Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Tan CS, Ch'ng YS, Loh YC, Zaini Asmawi M, Ahmad M, Yam MF
    J Ethnopharmacol, 2017 Mar 06;199:149-160.
    PMID: 28161542 DOI: 10.1016/j.jep.2017.02.001
    ETHNOPHARMACOLOGICAL RELEVANCE: Glycyrrhiza uralensis (G. uralensis) is one of the herbs used in traditional Chinese medicine (TCM) and serves as an envoy medicinal. Since G. uralensis plays a major role in the anti-hypertensive TCM formulae, we believe that G. uralensis might possess vasorelaxation activity.

    AIM OF THE STUDY: This study is designed to investigate the vasorelaxation effect of G. uralensis from various extracts and to study its pharmacology effect.

    MATERIALS AND METHODS: The vasorelaxation effect of G. uralensis extracts were evaluated on thoracic aortic rings isolated from Sprague Dawley rats.

    RESULTS: Among these three extracts of G. uralensis, 50% ethanolic extract (EFG) showed the strongest vasorelaxation activity. EFG caused the relaxation of the aortic rings pre-contracted with phenylephrine either in the presence or absence of endothelium and pre-contracted with potassium chloride in endothelium-intact aortic ring. Nω-nitro-L-arginine methyl ester, methylene blue, or 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one inhibit the vasorelaxation effect of EFG in the presence of endothelium. On the other hand, in the presence of the potassium channel blockers (tetraethylammonium and barium chloride), the vasorelaxation effect of EFG was not affected, but glibenclamide and 4-aminopyridine did inhibit the vasorelaxation effect of EFG. With indomethacin, atropine and propranolol, the vasorelaxation effect by EFG was significantly reduced. EFG was also found to be effective in reducing Ca(2+) release from sarcoplasmic reticulum and the blocking of calcium channels.

    CONCLUSIONS: The results obtained suggest that EFG is involved in the NO/sGC/cGMP pathway.

    Matched MeSH terms: Organ Culture Techniques
  2. Ch'ng YS, Loh YC, Tan CS, Ahmad M, Asmawi MZ, Wan Omar WM, et al.
    Pharm Biol, 2017 Dec;55(1):2083-2094.
    PMID: 28832263 DOI: 10.1080/13880209.2017.1357735
    CONTEXT: Vernonia amygdalina Del. (VA) (Asteraceae) is commonly used to treat hypertension in Malaysia.

    OBJECTIVE: This study investigates the vasorelaxant mechanism of VA ethanol extract (VAE) and analyzes its tri-step FTIR spectroscopy fingerprint.

    MATERIALS AND METHODS: Dried VA leaves were extracted with ethanol through maceration and concentrated using rotary evaporator before freeze-dried. The vasorelaxant activity and the underlying mechanisms of VAE using the cumulative concentration (0.01-2.55 mg/mL at 20-min intervals) were evaluated on aortic rings isolated from Sprague Dawley rats in the presence of antagonists.

    RESULTS: The tri-step FTIR spectroscopy showed that VAE contains alkaloids, flavonoids, and saponins. VAE caused the relaxation of pre-contracted aortic rings in the presence and absence of endothelium with EC50 of 0.057 ± 0.006 and 0.430 ± 0.196 mg/mL, respectively. In the presence of Nω-nitro-l-arginine methyl ester (EC50 0.971 ± 0.459 mg/mL), methylene blue (EC50 1.203 ± 0.426 mg/mL), indomethacin (EC50 2.128 ± 1.218 mg/mL), atropine (EC50 0.470 ± 0.325 mg/mL), and propranolol (EC50 0.314 ± 0.032 mg/mL), relaxation stimulated by VAE was significantly reduced. VAE acted on potassium channels, with its vasorelaxation effects significantly reduced by tetraethylammonium, 4-aminopyridine, barium chloride, and glibenclamide (EC50 0.548 ± 0.184, 0.158 ± 0.012, 0.847 ± 0.342, and 0.304 ± 0.075 mg/mL, respectively). VAE was also found to be active in reducing Ca2+ released from the sarcoplasmic reticulum and blocking calcium channels.

