Displaying publications 1 - 20 of 97 in total

Abstract:
Sort:
  1. Wong WT, Ismail M, Imam MU, Zhang YD
    BMC Complement Altern Med, 2016 Jul 28;16:252.
    PMID: 27465266 DOI: 10.1186/s12906-016-1223-9
    Rice bran is bioactive-rich and has proven health benefits for humans. Moreover, its source, the brown rice has antioxidant, hypolipidemic and other functional properties that are increasingly making it a nutritional staple especially in Asian countries. This study investigated the antiplatelet aggregation mechanisms of crude hexane/methanolic rice bran extract, in which policosanol was the targeted bioactive. Platelets play a vital role in pathogenesis of atherosclerosis and cardiovascular diseases, and their increased activities could potentially cause arterial thrombus formation or severe bleeding disorders. Thus, in this study, platelet aggregation and adhesion of platelets to major components of basal lamina were examined in vitro. In addition, cellular protein secretion was quantified as a measurement of platelet activation.
    Matched MeSH terms: Oryza/chemistry*
  2. Rozainee M, Ngo SP, Salema AA, Tan KG, Ariffin M, Zainura ZN
    Bioresour Technol, 2008 Mar;99(4):703-13.
    PMID: 17379511
    This study was focused on investigating the optimum fluidising velocity during the combustion of rice husk in a bench-scale fluidised bed combustor (ID 210mm) to obtain low carbon ash in the amorphous form. When all other parameters are held constant, the optimum fluidizing velocity aids in almost complete combustion, thereby releasing the entrapped carbon for further conversion. This results in ash with consistently low carbon content (less than 2wt%). The range of fluidising velocities investigated was from as low as 1.5U(mf) to as high as 8U(mf). It was found that the optimum fluidising velocity was approximately 3.3U(mf) as the mixing of rice husk with the bed was good with a high degree of penetration into the sand bed. The resulting ash retained its amorphous form with low residual carbon content (at 2.88wt%) and minimal sand contamination as shown by the X-ray diffraction analysis.
    Matched MeSH terms: Oryza/chemistry*
  3. Ong ST, Lee CK, Zainal Z
    Bioresour Technol, 2007 Nov;98(15):2792-9.
    PMID: 17400446
    Wastewaters from textile industries may contain a variety of dyes that have to be removed before their discharge into waterways. Rice hull, an agricultural by-product, was modified using ethylenediamine to introduce active sites on its surface to enable it to function as a sorbent for both basic and reactive dyes. The sorption characteristics of Basic Blue 3 (BB3) and Reactive Orange 16 (RO16) by ethylenediamine modified rice hull (MRH) were studied under various experimental conditions. Sorption was pH and concentration dependent. Simultaneous removal of BB3 and RO16 occurred at pH greater than 4. The kinetics of dye sorption fitted a pseudo-second order rate expression. Increase in agitation rate had no effect on the sorption of BB3 but increased uptake of RO16 on MRH. Decreasing particle size increased the uptake of dyes in binary dye solutions. Equilibrium data could be fitted into both the Langmuir and Freundlich isotherms. Maximum sorption capacities calculated from the Langmuir model are 14.68 and 60.24 mg/g for BB3 and RO16, respectively in binary dye solutions. This corresponds to an enhancement of 4.5 and 2.4 fold, respectively, compared to single dye solutions. MRH therefore has the potential of being used as an efficient sorbent for the removal of both dyes in textile wastewaters.
    Matched MeSH terms: Oryza/chemistry*
  4. Mohd NI, Gopal K, Raoov M, Mohamad S, Yahaya N, Lim V, et al.
    Talanta, 2019 May 01;196:217-225.
