, 18.52% for C, 35.48% for A, and 9.90% for G, with an AT bias of 71.58%. The mitogenome gene order conforms to what is the standard arrangement for brachyuran crabs.
    Matched MeSH terms: Open Reading Frames
  17. Tan KK, Zulkifle NI, Sulaiman S, Pang SP, NorAmdan N, MatRahim N, et al.
    BMC Evol. Biol., 2018 04 24;18(1):58.
    PMID: 29699483 DOI: 10.1186/s12862-018-1175-4
    BACKGROUND: Dengue virus type 3 genotype III (DENV3/III) is associated with increased number of severe infections when it emerged in the Americas and Asia. We had previously demonstrated that the DENV3/III was introduced into Malaysia in the late 2000s. We investigated the genetic diversity of DENV3/III strains recovered from Malaysia and examined their phylogenetic relationships against other DENV3/III strains isolated globally.

    RESULTS: Phylogenetic analysis revealed at least four distinct DENV3/III lineages. Two of the lineages (DENV3/III-B and DENV3/III-C) are current actively circulating whereas the DENV3/III-A and DENV3/III-D were no longer recovered since the 1980s. Selection pressure analysis revealed strong evidence of positive selection on a number of amino acid sites in PrM, E, NS1, NS2a, NS2b, NS3, NS4a, and NS5. The Malaysian DENV3/III isolates recovered in the 1980s (MY.59538/1987) clustered into DENV3/III-B, which was the lineage with cosmopolitan distribution consisting of strains actively circulating in the Americas, Africa, and Asia. The Malaysian isolates recovered after the 2000s clustered within DENV3/III-C. This DENV3/III-C lineage displayed a more restricted geographical distribution and consisted of isolates recovered from Asia, denoted as the Asian lineage. Amino acid variation sites in NS5 (NS5-553I/M, NS5-629 T, and NS5-820E) differentiated the DENV3/III-C from other DENV3 viruses. The codon 629 of NS5 was identified as a positively selected site. While the NS5-698R was identified as unique to the genome of DENV3/III-C3. Phylogeographic results suggested that the recent Malaysian DENV3/III-C was likely to have been introduced from Singapore in 2008 and became endemic. From Malaysia, the virus subsequently spread into Taiwan and Thailand in the early part of the 2010s and later reintroduced into Singapore in 2013.

    CONCLUSIONS: Distinct clustering of the Malaysian old and new DENV3/III isolates suggests that the currently circulating DENV3/III in Malaysia did not descend directly from the strains recovered during the 1980s. Phylogenetic analyses and common genetic traits in the genome of the strains and those from the neighboring countries suggest that the Malaysian DENV3/III is likely to have been introduced from the neighboring regions. Malaysia, however, serves as one of the sources of the recent regional spread of DENV3/III-C3 within the Asia region.

    Matched MeSH terms: Open Reading Frames/genetics
  18. Tajabadi N, Baradaran A, Ebrahimpour A, Rahim RA, Bakar FA, Manap MY, et al.
    Microb Biotechnol, 2015 Jul;8(4):623-32.
    PMID: 25757029 DOI: 10.1111/1751-7915.12254
    Gamma-aminobutyric acid (GABA) is an important bioactive compound biosynthesized by microorganisms through decarboxylation of glutamate by glutamate decarboxylase (GAD). In this study, a full-length GAD gene was obtained by cloning the template deoxyribonucleic acid to pTZ57R/T vector. The open reading frame of the GAD gene showed the cloned gene was composed of 1410 nucleotides and encoded a 469 amino acids protein. To improve the GABA-production, the GAD gene was cloned into pMG36e-LbGAD, and then expressed in Lactobacillus plantarum Taj-Apis362 cells. The overexpression was confirmed by SDS-PAGE and GAD activity, showing a 53 KDa protein with the enzyme activity increased by sevenfold compared with the original GAD activity. The optimal fermentation conditions for GABA production established using response surface methodology were at glutamic acid concentration of 497.973 mM, temperature 36°C, pH 5.31 and time 60 h. Under the conditions, maximum GABA concentration obtained (11.09 mM) was comparable with the predicted value by the model at 11.23 mM. To our knowledge, this is the first report of successful cloning (clone-back) and overexpression of the LbGAD gene from L. plantarum to L. plantarum cells. The recombinant Lactobacillus could be used as a starter culture for direct incorporation into a food system during fermentation for production of GABA-rich products.
    Matched MeSH terms: Open Reading Frames
  19. Tai HF, Foo HL, Abdul Rahim R, Loh TC, Abdullah MP, Yoshinobu K
    Microb Cell Fact, 2015;14:89.
    PMID: 26077560 DOI: 10.1186/s12934-015-0280-y
    Bacteriocin-producing Lactic acid bacteria (LAB) have vast applications in human and animal health, as well as in food industry. The structural, immunity, regulatory, export and modification genes are required for effective bacteriocin biosynthesis. Variations in gene sequence, composition and organisation will affect the antimicrobial spectrum of bacteriocin greatly. Lactobacillus plantarum I-UL4 is a novel multiple bacteriocin producer that harbours both plw and plnEF structural genes simultaneous which has not been reported elsewhere. Therefore, molecular characterisation of bacteriocin genes that harboured in L. plantarum I-UL4 was conducted in this study.
    Matched MeSH terms: Open Reading Frames
  20. Suhana O, Nazni WA, Apandi Y, Farah H, Lee HL, Sofian-Azirun M
    Heliyon, 2019 Dec;5(12):e02682.
    PMID: 31867449 DOI: 10.1016/j.heliyon.2019.e02682
    Chikungunya virus (CHIKV) is maintained in the sylvatic cycle in West Africa and is transmitted by Aedes mosquito species to monkeys. In 2006, four verified CHIKV isolates were obtained during a survey of arboviruses in monkeys (Macaca fascicularis) in Pahang state, Peninsular Malaysia. RNA was extracted from the CHIKV isolates and used in reverse transcription polymerase chain reactions (RT-PCR) to amplify PCR fragments for sequencing. Nucleic acid primers were designed to generate overlapping PCR fragments that covered the whole viral sequence. A total of 11,238 base pairs (bp) corresponding to open reading frames (ORFs) from our isolates and 47 other registered isolates in the National Center for Biotechnology Information (NCBI) were used to elucidate sequences, amino acids, and phylogenetic relationships and to estimate divergence times by using MEGA 7.0 and the Bayesian Markov chain Monte Carlo method. Phylogenetic analysis revealed that all CHIKV isolates could be classified into the Asian genotype and clustered with Bagan Panchor clades, which are associated with the chikungunya outbreak reported in 2006, with sequence and amino acid similarities of 99.9% and 99.7%, respectively. Minor amino acid differences were found between human and non-human primate isolates. Amino acid analysis showed a unique amino acid at position 221 in the nsP1region, at which a glycine (G) was found only in monkey isolates, whereas arginine (R) was found at the same position only in human isolates. The time to the most recent common ancestor (MRCA) estimation indicated that CHIKV probably started to diverge from human to non-human primates in approximately 2004 in Malaysia. The results suggested that CHIKV in non-human primates probably resulted from the spillover of the virus from humans. The study will be helpful in understanding the movement and evolution of CHIKV in Malaysia and globally.
    Matched MeSH terms: Open Reading Frames
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links