Displaying publications 1 - 20 of 96 in total

Abstract:
Sort:
  1. Hooper C, Debnath PP, Biswas S, van Aerle R, Bateman KS, Basak SK, et al.
    Viruses, 2020 10 02;12(10).
    PMID: 33023199 DOI: 10.3390/v12101120
    Mass mortalities of the larval stage of the giant freshwater prawn, Macrobrachium rosenbergii, have been occurring in Bangladesh since 2011. Mortalities can reach 100% and have resulted in an 80% decline in the number of hatcheries actively producing M. rosenbergii. To investigate a causative agent for the mortalities, a disease challenge was carried out using infected material from a hatchery experiencing mortalities. Moribund larvae from the challenge were prepared for metatranscriptomic sequencing. De novo virus assembly revealed a 29 kb single‑stranded positive-sense RNA virus with similarities in key protein motif sequences to yellow head virus (YHV), an RNA virus that causes mass mortalities in marine shrimp aquaculture, and other viruses in the Nidovirales order. Primers were designed against the novel virus and used to screen cDNA from larvae sampled from hatcheries in the South of Bangladesh from two consecutive years. Larvae from all hatcheries screened from both years were positive by PCR for the novel virus, including larvae from a hatchery that at the point of sampling appeared healthy, but later experienced mortalities. These screens suggest that the virus is widespread in M. rosenbergii hatchery culture in southern Bangladesh, and that early detection of the virus can be achieved by PCR. The hypothesised protein motifs of Macrobrachium rosenbergii golda virus (MrGV) suggest that it is likely to be a new species within the Nidovirales order. Biosecurity measures should be taken in order to mitigate global spread through the movement of post-larvae within and between countries, which has previously been linked to other virus outbreaks in crustacean aquaculture.
    Matched MeSH terms: Open Reading Frames
  2. Noor YM, Samsulrizal NH, Jema'on NA, Low KO, Ramli AN, Alias NI, et al.
    Gene, 2014 Jul 25;545(2):253-61.
    PMID: 24811681 DOI: 10.1016/j.gene.2014.05.012
    Bacillus lehensis G1 is a Gram-positive, moderately alkalitolerant bacterium isolated from soil samples. B. lehensis produces cyclodextrin glucanotransferase (CGTase), an enzyme that has enabled the extensive use of cyclodextrin in foodstuffs, chemicals, and pharmaceuticals. The genome sequence of B. lehensis G1 consists of a single circular 3.99 Mb chromosome containing 4017 protein-coding sequences (CDSs), of which 2818 (70.15%) have assigned biological roles, 936 (23.30%) have conserved domains with unknown functions, and 263 (6.55%) have no match with any protein database. Bacillus clausii KSM-K16 was established as the closest relative to B. lehensis G1 based on gene content similarity and 16S rRNA phylogenetic analysis. A total of 2820 proteins from B. lehensis G1 were found to have orthologues in B. clausii, including sodium-proton antiporters, transport proteins, and proteins involved in ATP synthesis. A comparative analysis of these proteins and those in B. clausii and other alkaliphilic Bacillus species was carried out to investigate their contributions towards the alkalitolerance of the microorganism. The similarities and differences in alkalitolerance-related genes among alkalitolerant/alkaliphilic Bacillus species highlight the complex mechanism of pH homeostasis. The B. lehensis G1 genome was also mined for proteins and enzymes with potential viability for industrial and commercial purposes.
    Matched MeSH terms: Open Reading Frames
  3. Matsumoto T, Sato M, Nishizono A, Ahmed K
    Arch Virol, 2019 Aug;164(8):2179-2182.
    PMID: 31111258 DOI: 10.1007/s00705-019-04286-x
    We identified two novel circoviruses, HK02976 and HK00220, in oral swabs from bats. The size of their full genome was 2,010 nucleotides (nt). The full-genome sequence of our strains shared 96.1% nucleotide sequence identity with each other, and 39.9%-69.5% identity with bat-associated circoviruses (BatACVs)1-9. Based on the species demarcation threshold for viruses of the family Circoviridae, which is 80% genome-wide nucleotide sequence identity, we have tentatively named this group of viruses "bat-associated circovirus 10" (BatACV10).
