Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Chin KY, Ima-Nirwana S
    Curr Drug Targets, 2018;19(5):439-450.
    PMID: 26343111 DOI: 10.2174/1389450116666150907100838
    BACKGROUND: Vitamin C, traditionally associated with scurvy, is an important nutrient for maintaining bone health. It is essential in the production of collagen in bone matrix. It also scavenges free radicals detrimental to bone health.

    OBJECTIVE: This review aims to assess the current evidence of the bone-sparing effects of vitamin C derived from cell, animal and human studies.

    RESULTS: Cell studies showed that vitamin C was able to induce osteoblast and osteoclast formation. However, high-dose vitamin C might increase oxidative stress and subsequently lead to cell death. Vitamin C-deficient animals showed impaired bone health due to increased osteoclast formation and decreased bone formation. Vitamin C supplementation was able to prevent bone loss in several animal models of bone loss. Human studies generally showed a positive relationship between vitamin C and bone health, indicated by bone mineral density, fracture probability and bone turnover markers. Some studies suggested that the relationship between vitamin C and bone health could be U-shaped, more prominent in certain subgroups and different between dietary and supplemental form. However, most of the studies were observational, thus could not confirm causality. One clinical trial was performed, but it was not a randomized controlled trial, thus confounding factors could not be excluded.

    CONCLUSION: vitamin C may exert beneficial effects on bone, but more rigorous studies and clinical trials should be performed to validate this claim.

    Matched MeSH terms: Osteoblasts/cytology
  2. Wee AS, Lim CK, Merican AM, Ahmad TS, Kamarul T
    In Vitro Cell Dev Biol Anim, 2013 Jun;49(6):424-32.
    PMID: 23708918 DOI: 10.1007/s11626-013-9626-0
    In vitro cellular proliferation and the ability to undergo multilineage differentiation make bone marrow-derived multipotent stromal cells (MSCs) potentially useful for clinical applications. Several methods have been described to isolate a homogenous bone marrow-derived MSCs population; however, none has been proven most effective, mainly due to their effects on proliferation and differentiation capability of the isolated cells. It is hypothesized that our newly established total cell pooling method may provide a better alternative as compared to the standard isolation method (density gradient centrifugation method). For the total cell pooling method, MSCs were isolated from rabbit bone marrow and were subsequently cultured in the growth medium without further separation as in the standard isolation method. The total cell pooling method was 65 min faster than the standard isolation method in completing cell isolation. Nevertheless, both methods did not differ significantly in the number of primary viable cells and population doubling time in the cultures (p > 0.05). The isolated cells from both methods expressed CD29 and CD44 markers, but not CD45 markers. Furthermore, they displayed multilineage differentiation characteristics of chondroblasts, osteoblasts, and adipocytes. In conclusion, both methods provide similar efficiency in the isolation of rabbit bone marrow-derived MSCs; however, the total cell pooling method is technically simpler and more cost effective than the standard isolation method.
    Matched MeSH terms: Osteoblasts/cytology*
  3. Al-Salihi KA
    Med J Malaysia, 2004 May;59 Suppl B:200-1.
    PMID: 15468887
    In the present study, natural coral of porites species was used as scaffold combined with in vitro expanded bone marrow stem cell derived osteoblasts (BMSC-DO), to develop a tissue-engineered bone graft in a rat model. Coral was molded into the shape of rat mandible seeded with 5x10(6) /ml BMSC-DO subsequently implanted subcutaneously in the back of 5 week Sprague dawely rats for 3 months. Coral alone was implanted as a control. The implants were harvest and processed for gross inspection and histological observations. The results showed that newly bone grafts were successfully formed coral seeded with cells group showed smooth highly vascularized like bone tissue. Histological sections revealed mature bone formation and lots of blood vessel, the bone formation occurred in the manner resemble intramembraneous bone formation. This study demonstrates that coral can be use as a suitable scaffold material for delivering bone marrow mesenchymal stem cells in tissue engineering.