    CONCLUSIONS: The vasorelaxation effect of VAE involves upregulation of NO/cGMP and PGI2 signalling pathways, and modulation of calcium/potassium channels, and muscarinic and β2-adrenergic receptor levels.

    Matched MeSH terms: Organ Culture Techniques
  3. Phyu WK, Ong KC, Kong CK, Alizan AK, Ramanujam TM, Wong KT
    Sci Rep, 2017 03 21;7:45069.
    PMID: 28322333 DOI: 10.1038/srep45069
    Hand-foot-and-mouth disease is a self-limiting paediatric infectious disease commonly caused by Enterovirus A71 (Genus: Enterovirus, Family: Picornaviridae). Typical lesions in and around the hands, feet, oral cavity and other places may rarely be complicated by acute flaccid paralysis and acute encephalomyelitis. Although virus is readily cultured from skin vesicles and oral secretions, the cellular target/s of Enterovirus A71 in human skin and oral mucosa are unknown. In Enterovirus A71-infected human skin and oral mucosa organotypic cultures derived from the prepuce and lip biopsies, focal viral antigens and viral RNA were localized to cytoplasm of epidermal and mucosal squamous cells as early as 2 days post-infection. Viral antigens/RNA were associated with cytoplasmic vacuolation and cellular necrosis. Infected primary prepuce epidermal keratinocyte cultures showed cytopathic effects with concomitant detection of viral antigens from 2 days post-infection. Supernatant and/or tissue homogenates from prepuce skin organotypic cultures and primary prepuce keratinocyte cultures showed viral titres consistent with active viral replication. Our data strongly support Enterovirus A71 squamous epitheliotropism in the human epidermis and oral mucosa, and suggest that these organs are important primary and/or secondary viral replication sites that contribute significantly to oral and cutaneous viral shedding resulting in person-to-person transmission, and viraemia, which could lead to neuroinvasion.
    Matched MeSH terms: Organ Culture Techniques
  4. Lee MK, Lim KH, Millns P, Mohankumar SK, Ng ST, Tan CS, et al.
    Phytomedicine, 2018 Mar 15;42:172-179.
    PMID: 29655683 DOI: 10.1016/j.phymed.2018.03.025
    BACKGROUND: Lignosus rhinocerotis (Cooke) Ryvarden is a popular medicinal mushroom used for centuries in Southeast Asia to treat asthma and chronic cough. The present study aimed to investigate the effect of this mushroom on airways patency.

    MATERIALS AND METHODS: The composition of L. rhinocerotis TM02 cultivar was analyzed. Organ bath experiment was employed to study the bronchodilator effect of Lignosus rhinocerotis cold water extract (CWE) on rat isolated airways. Trachea and bronchus were removed from male Sprague-Dawley rats, cut into rings of 2 mm, pre-contracted with carbachol before adding CWE into the bath in increasing concentrations. To investigate the influence of incubation time, tissues were exposed to intervals of 5, 15 and 30 min between CWE concentrations after pre-contraction with carbachol in subsequent protocol. Next, tissues were pre-incubated with CWE before the addition of different contractile agents, carbachol and 5-hydroxytrptamine (5-HT). The bronchodilator effect of CWE was compared with salmeterol and ipratropium. In order to uncover the mechanism of action of CWE, the role of beta-adrenoceptor, potassium and calcium channels was investigated.