    Matched MeSH terms: Open Reading Frames/genetics
  4. Foo JN, Tan LC, Liany H, Koh TH, Irwan ID, Ng YY, et al.
    Hum Mol Genet, 2014 Jul 15;23(14):3891-7.
    PMID: 24565865 DOI: 10.1093/hmg/ddu086
    To evaluate the contribution of non-synonymous-coding variants of known familial and genome-wide association studies (GWAS)-linked genes for Parkinson's disease (PD) to PD risk in the East Asian population, we sequenced all the coding exons of 39 PD-related disease genes and evaluated the accumulation of rare non-synonymous-coding variants in 375 early-onset PD cases and 399 controls. We also genotyped 782 non-synonymous-coding variants of these genes in 710 late-onset PD cases and 9046 population controls. Significant enrichment of LRRK2 variants was observed in both early- and late-onset PD (odds ratio = 1.58; 95% confidence interval = 1.29-1.93; P = 8.05 × 10(-6)). Moderate enrichment was also observed in FGF20, MCCC1, GBA and ITGA8. Half of the rare variants anticipated to cause loss of function of these genes were present in healthy controls. Overall, non-synonymous-coding variants of known familial and GWAS-linked genes appear to make a limited contribution to PD risk, suggesting that clinical sequencing of these genes will provide limited information for risk prediction and molecular diagnosis.
    Matched MeSH terms: Open Reading Frames
  5. Yong HY, Bakar FD, Illias RM, Mahadi NM, Murad AM
    Braz J Microbiol, 2013 Dec;44(4):1241-50.
    PMID: 24688518
    The mitogen-activated protein (MAP) kinase pathways has been implicated in the pathogenicity of various pathogenic fungi and plays important roles in regulating pathogenicity-related morphogenesis. This work describes the isolation and characterization of MAP kinase gene, Cgl-SLT2, from Colletotrichum gloeosporioides. A DNA sequence, including 1,633 bp of Cgl-SLT2 open-reading frame and its promoter and terminator regions, was isolated via DNA walking and cloned. To analyze gene function, a gene disruption cassette containing hygromycin-resistant gene was constructed, and Cgl-SLT2 was inactivated via gene deletion. Analysis on Cgl-slt2 mutant revealed a defect in vegetative growth and sporulation as compared to the wild-type strain. When grown under nutrient-limiting conditions, hyperbranched hyphal morphology was observed in the mutant. Conidia induction for germination on rubber wax-coated hard surfaces revealed no differences in the percentage of conidial germination between the wild-type and Cgl-slt2 mutant. However, the percentage of appressorium formation in the mutant was greatly reduced. Bipolar germination in the mutant was higher than in the wild-type at 8-h post-induction. A pathogenicity assay revealed that the mutant was unable to infect either wounded or unwounded mangoes. These results suggest that the Cgl-SLT2 MAP kinase is required for C. gloeosporioides conidiation, polarized growth, appressorium formation and pathogenicity.
    Matched MeSH terms: Open Reading Frames
  6. Wong CM, Tam HK, Ng WM, Boo SY, González M
    Plasmid, 2013 Mar;69(2):186-93.
    PMID: 23266397 DOI: 10.1016/j.plasmid.2012.12.002
    A cryptic plasmid, pMWHK1 recovered from an Antarctic bacterium Pedobacter cryoconitis BG5 was sequenced and characterised. The plasmid is a circular 6206bp molecule with eight putative open reading frames designated as orf1, orf2, orf3, orf4, orf5, orf6, orf7 and orf8. All the putative open reading frames of pMWHK1 are found to be actively transcribed. Proteins encoded by orf2 and orf4 are predicted to be responsible for the mobilization and replication of the plasmid respectively. orf4 shares 55% and 61% identities with the theta-type Rep proteins from two strains of Riemerella anatipestifer. This suggests that pMWHK1 could be a member of the theta-type replicating plasmid. The origin of replication is located within the AT-rich region upstream of orf4. orf5 and orf6 encode bacterial toxin-antitoxin proteins predicted to maintain plasmid stability. orf3 encodes an entry exclusion protein that is hypothetically involved in reducing the frequency of DNA transfer through conjugation. orf1, orf7 and orf8 encode proteins with unknown functions. Plasmid, pMWHK1 is stably maintained in P. cryoconitis BG5 at 20°C.