    Matched MeSH terms: Osteoblasts/cytology*
  4. Ueda M
    Med J Malaysia, 2004 May;59 Suppl B:29.
    PMID: 15468803
    Matched MeSH terms: Osteoblasts/cytology*
  5. Mehrali M, Moghaddam E, Shirazi SF, Baradaran S, Mehrali M, Latibari ST, et al.
    ACS Appl Mater Interfaces, 2014 Mar 26;6(6):3947-62.
    PMID: 24588873 DOI: 10.1021/am500845x
    Calcium silicate (CaSiO3, CS) ceramics are promising bioactive materials for bone tissue engineering, particularly for bone repair. However, the low toughness of CS limits its application in load-bearing conditions. Recent findings indicating the promising biocompatibility of graphene imply that graphene can be used as an additive to improve the mechanical properties of composites. Here, we report a simple method for the synthesis of calcium silicate/reduced graphene oxide (CS/rGO) composites using a hydrothermal approach followed by hot isostatic pressing (HIP). Adding rGO to pure CS increased the hardness of the material by ∼40%, the elastic modulus by ∼52%, and the fracture toughness by ∼123%. Different toughening mechanisms were observed including crack bridging, crack branching, crack deflection, and rGO pull-out, thus increasing the resistance to crack propagation and leading to a considerable improvement in the fracture toughness of the composites. The formation of bone-like apatite on a range of CS/rGO composites with rGO weight percentages ranging from 0 to 1.5 has been investigated in simulated body fluid (SBF). The presence of a bone-like apatite layer on the composite surface after soaking in SBF was demonstrated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The biocompatibility of the CS/rGO composites was characterized using methyl thiazole tetrazolium (MTT) assays in vitro. The cell adhesion results showed that human osteoblast cells (hFOB) can adhere to and develop on the CS/rGO composites. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of cells on the CS/rGO composites were improved compared with the pure CS ceramics. These results suggest that calcium silicate/reduced graphene oxide composites are promising materials for biomedical applications.
    Matched MeSH terms: Osteoblasts/cytology*
  6. Raghavendran HR, Mohan S, Genasan K, Murali MR, Naveen SV, Talebian S, et al.
    Colloids Surf B Biointerfaces, 2016 Mar 1;139:68-78.
    PMID: 26700235 DOI: 10.1016/j.colsurfb.2015.11.053
    Scaffolds with structural features similar to the extracellular matrix stimulate rapid osteogenic differentiation in favorable microenvironment and with growth factor supplementation. In this study, the osteogenic potential of electrospun poly-l-lactide/hydroxyapatite/collagen (PLLA/Col/HA, PLLA/HA and PLLA/Col) scaffolds were tested in vitro with the supplementation of platelet derived growth factor-BB (PDGF-BB). Cell attachment and topography, mineralization, extracellular matrix protein localization, and gene expression of the human mesenchymal stromal cells were compared between the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA. The levels of osteocalcin, calcium, and mineralization were significantly greater in the PLLA/Col/HA and PLLA/HA compared with PLLA/Col. High expression of fibronectin, intracellular adhesion molecule, cadherin, and collagen 1 (Col1) suggests that PLLA/Col/HA and PLLA/HA scaffolds had superior osteoinductivity than PLLA/Col. Additionally, osteopontin, osteocalcin, osterix, Runt-related transcription factor 2 (Runx2), and bone morphogenic protein (BMP2) expression were higher in PLLA/Col/HA and PLLA/HA compared with PLLA/Col. In comparison with PLLA/Col, the PLLA/Col/HA and PLLA/HA scaffolds presented a significant upregulation of the genes Runx2, Col 1, Integrin, osteonectin (ON), bone gamma-carboxyglutamic acid-containing protein (BGALP), osteopontin (OPN), and BMP2. The upregulation of these genes was further increased with PDGF-BB supplementation. These results show that PDGF-BB acts synergistically with PLLA/Col/HA and PLLA/HA to enhance the osteogenic differentiation potential. Therefore, this combination can be used for the rapid expansion of bone marrow stromal cells into bone-forming cells for tissue engineering.