    PMID: 30683354 DOI: 10.1016/j.talanta.2018.12.043
    The non-ionic silicone surfactant (OFX 0309) has been applied in cloud point extraction for the extraction of triazine herbicides in food samples. Evidence has shown that the non-ionic silicone surfactant demonstrated a good performance as an extractor toward triazine herbicides. In this present study, OFX 0309 surfactant was combined with activated charcoal (AC) due to their valuable properties. Activated charcoal modified with non-ionic silicone surfactant coated with magnetic nanoparticles (AC-OFX MNPs) was synthesized and characterized by FT-IR, VSM, SEM, TEM and BET. This novel material was applied as a magnetic adsorbent for the pre-concentration and separation of triazine herbicides due to hydrophobic interaction between polysiloxane polyether of OFX 0309 surfactant and triazine herbicides. Under optimal conditions, the proposed magnetic solid phase extraction method using AC-OFX MNPs adsorbent was applied to extract triazine herbicides from selected milk and rice samples using high performance liquid chromatography coupled with diode array detector. The validation method revealed a good linearity (1 - 500 μg L-1) with the coefficient of determination (R2) in the range of 0.992-0.998 for the samples. The limits of detection (LOD) of the developed method were 0.04 - 0.05 µg L-1 (milk sample) and 0.02 - 0.05 µg L-1 (rice sample). The limits of quantification (LOQ) were 0.134 - 0.176 µg L-1 (milk sample) and 0.075 - 0.159 µg L-1 (rice sample). The recoveries of the triazine compounds ranged from 81% to 109% in spiked milk samples and from 81% to 111% in spiked rice samples, with relative standard deviations (RSD) values lower than 13.5% and 12.1% for milk and rice samples, respectively. To the best of our knowledge, this is the first study that have investigated the use of magnetic nanoparticles coated activated charcoal modified with OFX 0309 surfactant for pretreatment of triazine herbicides in food samples analysis for simultaneous separation of organic pollutants.
    Matched MeSH terms: Oryza/chemistry*
  5. Al-Shorgani NK, Kalil MS, Yusoff WM
    Bioprocess Biosyst Eng, 2012 Jun;35(5):817-26.
    PMID: 22147105 DOI: 10.1007/s00449-011-0664-2
    Rice bran (RB) and de-oiled rice bran (DRB) have been treated and used as the carbon source in acetone-butanol-ethanol (ABE) production using Clostridium saccharoperbutylacetonicum N1-4. The results showed that pretreated DRB produced more ABE than pretreated RB. Dilute sulfuric acid was the most suitable treatment method among the various pretreatment methods that were applied. The highest ABE obtained was 12.13 g/L, including 7.72 g/L of biobutanol, from sulfuric acid. The enzymatic hydrolysate of DRB (ESADRB), when treated with XAD-4 resin, resulted in an ABE productivity and yield of 0.1 g/L h and 0.44 g/g, respectively. The results also showed that the choice of pretreatment method for RB and DRB is an important factor in butanol production.
    Matched MeSH terms: Oryza/chemistry*
  6. Ali N, El-Harbawi M, Jabal AA, Yin CY
    Environ Technol, 2012 Feb-Mar;33(4-6):481-6.
    PMID: 22629620
    The characteristics and water/oil sorption effectiveness ofkapok fibre, sugarcane bagasse and rice husks have been compared. The three biomass types were subjected to field emission scanning electron microscopy-energy dispersive X-ray spectroscopy and surface tension analyses for liquid-air and oil-water systems were conducted. Both kapok fibre and sugarcane bagasse exhibit excellent oil sorption capabilities for diesel, crude, new engine and used engine oils as their oil sorption capacities all exceed 10 g/g. The synthetic sorbent exhibits oil sorption capacities comparable with sugarcane bagasse, while rice husks exhibit the lowest oil sorption capacities among all the sorbents. Kapok fibre shows overwhelmingly high oil-to-water sorption (O/W) ratios ranging from 19.35 to 201.53 while sugarcane bagasse, rice husks and synthetic sorbent have significantly lower O/W ratios (0.76-2.69). This suggests that kapok fibre is a highly effective oil sorbent even in well-mixed oil-water media. An oil sorbent suitability matrix is proposed to aid stakeholders in evaluating customized oil removal usage of the natural sorbents.
    Matched MeSH terms: Oryza/chemistry*
  7. Kabeir BM, Abd-Aziz S, Muhammad K, Shuhaimi M, Yazid AM
    Lett Appl Microbiol, 2005;41(2):125-31.
    PMID: 16033508
    To develop medida, a Sudanese fermented thin porridge as a probiotic dietary adjunct with high total solids.
    Matched MeSH terms: Oryza/chemistry*
  8. Cheng Z, Li HH, Wang HS, Zhu XM, Sthiannopkao S, Kim KW, et al.
    Environ Res, 2016 Oct;150:423-30.