    Matched MeSH terms: Open Reading Frames/genetics
  7. Amiruddin N, Lee XW, Blake DP, Suzuki Y, Tay YL, Lim LS, et al.
    BMC Genomics, 2012 Jan 13;13:21.
    PMID: 22244352 DOI: 10.1186/1471-2164-13-21
    BACKGROUND: Eimeria tenella is an apicomplexan parasite that causes coccidiosis in the domestic fowl. Infection with this parasite is diagnosed frequently in intensively reared poultry and its control is usually accorded a high priority, especially in chickens raised for meat. Prophylactic chemotherapy has been the primary method used for the control of coccidiosis. However, drug efficacy can be compromised by drug-resistant parasites and the lack of new drugs highlights demands for alternative control strategies including vaccination. In the long term, sustainable control of coccidiosis will most likely be achieved through integrated drug and vaccination programmes. Characterisation of the E. tenella transcriptome may provide a better understanding of the biology of the parasite and aid in the development of a more effective control for coccidiosis.

    RESULTS: More than 15,000 partial sequences were generated from the 5' and 3' ends of clones randomly selected from an E. tenella second generation merozoite full-length cDNA library. Clustering of these sequences produced 1,529 unique transcripts (UTs). Based on the transcript assembly and subsequently primer walking, 433 full-length cDNA sequences were successfully generated. These sequences varied in length, ranging from 441 bp to 3,083 bp, with an average size of 1,647 bp. Simple sequence repeat (SSR) analysis identified CAG as the most abundant trinucleotide motif, while codon usage analysis revealed that the ten most infrequently used codons in E. tenella are UAU, UGU, GUA, CAU, AUA, CGA, UUA, CUA, CGU and AGU. Subsequent analysis of the E. tenella complete coding sequences identified 25 putative secretory and 60 putative surface proteins, all of which are now rational candidates for development as recombinant vaccines or drug targets in the effort to control avian coccidiosis.

    CONCLUSIONS: This paper describes the generation and characterisation of full-length cDNA sequences from E. tenella second generation merozoites and provides new insights into the E. tenella transcriptome. The data generated will be useful for the development and validation of diagnostic and control strategies for coccidiosis and will be of value in annotation of the E. tenella genome sequence.

    Matched MeSH terms: Open Reading Frames
  8. Guo R, Zheng K, Luo L, Liu Y, Shao H, Guo C, et al.
    Microbiol Spectr, 2022 Aug 31;10(4):e0058522.
    PMID: 35862991 DOI: 10.1128/spectrum.00585-22
    Vibrio parahaemolyticus, a widespread marine bacterium, is responsible for a variety of diseases in marine organisms. Consumption of raw or undercooked seafood contaminated with V. parahaemolyticus is also known to cause acute gastroenteritis in humans. While numerous dsDNA vibriophages have been isolated so far, there have been few studies of vibriophages belonging to the ssDNA Microviridae family. In this study, a novel ssDNA phage, vB_VpaM_PG19 infecting V. parahaemolyticus, with a 5,572 bp ssDNA genome with a G+C content of 41.31% and encoded eight open reading frames, was isolated. Genome-wide phylogenetic analysis of the total phage isolates in the GenBank database revealed that vB_VpaM_PG19 was only related to the recently deposited vibriophage vB_VpP_WS1. The genome-wide average nucleotide homology of the two phages was 89.67%. The phylogenetic tree and network analysis showed that vB_VpaM_PG19 was different from other members of the Microviridae family and might represent a novel viral genus, together with vibriophage vB_VpP_WS1, named Vimicrovirus. One-step growth curves showed that vB_VpaM_PG19 has a short incubation period, suggesting its potential as an antimicrobial agent for pathogenic V. parahaemolyticus. IMPORTANCE Vibriophage vB_VpaM_PG19 was distant from other isolated microviruses in the phylogenetic tree and network analysis and represents a novel microviral genus, named Vimicrovirus. Our report describes the genomic and phylogenetic features of vB_VpaM_PG19 and provides a potential antimicrobial candidate for pathogenic V. parahaemolyticus.