    RESULTS: Composition analysis of TM02 cultivar revealed the presence of β-glucans and derivatives of adenosine. The extract fully relaxed the trachea at 3.75 mg/ml (p 

    Matched MeSH terms: Organ Culture Techniques
  5. Noor NM, Sheikh K, Somavarapu S, Taylor KMG
    Eur J Pharm Biopharm, 2017 Aug;117:372-384.
    PMID: 28412472 DOI: 10.1016/j.ejpb.2017.04.012
    Dutasteride, used for treating benign prostate hyperplasia (BPH), promotes hair growth. To enhance delivery to the hair follicles and reduce systemic effects, in this study dutasteride has been formulated for topical application, in a nanostructured lipid carrier (NLC) coated with chitosan oligomer-stearic acid (CSO-SA). CSO-SA has been successfully synthesized, as confirmed using1H NMR and FTIR. Formulation of dutasteride-loaded nanostructured lipid carriers (DST-NLCs) was optimized using a 23full factorial design. This formulation was coated with different concentrations of stearic acid-chitosan solution. Coating DST-NLCs with 5% SA-CSO increased mean size from 187.6±7.0nm to 220.1±11.9nm, and modified surface charge, with zeta potentials being -18.3±0.9mV and +25.8±1.1mV for uncoated and coated DST-NLCs respectively. Transmission electron microscopy showed all formulations comprised approximately spherical particles. DST-NLCs, coated and uncoated with CSO-SA, exhibited particle size stability over 60days, when stored at 4-8°C. However, NLCs coated with CSO (without conjugation) showed aggregation when stored at 4-8°C after 30days. The measured particle size for all formulations stored at 25°C suggested aggregation, which was greatest for DST-NLCs coated with 10% CSO-SA and 5% CSO. All nanoparticle formulations exhibited rapid release in an in vitro release study, with uncoated NLCs exhibiting the fastest release rate. Using a Franz diffusion cell, no dutasteride permeated through pig ear skin after 48h, such that it was not detected in the receptor chamber for all samples. The amount of dutasteride in the skin was significantly different (p<0.05) for DST-NLCs (6.09±1.09μg/cm2) without coating and those coated with 5% CSO-SA (2.82±0.40μg/cm2), 10% CSO-SA (2.70±0.35μg/cm2) and CSO (2.11±0.64μg/cm2). There was a significant difference (p<0.05) in the cytotoxicity (IC50) between dutasteride alone and in the nanoparticles. DST-NLCs coated and uncoated with CSO-SA increased the maximum non-toxic concentration by 20-fold compared to dutasteride alone. These studies indicate that a stearic acid-chitosan conjugate was successfully prepared, and modified the surface charge of DST-NLCs from negative to positive. These stable, less cytotoxic, positively-charged dutasteride-loaded nanostructured lipid carriers, with stearic acid-chitosan oligomer conjugate, are appropriate for topical delivery and have potential for promotion of hair growth.
    Matched MeSH terms: Organ Culture Techniques
  6. Annuar N, Spier RE
    Med J Malaysia, 2004 May;59 Suppl B:204-5.
    PMID: 15468889
    Selections of collagen available commercially were tested for their biocompatibility as scaffold to promote cell growth in vitro via simple collagen fast test and cultivation of mammalian cells on the selected type of collagen. It was found that collagen type C9791 promotes the highest degree of aggregation as well as cells growth. This preliminary study also indicated potential use of collagen as scaffold in engineered tissue.
    Matched MeSH terms: Organ Culture Techniques/methods
  7. Wan Hassan WN, Stephenson PA, Waddington RJ, Sloan AJ
    J Dent, 2012 May;40(5):406-15.
    PMID: 22342686 DOI: 10.1016/j.jdent.2012.02.002
    Root resorption is a ubiquitous although undesirable sequela to orthodontic treatment. Current methods to investigate the pathophysiology have certain limitations. In pursuit to understand and develop treatment modalities for orthodontically induced root resorption, the ability to manipulate cells within their natural extracellular matrix in a three dimensional organotypic model is invaluable. The study aimed to develop a laboratory-based organotypic model to investigate the effect of orthodontic forces on the periodontium.