    PMID: 27372065 DOI: 10.1016/j.envres.2016.06.011
    Phthalate esters are used in a wide variety of consumer products, and human exposure to this class of compounds is widespread. Nevertheless, studies on dietary exposure of human to phthalates are limited. In this study, to assess the daily intakes of phthalate esters and the possible adverse health impacts, different food samples were collected from three areas of Cambodia, one of the poorest countries in the world. The ∑phthalate ester concentrations in Kampong Cham, Kratie and Kandal provinces ranged from 0.05 to 2.34 (median 0.88) μgg(-1), 0.19-1.65 (median 0.86) μgg(-1) and 0.24-3.05 (median 0.59) μgg(-1) wet weight (ww), respectively. Di-2-Ethylhexyl phthalate (DEHP) and diisobutyl phthalate (DiBP) were the predominant compounds among all foodstuffs. The estimated daily intake (EDI) of phthalate esters for the general population in Kampong Cham, Kratie and Kandal was 34.3, 35.6 and 35.8μgkg(-1) bw d(-1), respectively. The dietary daily intake of DEHP, benzylbutyl phthalate (BBP) and di-n-butyl phthalate (DBP) in Kampong Cham, Kratie and Kandal were below the tolerable daily intakes (TDI) imposed by the European Food Safety Authority (EFSA) and reference doses (RfD) imposed by The United States Environmental Protection Agency (USEPA). Rice contributed the greatest quantity of DEHP to the daily intake in Cambodia so may deserve further exploration. To our knowledge, this is the first study to investigate the occurrence and the daily intakes of phthalate esters in Cambodia.
    Matched MeSH terms: Oryza/chemistry*
  9. Jaafar M, Marcilla AL, Felipe-Sotelo M, Ward NI
    Food Chem, 2018 Apr 25;246:258-265.
    PMID: 29291847 DOI: 10.1016/j.foodchem.2017.11.019
    Water from La Pampa, Argentina, was used for washing and cooking rice to examine the in-situ impact of using naturally-contaminated water for food preparation on the elemental dietary intake. Whilst washing with the control tap water (28 μg/L As) reduced the concentration of As in rice by 23%, the use of different well waters (281-1144 μg/L) increased As levels significantly (48-227%) in comparison with the original concentration in the rice (0.056 µg/g). Cooking the rice at a low water-to-rice ratio (2:1) using modern methods increased the levels of As in the cooked samples by 2-3 orders of magnitude for both pre-washed and un-washed rice. Similar trends were observed for vanadium. Although the levels of manganese, iron, copper, zinc and molybdenum in rice were reduced during washing and cooking for most water samples, the molybdenum concentration in the cooked rice doubled (2.2-2.9 µg/g) when using water containing >1 mg/L Mo.
    Matched MeSH terms: Oryza/chemistry*
  10. Adam F, Muniandy L, Thankappan R
    J Colloid Interface Sci, 2013 Sep 15;406:209-16.
    PMID: 23800370 DOI: 10.1016/j.jcis.2013.05.066
    Titania and ceria incorporated rice husk silica based catalyst was synthesized via sol-gel method using CTAB and glycerol as surface directing agents at room temperature and labeled as RHS-50Ti10Ce. The catalyst was used to study the adsorption and photodegradation of methylene blue (MB) under UV irradiation. The powder XRD pattern of RHS-50Ti10Ce was much broader (2θ=25-30°) than that of the parent RHS (2θ=22°). The catalyst exhibited type IV isotherm with H3 hysteresis loop, and the TEM images showed partially ordered pore arrangements. The TGA-DTG thermograms confirmed the complete removal of the templates after calcination at 500°C. RHS-50Ti10Ce exhibited excellent adsorption capability with more than 99% removal of MB from a 40 mg L(-1) solution in just 15 min. It also decolorized an 80 mg L(-1) MB solution under UV irradiation in 210 min, which was comparable with the commercialized pure anatase TiO2.
    Matched MeSH terms: Oryza/chemistry
  11. Ghasemzadeh A, Jaafar HZ, Juraimi AS, Tayebi-Meigooni A
    Molecules, 2015 Jun 11;20(6):10822-38.