    Matched MeSH terms: Open Reading Frames
  9. Chen Y, Guo R, Liang Y, Luo L, Han Y, Wang H, et al.
    Virus Res, 2023 Sep;334:199183.
    PMID: 37499764 DOI: 10.1016/j.virusres.2023.199183
    Stutzerimonas stutzeri is an opportunistic pathogen widely distributed in the environment and displays diverse metabolic capabilities. In this study, a novel lytic S. stutzeri phage, named vB_PstM_ZRG1, was isolated from the seawater in the East China Sea (29°09'N, 123°39'E). vB_PstM_ZRG1 was stable at temperatures ranging from -20°C to 65°C and across a wide range of pH values from 3 to 10. The genome of vB_PstM_ZRG1 was determined to be a double-stranded DNA with a genome size of 52,767 bp, containing 78 putative open reading frames (ORFs). Three auxiliary metabolic genes encoded by phage vB_PstM_ZRG1 were predicted, including Toll/interleukin-1 receptor (TIR) domain, proline-alanine-alanine-arginine (PAAR) protein and SGNH (Ser-Gly-Asn-His) family hydrolase, especially TIR domain is not common in isolated phages. Phylogenic and network analysis showed that vB_PstM_ZRG1 has low similarity to other phage genomes in the GenBank and IMG/VR database, and might represent a novel viral genus, named Elithevirus. Additionally, the distribution map results indicated that vB_PstM_ZRG1 could infect both extreme colds- and warm-type hosts in the marine environment. In summary, our finding provided basic information for further research on the relationship between S. stutzeri and their phages, and expanded our understanding of genomic characteristics, phylogenetic diversity and distribution of Elithevirus.
    Matched MeSH terms: Open Reading Frames
  10. Mohd-Padil H, Tajul-Arifin K, Mohd-Adnan A
    PLoS One, 2010;5(10):e13159.
    PMID: 20949082 DOI: 10.1371/journal.pone.0013159
    β2-Microglobulin (β(2)M) is the light chain of major histocompatibility class I (MHC I) that binds non-covalently with the α heavy chain. Both proteins attach to the antigen peptide, presenting a complex to the T cell to be destroyed via the immune mechanism.
    Matched MeSH terms: Open Reading Frames
  11. Arsad H, Sudesh K, Nazalan N, Muhammad TS, Wahab H, Razip Samian M
    Trop Life Sci Res, 2009 Dec;20(2):1-14.
    PMID: 24575175 MyJurnal
    The (R)-3-hydroxyacyl-ACP-CoA transferase catalyses the conversion of (R)-3-hydroxyacyl-ACP to (R)-3-hydroxyacyl-CoA derivatives, which serves as the ultimate precursor for polyhydroxyalkanoate (PHA) polymerisation from unrelated substrates in pseudomonads. PhaG was found to be responsible for channelling precursors for polyhydroxyalkanoate (PHA) synthase from a de novo fatty acid biosynthesis pathway when cultured on carbohydrates, such as glucose or gluconate. The phaG gene was cloned from Pseudomonas sp. USM 4-55 using a homologous probe. The gene was located in a 3660 bp Sal I fragment (GenBank accession number EU305558). The open reading frame (ORF) was 885 bp long and encoded a 295 amino acid protein. The predicted molecular weight was 33251 Da, and it showed a 62% identity to the PhaG of Pseudomonas aeruginosa. The function of the cloned phaG of Pseudomonas sp. USM 4-55 was confirmed by complementation studies. Plasmid pBCS39, which harboured the 3660 bp Sal I fragment, was found to complement the PhaG-mutant heterologous host cell, Pseudomonas putida PhaGN-21. P. putida PhaGN-21, which harboured pBCS39, accumulated PHA that accounted for up to 18% of its cellular dry weight (CDW). P. putida PhaGN-21, which harboured the vector alone (PBBR1MCS-2), accumulated only 0.6% CDW of PHA.