    Matched MeSH terms: Osteoblasts/cytology
  7. Bukhari SNA, Hussain F, Thu HE, Hussain Z
    J Integr Med, 2019 Jan;17(1):38-45.
    PMID: 30139656 DOI: 10.1016/j.joim.2018.08.003
    OBJECTIVE: The present study explored the effects of the combined herbal therapy consisting of curcumin (CUR) and Fructus Ligustri Lucidi (FLL) on aspects of bone regeneration.

    METHODS: Prior to analyzing the ability of this novel combined herbal therapy to promote aspects of bone regeneration, its cytotoxicity was determined using MC3T3-E1 cells (pre-osteoblast model). Cell proliferation was evaluated using phase-contrast microscopy and cell differentiation was estimated using alkaline phosphatase activity. The effect of the combined herbal therapy (CUR + FLL) was also assessed in terms of mineralization in the extracellular matrix (ECM) of cultured cells. Further, to explore the molecular mechanisms of bone formation, time-dependent expression of bone-regulating protein biomarkers was also evaluated.

    RESULTS: Combined herbal therapy (CUR + FLL) significantly upregulated the viability, proliferation and differentiation of MC3T3-E1 cells compared to the monotherapy of CUR or FLL. The magnitude of ECM mineralization (calcium deposition) was also higher in MC3T3-E1 cells treated with combined therapy. The time-dependent expression of bone-forming protein biomarkers revealed that the tendency of expression of these bone-regulating proteins was remarkably higher in cells treated with combined therapy.

    CONCLUSION: The co-administration of CUR and FLL had superior promotion of elements of bone regeneration in cultured cells, thus could be a promising alternative herbal therapy for the management of bone erosive disorders such as osteoporosis.

    Matched MeSH terms: Osteoblasts/cytology
  8. Aisha MD, Nor-Ashikin MN, Sharaniza AB, Nawawi HM, Kapitonova MY, Froemming GR
    Exp Cell Res, 2014 Aug 1;326(1):46-56.
    PMID: 24928274 DOI: 10.1016/j.yexcr.2014.06.003
    Exposure of Normal Human Osteoblast cells (NHOst) to a period of hypothermia may interrupt their cellular functions, lead to changes in bone matrix and disrupt the balance between bone formation and resorption, resulting in bone loss or delayed fracture healing. To investigate this possibility, we exposed NHOst cells to moderate (35 °C) and severe (27 °C) hypothermia for 1, 12, 24 and 72 h. The effects of hypothermia with respect to cell cytoskeleton organization, metabolic activity and the expression of cold shock chaperone proteins, osteoblast transcription factors and functional markers, were examined. Our findings showed that prolonged moderate hypothermia retained the polymerization of the cytoskeletal components. NHOst cell metabolism was affected differently according to hypothermia severity. The osteoblast transcription factors Runx2 and osterix were necessary for the transcription and translation of bone matrix proteins, where alkaline phosphatase (Alp) activity and osteocalcin (OCN) bone protein were over expressed under hypothermic conditions. Consequently, bone mineralization was stimulated after exposure to moderate hypothermia for 1 week, indicating bone function was not impaired. The cold shock chaperone protein Rbm3 was significantly upregulated (p<0.001) during the cellular stress adaption under hypothermic conditions. We suggest that Rbm3 has a dual function: one as a chaperone protein that stabilizes mRNA transcripts and a second one in enhancing the transcription of Alp and Ocn genes. Our studies demonstrated that hypothermia permitted the in vitro maturation of NHOst cells probably through an osterix-dependent pathway. For that reason, we suggest that moderate hypothermia can be clinically applied to counteract heat production at the fracture site that delays fracture healing.
    Matched MeSH terms: Osteoblasts/cytology
  9. Nather A
    Med J Malaysia, 2004 May;59 Suppl B:37-8.