    PMID: 26111171 DOI: 10.3390/molecules200610822
    Secondary metabolite contents (total phenolic, flavonoid, tocopherol, and tocotrienol) and antioxidant activities of Hashemi rice bran extracts obtained by ultrasound-assisted and traditional solvent (ethanol and 50:50 (v/v) ethanol-water) extraction techniques were compared. Phenolic and, flavonoid compounds were identified using ultra-high performance liquid chromatography and method validation was performed. Significant differences (p < 0.05) were observed among the different extraction techniques upon comparison of phytochemical contents and antioxidant activities. The extracts obtained using the ethanol-water (50:50 v/v) ultrasonic technique showed the highest amounts of total phenolics (288.40 mg/100 g dry material (DM)), total flavonoids (156.20 mg/100 g DM), and total tocotrienols (56.23 mg/100 g DM), and the highest antioxidant activity (84.21% 1,1-diphenyl-2-picrylhydrazyl (DPPH), 65.27% β-carotene-linoleic bleaching and 82.20% nitric oxide scavenging activity). Secondary metabolite contents and antioxidant activities of the rice bran extracts varied depending of the extraction method used, and according to their effectiveness, these were organized in a decreasing order as follows: ethanol-water (50:50 v/v) ultrasonic, ethanol-water (50:50 v/v) maceration, ethanol ultrasonic and ethanol maceration methods. Ferulic, gallic and chlorogenic acids were the most abundant phenolic compounds in rice bran extracts. The phytochemical constituents of Hashemi rice bran and its antioxidant properties provides insights into its potential application to promote health.
    Matched MeSH terms: Oryza/chemistry*
  12. Nizamuddin S, Siddiqui MTH, Baloch HA, Mubarak NM, Griffin G, Madapusi S, et al.
    Environ Sci Pollut Res Int, 2018 Jun;25(18):17529-17539.
    PMID: 29663294 DOI: 10.1007/s11356-018-1876-7
    The process parameters of microwave hydrothermal carbonization (MHTC) have significant effect on yield of hydrochar. This study discusses the effect of process parameters on hydrochar yield produced from MHTC of rice husk. Results revealed that, over the ranges tested, a lower temperature, lower reaction time, lower biomass to water ratio, and higher particle size produce more hydrochar. Maximum hydrochar yield of 62.8% was obtained at 1000 W, 220 °C, and 5 min. The higher heating value (HHV) was improved significantly from 6.80 MJ/kg of rice husk to 16.10 MJ/kg of hydrochar. Elemental analysis results showed that the carbon content increased and oxygen content decreased in hydrochar from 25.9 to 47.2% and 68.5 to 47.0%, respectively, improving the energy and combustion properties. SEM analysis exhibited modification in structure of rice husk and improvement in porosity after MHTC, which was further confirmed from BET surface analysis. The BET surface area increased from 25.0656 m2/g (rice husk) to 92.6832 m2/g (hydrochar). Thermal stability of hydrochar was improved from 340 °C for rice husk to 370 °C for hydrochar.
    Matched MeSH terms: Oryza/chemistry*
  13. Prasetyoko D, Ramli Z, Endud S, Hamdan H, Sulikowski B
    Waste Manag, 2006;26(10):1173-9.
    PMID: 16274981
    White rice husk ash (RHA), an agriculture waste containing crystalline tridymite and alpha-cristobalite, was used as a silica source for zeolite Beta synthesis. The crystallization of zeolite Beta from RHA at 150 degrees C in the presence of tetraethylammonium hydroxide was monitored by XRD, FTIR and (29)Si MAS NMR techniques. It was found that zeolite Beta started to form after 12h and the complete crystallization of zeolite Beta phase was achieved after 2d. XRD, (29)Si MAS NMR and solid yield studies indicate that the transformation mechanism of silica present in RHA to zeolite Beta involves dissolution of the ash, formation of an amorphous aluminosilicate after 6h of crystallization, followed by dissolution in the mother liquor and final transformation to pure zeolite Beta crystals.
    Matched MeSH terms: Oryza/chemistry*
  14. Sunthonkun P, Palajai R, Somboon P, Suan CL, Ungsurangsri M, Soontorngun N
    Sci Rep, 2019 12 02;9(1):18061.