    Matched MeSH terms: Open Reading Frames
  12. Tan Y, Neo PC, Najimudin N, Sudesh K, Muhammad TS, Othman AS, et al.
    J Basic Microbiol, 2010 Apr;50(2):179-89.
    PMID: 20082371 DOI: 10.1002/jobm.200900138
    Pseudomonas sp. USM 4-55 is a locally isolated bacterium that possesses the ability to produce polyhydroxyalkanoates (PHA) consisting of both poly(3-hydroxybutyrate) [P(3HB)] homopolymer and medium-chain length (mcl) monomers (6 to 14 carbon atoms) when sugars or fatty acids are utilized as the sole carbon source. In this study, the P(3HB) biosynthesis operon carrying the phbC(Ps) P(3HB) synthase was successfully cloned and sequenced using a homologous probe. Three open reading frames encoding NADPH-dependent acetoacetyl-coenzyme A reductase (PhbB(Ps)), beta-ketothiolase (PhbA(Ps)) and P(3HB) synthase (PhbC(Ps)) were found in the phb operon. The genetic organization of phb operon showed a putative promoter region, followed by phbB(Ps)-phbA(Ps)-phbC(Ps). phbR(Ps)which encoded a putative transcriptional activator was located in the opposite orientation, upstream of phbBAC(Ps). Heterologous expression of pGEM''ABex harboring phbC(Ps) in Escherichia coli JM109 resulted in P(3HB) accumulation of up to 40% of dry cell weight (DCW).
    Matched MeSH terms: Open Reading Frames
  13. Rahman RN, Chin JH, Salleh AB, Basri M
    Mol Genet Genomics, 2003 May;269(2):252-60.
    PMID: 12756537
    A Bacillus sphaericus strain (205y) that produces an organic solvent-tolerant lipase was isolated in Port Dickson, Malaysia. The gene for the lipase was recovered from a genomic library and sequenced. Phylogenetic analysis was performed based on an alignment of thirteen microbial lipase sequences obtained from the NCBI database. The analysis suggested that the B. sphaericus lipase gene is a novel gene, as it is distinct from other lipase genes in Families I.4 and I.5 reported so far. Expression in Escherichia coli under the control of the lacZ promoter resulted in an eight-fold increase in enzyme activity after a 3-h induction with 1 mM IPTG. The crude enzyme thus obtained showed a slight (10%) enhancement in activity after a 30-min incubation in 25% (v/v) n-hexane at 37 degrees C, and retained 90% of its activity after a similar period in 25% (v/v) p-xylene.
    Matched MeSH terms: Open Reading Frames
  14. See Too WC, Few LL
    World J Microbiol Biotechnol, 2010 Jul;26(7):1251-9.
    PMID: 24026930 DOI: 10.1007/s11274-009-0295-9
    Psychrophiles are organisms that thrive in cold environments. One of the strategies for their cold adaptation is the ability to synthesize cold-adapted enzymes. These enzymes usually display higher catalytic efficiency and thermolability at lower temperatures compared to their mesophilic and thermophilic counterparts. In this work, a psychrophilic bacterial isolate codenamed π9 was selected for the cloning of the gene encoding triose phosphate isomerase (TIM), an enzyme in the glycolytic pathway. Based on 16S rRNA gene sequence analysis, this isolate was identified as a species of the genus Pseudomonas under the P. fluorescens group. The cloning of a 816 bp fragment of TIM gene which covers the 756 bp open reading frame was achieved by a combination of degenerate and splinkerette PCRs. The partial sequence of this gene was first PCR amplified by using degenerate primers and the flanking sequences were subsequently amplified by splinkerette PCR technique. Amino acid sequence of the cloned TIM was 97% identical to TIM from Pseudomonas fluorescens and shared 51% identity with the TIM from psychrophilic Vibrio sp. This work demonstrated the use of multiple PCR techniques to clone a gene without prior knowledge of its sequence. The cloning of the TIM gene by PCR was more rapid and cost effective compared to the traditional genomic library construction and screening method. Homology model of the TIM protein in this study was generated based on Escherichia coli TIM crystal structure. The model could serve as a hypothetical TIM structure from a psychrophilic microorganism for further investigation into areas that showed deviations from the known mesophilic TIM structures.
    Matched MeSH terms: Open Reading Frames
  15. Ong RM, Goh KM, Mahadi NM, Hassan O, Rahman RN, Illias RM
    J Ind Microbiol Biotechnol, 2008 Dec;35(12):1705-14.
    PMID: 18726621 DOI: 10.1007/s10295-008-0462-2
    The cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) gene from Bacillus sp. G1 was successfully isolated and cloned into Escherichia coli. Analysis of the nucleotide sequence revealed the presence of an open reading frame of 2,109 bp and encoded a 674 amino acid protein. Purified CGTase exhibited a molecular weight of 75 kDa and had optimum activity at pH 6 and 60 degrees C. Heterologous recombinant protein expression in E. coli is commonly problematic causing intracellular localization and formation of inactive inclusion bodies. This paper shows that the majority of CGTase was secreted into the medium due to the signal peptide of Bacillus sp. G1 that also works well in E. coli, leading to easier purification steps. When reacted with starch, CGTase G1 produced 90% beta-cyclodextrin (CD) and 10% gamma-CD. This enzyme also preferred the economical tapioca starch as a substrate, based on kinetics studies. Therefore, CGTase G1 could potentially serve as an industrial enzyme for the production of beta-CD.
    Matched MeSH terms: Open Reading Frames
  16. Khaw YS, Chan YF, Jafar FL, Othman N, Chee HY
    Front Microbiol, 2016;7:543.
    PMID: 27199901 DOI: 10.3389/fmicb.2016.00543
    Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5' and 3' non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63-81% among themselves and 63-96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection.
    Matched MeSH terms: Open Reading Frames
  17. Etebari K, Filipović I, Rašić G, Devine GJ, Tsatsia H, Furlong MJ
    Virus Res, 2020 03;278:197864.
    PMID: 31945420 DOI: 10.1016/j.virusres.2020.197864
    Oryctes rhinoceros nudivirus (OrNV) has been an effective biocontrol agent against the insect pest Oryctes rhinoceros (Coleoptera: Scarabaeidae) for decades, but there is evidence that resistance could be evolving in some host populations. We detected OrNV infection in O. rhinoceros from Solomon Islands and used Oxford Nanopore Technologies (ONT) long-read sequencing to determine the full length of the virus genomic sequence isolated from an individual belonging to a mitochondrial lineage (CRB-G) that was previously reported as resistant to OrNV. The complete circular genome of the virus consisted of 125,917 nucleotides, 1.698 bp shorter than the originally-described full genome sequence of Ma07 strain from Malaysia. We found 130 out of 139 previously annotated ORFs (seven contained interrupted/non-coding sequences, two were identified as duplicated versions of the existing genes), as well as a putatively inverted regions containing four genes. These results demonstrate the usefulness of a long-read sequencing technology for resolving potential structural variations when describing new virus isolates. While the Solomon Islands isolate exhibited 99.41 % nucleotide sequence identity with the originally described strain, we found several genes, including a core gene (vlf-1), that contained multiple amino acid insertions and/or deletions as putative polymorphisms of large effect. Our complete annotated genome sequence of a newly found isolate in Solomon Islands provides a valuable resource to help elucidate the mechanisms that compromise the efficacy of OrNV as a biocontrol agent against the coconut rhinoceros beetle.
    Matched MeSH terms: Open Reading Frames
  18. Mat Isa N, Mohd Ayob J, Ravi S, Mustapha NA, Ashari KS, Bejo MH, et al.
    Virusdisease, 2019 Sep;30(3):426-432.