    PMID: 15468807
    Matched MeSH terms: Osteoblasts/cytology*
  10. Gnaneshwar PV, Sudakaran SV, Abisegapriyan S, Sherine J, Ramakrishna S, Rahim MHA, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Mar;96:337-346.
    PMID: 30606541 DOI: 10.1016/j.msec.2018.11.033
    Far-flung evolution in tissue engineering enabled the development of bioactive and biodegradable materials to generate biocomposite nanofibrous scaffolds for bone repair and replacement therapies. Polymeric bioactive nanofibers are to biomimic the native extracellular matrix (ECM), delivering tremendous regenerative potentials for drug delivery and tissue engineering applications. It's been known from few decades that Zinc oxide (ZnO) nanoparticles are enhancing bone growth and providing proliferation of osteoblasts when incorporated with hydroxyapatite (HAp). We attempted to investigate the interaction between the human foetal osteoblasts (hFOB) with ZnO doped HAp incorporated biocomposite poly(L-lactic acid)-co-poly(ε-caprolactone) and silk fibroin (PLACL/SF) nanofibrous scaffolds for osteoblasts mineralization in bone tissue regeneration. The present study, we doped ZnO with HAp (ZnO(HAp) using the sol-gel ethanol condensation technique. The properties of PLACL/SF/ZnO(HAp) biocomposite nanofibrous scaffolds enhanced with doped and blended ZnO/HAp were characterized using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Contact angle and Tensile studies to determine the morphology, functionality, wettability and stability. The in vitro study results showed that the addition of ZnO and HAp enhances the secretion of bone mineral matrix (98%) with smaller fiber diameter (139.4 ± 27 nm) due to the presence of silk fibroin showing potential tensile properties (322.4%), and increased the proliferation of osteoblasts for bone tissue regeneration.
    Matched MeSH terms: Osteoblasts/cytology
  11. Chen DC, Chen LY, Ling QD, Wu MH, Wang CT, Suresh Kumar S, et al.
    Biomaterials, 2014 May;35(14):4278-87.
    PMID: 24565521 DOI: 10.1016/j.biomaterials.2014.02.004
    The purification of human adipose-derived stem cells (hADSCs) from human adipose tissue cells (stromal vascular fraction) was investigated using membrane filtration through poly(lactide-co-glycolic acid)/silk screen hybrid membranes. Membrane filtration methods are attractive in regenerative medicine because they reduce the time required to purify hADSCs (i.e., less than 30 min) compared with conventional culture methods, which require 5-12 days. hADSCs expressing the mesenchymal stem cell markers CD44, CD73, and CD90 were concentrated in the permeation solution from the hybrid membranes. Expression of the surface markers CD44, CD73, and CD99 on the cells in the permeation solution from the hybrid membranes, which were obtained using 18 mL of feed solution containing 50 × 10⁴ cells, was statistically significantly higher than that of the primary adipose tissue cells, indicating that the hADSCs can be purified in the permeation solution by the membrane filtration method. Cells expressing the stem cell-associated marker CD34 could be successfully isolated in the permeation solution, whereas CD34⁺ cells could not be purified by the conventional culture method. The hADSCs in the permeation solution demonstrated a superior capacity for osteogenic differentiation based on their alkali phosphatase activity, their osterix gene expression, and the results of mineralization analysis by Alizarin Red S and von Kossa staining compared with the cells from the suspension of human adipose tissue. These results suggest that the hADSCs capable of osteogenic differentiation preferentially permeate through the hybrid membranes.
    Matched MeSH terms: Osteoblasts/cytology
  12. Hapidin H, Romli NAA, Abdullah H
    Microsc Res Tech, 2019 Nov;82(11):1928-1940.