    Matched MeSH terms: Organ Culture Techniques
  8. Rotter N, Stölzel K, Endres M, Leinhase I, Ziegelaar BW, Sittinger M
    Med J Malaysia, 2004 May;59 Suppl B:35-6.
    PMID: 15468806
    Matched MeSH terms: Organ Culture Techniques
  9. Al-Salihi KA, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:202-3.
    PMID: 15468888
    In this study the surface properties of two particulate coral and polyhydroxybutrate (PHB) were studied in order to characterize them prior to use in composite production. Coral powder and PHB particle were evaluated using scanning electron microscopy and confocal laser scanning microscopy, to measure surface porosity and pores size. The results showed that coral powder has multiple pleomorphic micropores cross each others give appearance of micro-interconnectivity. Some pore reached to 18 microm with an average porosity of 70%. PHB revealed multiple different size pores extended to the depth, with an average some times reach 25 microm and porosity 45%. These findings demonstrate that both coral and PHB have excellent pores size and porosity that facilitate bone in growth, vascular invasion and bone development. We believe that incorporation of coral powder into PHB will make an excellent composite scaffold for tissue engineering.
    Matched MeSH terms: Organ Culture Techniques/methods
  10. Al-Salihi KA, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:45-6.
    PMID: 15468811
    This study was designed to evaluate the ability of natural coral implant to provide an environment for marrow cells to differentiate into osteoblasts and function suitable for mineralized tissue formation. DNA content, alkaline phosptatase (ALP) activity, calcium (Ca) content and mineralized nodules, were measured at day 3, day 7 and day 14, in rat bone marrow stromal cells cultured with coral discs glass discs, while cells alone and coral disc alone were cultured as control. DNA content, ALP activity, Ca content measurements showed no difference between coral, glass and cells groups at 3 day which were higher than control (coral disc alone), but there were higher measurement at day 7 and 14 in the cell cultured on coral than on glass discs, control cells and control coral discs. Mineralized nodules formation (both in area and number) was more predominant on the coral surface than in control groups. These results showed that natural coral implant provided excellent and favorable situation for marrow cell to differentiate to osteoblasts, lead to large amount of mineralized tissue formation on coral surface. This in vitro result could explain the rapid bone bonding of coral in vivo.
    Matched MeSH terms: Organ Culture Techniques*
  11. Di Silvio L, Gurav N, Sambrook R
    Med J Malaysia, 2004 May;59 Suppl B:89-90.
    PMID: 15468832
    The ability to regenerate new bone for skeletal use is a major clinical need. In this study, two novel porous calcium phosphate materials pure HA and biphasic HA/beta-Tricalcium phosphate (HA/beta -TCP) were evaluated as potential scaffolds for cell-seeded bone substitutes using human osteoblast-like cells (HOS) and primary human mesenchymal stem cells (hMSCs). A high rate of proliferation was observed on both scaffolds. A greater increase in alkaline phosphatase (ALP- an indicator of osteoblast differentiation) was observed on HA/beta -TCP compared to HA. This observation indicates that HA/TCP may play a role in inducing osteoblastic differentiation. Although further evaluation is required both materials show potential as innovative synthetic substitutes for tissue engineered scaffolds.
    Matched MeSH terms: Organ Culture Techniques/standards*
  12. Norazril SA, Aminuddin BS, Norhayati MM, Mazlyzam AL, Fauziah O, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:186-7.
    PMID: 15468880