    PMID: 31803810 DOI: 10.1007/s13337-019-00530-9
    The main aim of our study was to explore the genome sequence of the inclusion body hepatitis associated Fowl adenovirus serotype 8b (FAdV-8b) UPM04217 and to study its genomic organisation. The nucleotide sequence of the whole genome of FAdV-8b UPM04217 was determined by using the 454 Pyrosequencing platform and the Sanger sequencing method. The complete genome was found to be 44,059 bp long with 57.9% G + C content and shared 97.5% genome identity with the reference FAdV-E genome (HG isolate). Interestingly, the genome analysis using ORF Finder, Glimmer3 and FGENESV predicted a total of 39 open reading frames (ORFs) compared to the FAdV-E HG that possessed 46 ORFs. Fourteen ORFs located within the central genomic region and 16 ORFs located within the left and right ends of the genome were assigned as being the high protein-coding regions. The fusion of the small ORFs at the right end terminal specifically in ORF22 and ORF33 could be the result of gene truncation in the FAdV-E HG. The frame shift mutation in ORF25 and other mutations in ORF13 and ORF17 might have lead to the emergence of genes that could have different functions. Besides, one of the minor capsid components, pVI, in FAdV-8b UPM04217 shared the highest similarity of 93% with that of FAdV-D, while only 47% similarity was found with FAdV-E. From the gene arrangement layout of the FAdV genome, FAdV-8b UPM04217 showed intermediate evolution between the FAdV-E HG and the FAdV-D although it was apparently more similar to the FAdV-E HG.
    Matched MeSH terms: Open Reading Frames
  19. Lee CC, Lin CY, Hsu HW, Yang CS
    Arch Virol, 2020 Nov;165(11):2715-2719.
    PMID: 32776255 DOI: 10.1007/s00705-020-04769-2
    We report two novel RNA viruses from yellow crazy ants, (Anoplolepis gracilipes) detected using next-generation sequencing. The complete genome sequences of the two viruses were 10,662 and 8,238 nucleotides in length, respectively, with both possessing two open reading frames with three conserved protein domains. The genome organization is characteristic of members of the genus Triatovirus in the family Dicistroviridae. The two novel viruses were tentatively named "Anoplolepis gracilipes virus 1" and "Anoplolepis gracilipes virus 2" (AgrV-1 and AgrV-2). Phylogenetic analyses based on amino acid sequences of the non-structural polyprotein (ORF1) suggest that the two viruses are triatovirus-like viruses. This is the first report on the discovery of novel triatovirus-like viruses in yellow crazy ants with a description of their genome structure (two ORFs and conserved domains of RNA helicase, RNA-dependent RNA polymerase, and capsid protein), complete sequences, and viral prevalence across the Asia-Pacific region.
    Matched MeSH terms: Open Reading Frames
  20. Yong HS, Song SL, Chua KO, Wayan Suana I, Eamsobhana P, Tan J, et al.
    Sci Rep, 2021 May 21;11(1):10680.
    PMID: 34021208 DOI: 10.1038/s41598-021-90162-1
    Spiders of the genera Nephila and Trichonephila are large orb-weaving spiders. In view of the lack of study on the mitogenome of these genera, and the conflicting systematic status, we sequenced (by next generation sequencing) and annotated the complete mitogenomes of N. pilipes, T. antipodiana and T. vitiana (previously N. vitiana) to determine their features and phylogenetic relationship. Most of the tRNAs have aberrant clover-leaf secondary structure. Based on 13 protein-coding genes (PCGs) and 15 mitochondrial genes (13 PCGs and two rRNA genes), Nephila and Trichonephila form a clade distinctly separated from the other araneid subfamilies/genera. T. antipodiana forms a lineage with T. vitiana in the subclade containing also T. clavata, while N. pilipes forms a sister clade to Trichonephila. The taxon vitiana is therefore a member of the genus Trichonephila and not Nephila as currently recognized. Studies on the mitogenomes of other Nephila and Trichonephila species and related taxa are needed to provide a potentially more robust phylogeny and systematics.
    Matched MeSH terms: Open Reading Frames
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links