    PMID: 31423711 DOI: 10.1002/jemt.23361
    Tannic acid (TA) is a phenolic compound that might act directly on osteoblast metabolism. The study was performed to investigate the effects of TA on the proliferation, mineralization, and morphology of human fetal osteoblast cells (hFOB 1.19). The cells were divided into TA-treated, untreated, and pamidronate-treated (control drug) groups. Half maximal effective concentration (EC50 ) values for TA and pamidronate were measured using MTT assay. The EC50 of hFOB 1.19 cells treated with TA was 2.94 M. This concentration was more effective compared to the pamidronate (15.27 M). Cell proliferation assay was performed to compare cell viability from Day 1 until Day 14. The morphology of hFOB 1.19 was observed via inverted microscope and scanning electron microscope. Calcium (Ca) and phosphate (P) were assessed using energy-dispersive X-ray (EDX) analysis. Furthermore, the mineralization of hFOB 1.19 was determined by von Kossa staining (P depositions) and Alizarin Red S staining (Ca depositions). The number of cells treated with TA was significantly higher than the two control groups at Day 10 and Day 14. The morphology of cells treated with TA was uniformly fusiform-shaped with filopodia extensions. Besides, globular-like structures of deposited minerals were observed in the TA-treated group. In line with other findings, EDX spectrum analysis confirmed the presence of Ca and P. The cells treated with TA had significantly higher percentage of both minerals at Day 3 and Day 10 compared to the two control groups. In conclusion, TA enhances cell proliferation and causes cell morphology changes, as well as improved mineralization.
    Matched MeSH terms: Osteoblasts/cytology
  13. Kouhi M, Jayarama Reddy V, Fathi M, Shamanian M, Valipouri A, Ramakrishna S
    J Biomed Mater Res A, 2019 06;107(6):1154-1165.
    PMID: 30636094 DOI: 10.1002/jbm.a.36607
    Guided bone regeneration (GBR) has been established to be an effective method for the repair of defective tissues, which is based on isolating bone defects with a barrier membrane for faster tissue reconstruction. The aim of the present study is to develop poly (hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/fibrinogen (FG)/bredigite (BR) membranes with applicability in GBR. BR nanoparticles were synthesized through a sol-gel method and characterized using transmission electron microscopy and X-ray diffractometer. PHBV, PHBV/FG, and PHBV/FG/BR membranes were fabricated using electrospinning and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle, pore size, thermogravimetric analysis and tensile strength. The electrospun PHBV, PHBV/FG, and PHBV/FG/BR nanofibers were successfully obtained with the mean diameter ranging 240-410 nm. The results showed that Young's modulus and ultimate strength of the PHBV membrane reduced upon blending with FG and increased by further incorporation of BR nanoparticles, Moreover hydrophilicity of the PHBV membrane improved on addition of FG and BR. The in vitro degradation assay demonstrated that incorporation of FG and BR into PHBV matrix increased its hydrolytic degradation. Cell-membrane interactions were studied by culturing human fetal osteoblast cells on the fabricated membrane. According to the obtained results, osteoblasts seeded on PHBV/FG/BR displayed higher cell adhesion and proliferation compared to PHBV and PHBV/FG membrane. Furthermore, alkaline phosphatase activity and alizarin red-s staining indicated enhanced osteogenic differentiation and mineralization of cells on PHBV/FG/BR membranes. The results demonstrated that developed electrospun PHBV/FG/BR nanofibrous mats have desired potential as a barrier membrane for guided bone tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1154-1165, 2019.
    Matched MeSH terms: Osteoblasts/cytology
  14. Shi X, Xu L, Le TB, Zhou G, Zheng C, Tsuru K, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Feb;59:542-548.
    PMID: 26652406 DOI: 10.1016/j.msec.2015.10.024
    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O3) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O3 treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100°C since higher temperatures would impair the hardness of TiN coating. By contrast, O3 treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O3 treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant.
    Matched MeSH terms: Osteoblasts/cytology
  15. Shafiu Kamba A, Zakaria ZA
    Biomed Res Int, 2014;2014:215097.