    PMID: 31792269 DOI: 10.1038/s41598-019-54448-9
    Benefits of whole grains as dietary supplements and active ingredients in health products have been promoted. Despite being neglected as an agricultural byproduct of polished rice, pigmented rice bran has emerged as a promising source of natural anti-aging compounds. Indeed, the extract of red rice bran Hom Dang cultivar contained rich phenolic acids and flavonoids. It displayed high antioxidant activities in vitro and in vivo assays. Using yeast model, extract and bioactive compounds, quercetin and protocatechuic acid found in the rice bran pericarp, effectively reduced levels of intracellular reactive oxygen species (ROS), restored plasma membrane damages and prolonged life-span of pre-treated wild-yeast cells. Importantly, these molecules modulated life span-extension through a mechanism of ROS reduction that resembles to that operated under the highly conserved Tor1- and Sir2-dependent signaling pathways, with the human homologs TORC1 and SIRT1, respectively. The key longevity factors Sch9 and Rim15 kinases, Msn2/4 regulators and a novel transcription factor Asg1, the antioxidant enzymes superoxide dismutases and glutathione peroxidases played important role in mediating longevity. Yeast clearly provides an instrumental platform for rapid screening of compounds with anti-aging efficacies and advances knowledge in the molecular study of ageing.
    Matched MeSH terms: Oryza/chemistry*
  15. Daffalla SB, Mukhtar H, Shaharun MS
    PLoS One, 2020;15(12):e0243540.
    PMID: 33275643 DOI: 10.1371/journal.pone.0243540
    Rice husk is a base adsorbent for pollutant removal. It is a cost-effective material and a renewable resource. This study provides the physicochemical characterization of chemically and thermally treated rice husk adsorbents for phenol removal from aqueous solutions. We revealed new functional groups on rice husk adsorbents by Fourier transform infrared spectroscopy, and observed major changes in the pore structure (from macro-mesopores to micro-mesopores) of the developed rice husk adsorbents using scanning electron microscopy. Additionally, we studied their surface area and pore size distribution, and found a greater enhancement of the morphological structure of the thermally treated rice husk compared with that chemically treated. Thermally treated adsorbents presented a higher surface area (24-201 m2.g-1) than those chemically treated (3.2 m2.g-1). The thermal and chemical modifications of rice husk resulted in phenol removal efficiencies of 36%-64% and 28%, respectively. Thus, we recommend using thermally treated rice husk as a promising adsorbent for phenol removal from aqueous solutions.
    Matched MeSH terms: Oryza/chemistry*
  16. Murtey MD, Seeni A
    J Sci Food Agric, 2020 Sep;100(12):4347-4352.
    PMID: 32248531 DOI: 10.1002/jsfa.10406
    Rice serves as a staple food for one-half of the global population. However, rice production, particularly the rice milling process, results in a substantial amount of paddy waste products (e.g. bran, husk and straw) annually. Because the potentials of bran have been extensively explored in prior studies, the present review focuses exclusively on the phytochemical analysis and pharmacological potentials of husk and straw. This comprehensive review establishes a solid foundation for promoting husk and straw as medicinal substances given their promising pharmacological potentials as bioactive compound sources with therapeutic functions. © 2020 Society of Chemical Industry.
    Matched MeSH terms: Oryza/chemistry*
  17. Yavari S, Malakahmad A, Sapari NB
    Environ Sci Pollut Res Int, 2016 Sep;23(18):17928-40.
    PMID: 27255313 DOI: 10.1007/s11356-016-6943-3
    Biochar is the bio-solid material produced by pyrolysis. The biochar properties are controlled by feedstock and pyrolysis variables. In this study, the impacts of these production variables on biochar yield and physicochemical properties including pH, cation exchange capacity (CEC), total organic carbon (TOC) content, surface area, and pore volume and size were investigated. Rice husk (RH) and oil palm empty fruit bunches (EFB) were used as biomass. The biochars were produced at temperature range of 300 to 700 °C, heating rate of 3 to 10 °C/min and retention time of 1 to 3 h. The pyrolysis conditions were optimized using response surface methodology (RSM) technique to maximize the values of the responses. Analysis of variance (ANOVA) of the results demonstrated that the data fitted well to the linear and quadratic equations. Temperature was found to be the most effective parameter on the responses followed by retention time and heating rate, sequentially. CEC, TOC, surface area, and pore characteristics were evaluated as biochar properties determining their sorption potential. The optimum conditions for the maximum values of the properties were temperatures of 700 and 493.44 °C and time of 3 and 1 h for RH and EFB biochars, respectively. Heating rate at 3 °C/min was found to be the best rate for both biochars. The structure of EFB biomass was more sensitive to heating than rice husk. The biomass type and the production variables were demonstrated as the direct effective factors on biochar yield and physicochemical properties.