    Chitosan has similar structure to glycosaminoglycans in the tissue, thus may be a good candidates as tissue engineering scaffold. However, to improve their cell attachment ability, we try to incorporate this natural polymer with collagen by combining it via cross-linking process. In this preliminary study we evaluate the cell attachment ability of chitosan-collagen scaffold versus chitosan scaffold alone. Chitosan and collagen were dissolved in 1% acetic acid and then were frozen for 24 hours before the lyophilizing process. Human skin fibroblasts were seeded into both scaffold and were cultured in F12: DMEM (1:1). Metabolic activity assay were used to evaluate cell attachment ability of scaffold for a period of 1, 3, 7 and 14 days. Scanning electron micrographs shows good cell morphology on chitosan-collagen hybrid scaffold. In conclusion, the incorporation of collagen to chitosan will enhance its cell attachment ability and will be a potential scaffold in tissue engineering.
    Matched MeSH terms: Organ Culture Techniques/methods*
  13. Tan KK, Aminuddin BS, Tan GH, Sabarul Afian M, Ng MH, Fauziah O, et al.
    Med J Malaysia, 2004 May;59 Suppl B:43-4.
    PMID: 15468810
    The strategy used to generate tissue-engineered bone construct, in view of future clinical application is presented here. Osteoprogenitor cells from periosteum of consenting scoliosis patients were isolated. Growth factors viz TGF-B2, bFGF and IGF-1 were used in concert to increase cell proliferation during in vitro cell expansion. Porous tricalcium phosphate (TCP)-hydroxyapatite (HA) scaffold was used as the scaffold to form 3D bone construct. We found that the addition of growth factors, greatly increased cell growth by 2 to 7 fold. TCP/HA proved to be the ideal scaffold for cell attachment and proliferation. Hence, this model will be further carried out on animal trial.
    Matched MeSH terms: Organ Culture Techniques
  14. Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:30-1.
    PMID: 15468804
    Patient own fibrin may act as the safest, cheapest and immediate available biodegradable scaffold material in clinical 1 tissue engineering. This study investigated the feasibility of using patient own fibrin isolated from whole blood to construct a new human cartilage, skin and bone. Constructed in vitro tissues were implanted on the dorsal part of the nude mice for in vivo maturation. After 8 weeks of implantation, the engineered tissues were removed for histological analysis. Our results demonstrated autologous fibrin has great potential as clinical scaffold material to construct various human tissues.
    Matched MeSH terms: Organ Culture Techniques
  15. Nather A
    Med J Malaysia, 2004 May;59 Suppl B:37-8.
    PMID: 15468807
    Matched MeSH terms: Organ Culture Techniques/methods*
  16. Loh WM, Ling WC, Murugan DD, Lau YS, Achike FI, Vanhoutte PM, et al.
    Vascul. Pharmacol., 2015 Aug;71:151-8.
    PMID: 25869508 DOI: 10.1016/j.vph.2015.03.011
    Des-aspartate angiotensin I (DAA-I), an endogenous nonapeptide, counteracts several effects of angiotensin II on vascular tone. The aim of this study was to investigate the acute protective effect of DAA-I on endothelial function in the spontaneously hypertensive rat (SHR) as well as its effect on angiotensin II-induced contractions and oxidative stress. Aortic rings were incubated with DAA-I (0.1μM) for 30min prior to the assessment of angiotensin II-induced contractions (0.1nM-10μM) in WKY and SHR aortas. Total nitrate and nitrite levels were assessed using a colorimetric method and reactive oxygen species (ROS) were measured by dihydroethidium (DHE) fluorescence and lucigenin-enhanced chemiluminescence. The effect of DAA-I was also assessed against endothelium-dependent and -independent relaxations to acetylcholine and sodium nitroprusside, respectively. Angiotensin II-induced contractions were significantly reduced by DAA-I, losartan and tempol. Incubation with ODQ (soluble guanylyl cyclase inhibitor) and removal of the endothelium prevented the reduction of angiotensin II-induced contractions by DAA-I. Total nitrate and nitrite levels were increased in DAA-I, losartan and tempol treated-SHR tissues while ROS level was reduced by DAA-I and the latter inhibitors. In addition, DAA-I significantly improved the impaired acetylcholine-induced relaxation in SHR aortas whilst sodium nitroprusside-induced endothelium-independent relaxation remained unaffected. The present findings indicate that improvement of endothelial function by DAA-I in the SHR aorta is mediated through endothelium-dependent release of nitric oxide and inhibition of angiotensin II-induced oxidative stress.
    Matched MeSH terms: Organ Culture Techniques
  17. Machha A, Achike FI, Mustafa AM, Mustafa MR
    Nitric Oxide, 2007 Jun;16(4):442-7.
    PMID: 17513143 DOI: 10.1016/j.niox.2007.04.001
    The present work examined the effect of chronic oral administration of quercetin, a flavonoid antioxidant, on blood glucose, vascular function and oxidative stress in STZ-induced diabetic rats. Male Wistar-Kyoto (WKY) rats were randomized into euglycemic, untreated diabetic, vehicle (1% w/v methylcellulose)-treated diabetic, which served as control, or quercetin (10mgkg(-1) body weight)-treated diabetic groups and treated orally for 6 weeks. Quercetin treatment reduced blood glucose level in diabetic rats. Impaired relaxations to endothelium-dependent vasodilator acetylcholine (ACh) and enhanced vasoconstriction responses to alpha(1)-adrenoceptor agonist phenylephrine (PE) in diabetic rat aortic rings were restored to euglycemic levels by quercetin treatment. Pretreatment with N(omega)-nitro-l-arginine methyl ester (l-NAME, 10microM) or methylene blue (10microM) completely blocked but indomethacin (10microM) did not affect relaxations to ACh in aortic rings from vehicle- or quercetin-treated diabetic rats. PE-induced vasoconstriction with an essentially similar magnitude in vehicle- or quercetin-treated diabetic rat aortic rings pretreated with l-NAME (10microM) plus indomethacin (10microM). Quercetin treatment reduced plasma malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HNE) content as well as increased superoxide dismutase activity and total antioxidant capacity in diabetic rats. From the present study, it can be concluded that quercetin administration to diabetic rats restores vascular function, probably through enhancement in the bioavailability of endothelium-derived nitric oxide coupled to reduced blood glucose level and oxidative stress.
    Matched MeSH terms: Organ Culture Techniques
  18. Greenwood M, Greenwood MP, Mecawi AS, Loh SY, Rodrigues JA, Paton JF, et al.
    Mol Brain, 2015 Oct 26;8(1):68.
    PMID: 26503226 DOI: 10.1186/s13041-015-0159-1
    BACKGROUND: Arginine vasopressin (AVP), a neuropeptide hormone that functions in the regulation of water homeostasis by controlling water re-absorption at kidneys, is synthesised in supraoptic nucleus and paraventricular nucleus of the hypothalamus. An increase in plasma osmolality stimulates secretion of AVP to blood circulation and induces AVP synthesis in these nuclei. Although studies on mechanism of AVP transcriptional regulation in hypothalamus proposed that cAMP and glucocorticoids positively and negatively regulate Avp expression, respectively, the molecular mechanisms have remained elusive. Recently, we identified CREB3L1 (cAMP-responsive element binding protein 3 like 1) as a putative transcription factor of Avp transcription in the rat hypothalamus. However the mechanism of how CREB3L1 is regulated in response of hyperosmotic stress in the neurons of hypothalamus has never been reported. This study aims to investigate effect of previously reported regulators (cAMP and glucocorticoid) of Avp transcription on transcription factor CREB3L1 in order to establish a molecular explanation for cAMP and glucocorticoids effect on AVP expression.