    PMID: 24734228 DOI: 10.1155/2014/215097
    Calcium carbonate (CaCO3) nanocrystals derived from cockle shells emerge to present a good concert in bone tissue engineering because of their potential to mimic the composition, structure, and properties of native bone. The aim of this study was to evaluate the biological response of CaCO3 nanocrystals on hFOB 1.19 and MC3T3 E-1 osteoblast cells in vitro. Cell viability and proliferation were assessed by MTT and BrdU assays, and LDH was measured to determine the effect of CaCO3 nanocrystals on cell membrane integrity. Cellular morphology was examined by SEM and fluorescence microscopy. The results showed that CaCO3 nanocrystals had no toxic effects to some extent. Cell proliferation, alkaline phosphatase activity, and protein synthesis were enhanced by the nanocrystals when compared to the control. Cellular interactions were improved, as indicated by SEM and fluorescent microscopy. The production of VEGF and TGF-1 was also affected by the CaCO3 nanocrystals. Therefore, bio-based CaCO3 nanocrystals were shown to stimulate osteoblast differentiation and improve the osteointegration process.
    Matched MeSH terms: Osteoblasts/cytology*
  16. Kapitonova MY, Kuznetsov SL, Salim N, Othman S, Kamauzaman TM, Ali AM, et al.
    Bull. Exp. Biol. Med., 2014 Jan;156(3):393-8.
    PMID: 24771384 DOI: 10.1007/s10517-014-2357-8
    Morphological and phenotypical signs of cultured readaptation osteoblasts were studied after a short-term space mission. The ultrastructure and phenotype of human osteoblasts after Soyuz TMA-11 space flight (2007) were evaluated by scanning electron microscopy, laser confocal microscopy, and ELISA. The morphofunctional changes in cell cultures persisted after 12 passages. Osteoblasts retained the drastic changes in their shape and size, contour deformation, disorganization of the microtubular network, redistribution of organelles and specialized structures of the plasmalemma in comparison with the ground control cells. On the other hand, the expression of osteoprotegerin and osteocalcin (bone metabolism markers) increased; the expression of bone resorption markers ICAM-1 and IL-6 also increased, while the expression of VCAM-1 decreased. Hence, space flight led to the development of persistent shifts in cultured osteoblasts indicating injuries to the cytoskeleton and the phenotype changes, indicating modulation of bone metabolism biomarkers.
    Matched MeSH terms: Osteoblasts/cytology*
  17. Soon G, Pingguan-Murphy B, Akbar SA
    J Mech Behav Biomed Mater, 2017 04;68:26-31.
    PMID: 28135639 DOI: 10.1016/j.jmbbm.2017.01.028
    This study utilizes the technique of self-assembly to fabricate arrays of nanoislands on (001)-oriented yttria-stabilized zirconia single crystal substrates with miscut of 10° toward <110> direction. These self-assembled nanostructures were annealed at 1100°C for 5h upon doping with 10mol% gadolinium-doped ceria (GDC) by powder-suspension based method. X-Ray diffraction result showed that the miscut substrate after doping GDC was in the cubic phase. Energy dispersive X-ray (EDX) illustrates that the nanopatterned material contains all the elements from the GDC source and yttria-stabilized zirconia (YSZ) substrate. It also demonstrates a higher surface roughness and a more hydrophilic surface. The nanostructured materials were subsequently used for an in vitro study using a human fetal osteoblastic cell line (hFOB). An improved spreading, enhanced cell proliferation and up-regulated alkaline phosphatase activity (ALP) were observed on the nanopatterned substrates compared to the control substrates. Calcium deposits, which were stained positively by Alizarin Red S, appeared to be more abundant on the nanopatterned surfaces on day 7. The overall findings suggest that post fabrication treatment with surface modification such as creating a nanostructure (e.g. nanopatterns) can improve biocompatibility.
    Matched MeSH terms: Osteoblasts/cytology*
  18. Sangkert S, Kamonmattayakul S, Chai WL, Meesane J
    J Biomed Mater Res A, 2017 Jun;105(6):1624-1636.