    Matched MeSH terms: Oryza/chemistry*
  18. Nazli MH, Halim RA, Abdullah AM, Hussin G, Samsudin AA
    Trop Anim Health Prod, 2018 Jun;50(5):1119-1124.
    PMID: 29455428 DOI: 10.1007/s11250-018-1538-2
    The potential of using whole corn crop silage and rice straw as an alternative feed for the beef cattle based on the intake and growth performance were evaluated. Using randomised completely block design, nine adult Mafriwal cattle were blocked intro three groups and treated with three different forage diets supplemented with 20% pelleted palm kernel cake on dry matter basis. The treatments were 100% rice straw (RS), 100% corn silage (CS) and an equal mixture of rice straw and corn silage (MIX) fed ad libitum. The animals were housed in individual pens, and the feeding trial was conducted for 12 weeks with 2 weeks of adaptation period. The results showed that CS had the best feed nutritive composition with the lowest concentration of highly indigestible fibre and the highest concentration of organic matter and energy. The CS also had the highest intake, and the corn silage inclusion in MIX managed to improve the intake on par with CS in terms of the dry matter intake of body weight (DMI of BW), voluntary intake (VI) and crude protein (CP) intake. Cattle fed with CS gave the highest and most stable BW gain with an average daily gain (ADG) of 808 g/day rivalling cross-bred cattle fed with high amount of concentrates. The all straw diet (RS) supplemented with PKC recorded a positive ADG of 133 g/day while the MIX gave 383 g/day matching total Napier grass diet.
    Matched MeSH terms: Oryza/chemistry*
  19. Khayoon WS, Saad B, Lee TP, Salleh B
    Food Chem, 2012 Jul 15;133(2):489-96.
    PMID: 25683424 DOI: 10.1016/j.foodchem.2012.01.010
    A simple and rapid high performance liquid chromatographic with fluorescence detection method for the determination of the aflatoxin B1, B2, G1 and G2 in peanuts, rice and chilli was developed. The sample was extracted using acetonitrile:water (90:10, v/v%) and then purified by using ISOLUTE® multimode solid phase extraction. After the pre-column derivatisation, the analytes were separated within 3.7 min using Chromolith® performance RP-18e (100-4.6mm) monolithic column. To assess the possible effects of endogenous components in the food items, matrix-matched calibration was used for the quantification and validation. The recoveries of aflatoxins that were spiked into food samples were 86.38-104.5% and RSDs were <4.4%. The method was applied to the determination of aflatoxins in peanut (9), rice (5) and chilli (10) samples. Liquid chromatography-tandem mass spectrometry analysis using triple quadruple analyser and operated in the multiple reaction monitoring modes on the contaminated samples was performed for confirmation.
    Matched MeSH terms: Oryza/chemistry*
  20. Tan BL, Norhaizan ME, Hairuszah I, Hazilawati H, Roselina K
    Oxid Med Cell Longev, 2015;2015:539798.
    PMID: 26257841 DOI: 10.1155/2015/539798
    Brewers' rice, which is known locally as temukut, is a mixture of broken rice, rice bran, and rice germ. Our present study was designed to identify the effect of brewers' rice on the attenuation of liver and kidney damage induced by azoxymethane (AOM). Alanine transaminase (ALT), alkaline phosphatase (ALP), aspartate transaminase (AST), creatinine, and urea were evaluated to understand potential hepatoprotective effects and the ability of brewers' rice to attenuate kidney pathology induced by AOM treatment. Liver and kidney tissues were evaluated by hematoxylin and eosin (H&E) staining. Overall analyses revealed that brewers' rice improved the levels of serum markers in a manner associated with better histopathological outcomes, which indicated that brewers' rice could enhance recovery from hepatocyte and kidney damage. Taken together, these results suggest that brewers' rice could be used in future applications to combat liver and kidney disease.
    Matched MeSH terms: Oryza/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links