    RESULTS: The effect of cAMP and glucocorticoid treatment on Creb3l1 was investigated in both AtT20 cells and hypothalamic organotypic cultures. The expression of Creb3l1 was increased in both mRNA and protein level by treatment with forskolin, which raises intracellular cAMP levels. Activation of cAMP by forskolin also increased Avp promoter activity in AtT20 cells and this effect was blunted by shRNA mediated silencing of Creb3l1. The forskolin induced increase in Creb3l1 expression was diminished by combined treatment with dexamethasone, and, in vivo, intraperitoneal dexamethasone injection blunted the increase in Creb3l1 and Avp expression induced by hyperosmotic stress.

    CONCLUSION: Here we shows that cAMP and glucocorticoid positively and negatively regulate Creb3l1 expression in the rat hypothalamus, respectively, and regulation of cAMP on AVP expression is mediated through CREB3L1. This data provides the connection between CREB3L1, a newly identified transcription factor of AVP expression, with the previously proposed mechanism of Avp transcription which extends our understanding in transcription regulation of Avp in the hypothalamus.

    Matched MeSH terms: Organ Culture Techniques
  19. Greenwood M, Bordieri L, Greenwood MP, Rosso Melo M, Colombari DS, Colombari E, et al.
    J Neurosci, 2014 Mar 12;34(11):3810-20.
    PMID: 24623760 DOI: 10.1523/JNEUROSCI.4343-13.2014
    Arginine vasopressin (AVP) is a neurohypophysial hormone regulating hydromineral homeostasis. Here we show that the mRNA encoding cAMP responsive element-binding protein-3 like-1 (CREB3L1), a transcription factor of the CREB/activating transcription factor (ATF) family, increases in expression in parallel with AVP expression in supraoptic nuclei (SONs) and paraventicular nuclei (PVNs) of dehydrated (DH) and salt-loaded (SL) rats, compared with euhydrated (EH) controls. In EH animals, CREB3L1 protein is expressed in glial cells, but only at a low level in SON and PVN neurons, whereas robust upregulation in AVP neurons accompanied DH and SL rats. Concomitantly, CREB3L1 is activated by cleavage, with the N-terminal domain translocating from the Golgi, via the cytosol, to the nucleus. We also show that CREB3L1 mRNA levels correlate with AVP transcription level in SONs and PVNs following sodium depletion, and as a consequence of diurnal rhythm in the suprachiasmatic nucleus. We tested the hypothesis that CREB3L1 activates AVP gene transcription. Both full-length and constitutively active forms of CREB3L1 (CREB3L1CA) induce the expression of rat AVP promoter-luciferase reporter constructs, whereas a dominant-negative mutant reduces expression. Rat AVP promoter deletion constructs revealed that CRE-like and G-box sequences in the region between -170 and -120 bp are important for CREB3L1 actions. Direct binding of CREB3L1 to the AVP promoter was shown by chromatin immunoprecipitation both in vitro and in the SON itself. Injection of a lentiviral vector expressing CREB3L1CA into rat SONs and PVNs resulted in increased AVP biosynthesis. We thus identify CREB3L1 as a regulator of AVP transcription in the rat hypothalamus.
    Matched MeSH terms: Organ Culture Techniques
  20. Singh I, Nair RS, Gan S, Cheong V, Morris A
    Pharm Dev Technol, 2019 Apr;24(4):448-454.
    PMID: 30084268 DOI: 10.1080/10837450.2018.1509347
    The drawbacks associated with chemical skin permeation enhancers such as skin irritation and toxicity necessitated the research to focus on potential permeation enhancers with a perceived lower toxicity. Crude palm oil (CPO) is obtained by direct compression of the mesocarp of the fruit of the oil palm belonging to the genus Elaeis. In this research, CPO and tocotrienol-rich fraction (TRF) of palm oil were evaluated for the first time as skin permeation enhancers using full-thickness human skin. The in vitro permeation experiments were conducted using excised human skin mounted in static upright 'Franz-type' diffusion cells. The drugs selected to evaluate the enhancing effects of these palm oil derivatives were 5-fluorouracil, lidocaine and ibuprofen: compounds covering a wide range of Log p values. It was demonstrated that CPO and TRF were capable of enhancing the percutaneous permeation of drugs across full-thickness human skin in vitro. Both TRF and CPO were shown to significantly enhance the permeation of ibuprofen with flux values of 30.6 µg/cm2 h and 23.0 µg/cm2 h respectively, compared to the control with a flux of 16.2 µg/cm2 h. The outcome of this research opens further scope for investigation on the transdermal penetration enhancement activity of pure compounds derived from palm oil.
    Matched MeSH terms: Organ Culture Techniques
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links