    PMID: 28000362 DOI: 10.1002/jbm.a.35983
    Maxillofacial bone defect is a critical problem for many patients. In severe cases, the patients need an operation using a biomaterial replacement. Therefore, to design performance biomaterials is a challenge for materials scientists and maxillofacial surgeons. In this research, porous silk fibroin scaffolds with mimicked microenvironment based on decellularized pulp and fibronectin were created as for bone regeneration. Silk fibroin scaffolds were fabricated by freeze-drying before modification with three different components: decellularized pulp, fibronectin, and decellularized pulp/fibronectin. The morphologies of the modified scaffolds were observed by scanning electron microscopy. Existence of the modifying components in the scaffolds was proved by the increase in weights and from the pore size measurements of the scaffolds. The modified scaffolds were seeded with MG-63 osteoblasts and cultured. Testing of the biofunctionalities included cell viability, cell proliferation, calcium content, alkaline phosphatase activity (ALP), mineralization and histological analysis. The results demonstrated that the modifying components organized themselves into aggregations of a globular structure. They were arranged themselves into clusters of aggregations with a fibril structure in the porous walls of the scaffolds. The results showed that modified scaffolds with a mimicked microenvironment of decellularized pulp/fibronectin were suitable for cell viability since the cells could attach and spread into most of the pores of the scaffold. Furthermore, the scaffolds could induce calcium synthesis, mineralization, and ALP activity. The results indicated that modified silk fibroin scaffolds with a mimicked microenvironment of decellularized pulp/fibronectin hold promise for use in tissue engineering in maxillofacial bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1624-1636, 2017.
    Matched MeSH terms: Osteoblasts/cytology*
  19. Vimalraj S, Rajalakshmi S, Raj Preeth D, Vinoth Kumar S, Deepak T, Gopinath V, et al.
    Mater Sci Eng C Mater Biol Appl, 2018 Feb 01;83:187-194.
    PMID: 29208278 DOI: 10.1016/j.msec.2017.09.005
    Copper(II) complex of quercetin Cu+Q, mixed ligand complexes, quercetin-Cu(II)-phenanthroline [Cu+Q(PHt)] and quercetin-Cu(II)-neocuproine [Cu+Q(Neo)] have been synthesized and characterized. From the FT-IR spectroscopic studies, it was evident that C-ring of quercetin is involved in the metal chelation in all the three copper complexes. C-ring chelation was further proven by UV-Visible spectra and the presence of Cu(II) from EPR spectroscopic investigations. These complexes were found to have osteogenic and angiogenic properties, observed through in vitro osteoblast differentiation and chick embryo angiogenesis assay. In osteoblast differentiation, quercetin-Cu(II) complexes treatment increased calcium deposition and alkaline phosphatase activity (ALP) activity at the cellular level and stimulated Runx2 mRNA and protein, ALP mRNA and type 1 collagen mRNA expression at the molecular level. Among the complexes, Q+Cu(PHt) showed more effects on osteoblast differentiation when compared to that of other two copper complexes. Additionally, Q+Cu(Neo) showed more effect compared to Q+Cu. Furthermore, the effect of these complexes on osteoblast differentiation was confirmed by the expression of osteoblast specific microRNA, pre-mir-15b. The chick embryo angiogenesis assay showed that angiogenic parameters such as blood vessel length, size and junctions were stimulated by these complexes. Thus, the present study demonstrated that quercetin copper(II) complexes exhibit as a pharmacological agent for the orthopedic application.
    Matched MeSH terms: Osteoblasts/cytology
  20. Kutty MG, De A, Bhaduri SB, Yaghoubi A
    ACS Appl Mater Interfaces, 2014 Aug 27;6(16):13587-93.
    PMID: 25095907 DOI: 10.1021/am502967n
    Morphological surface modifications have been reported to enhance the performance of biomedical implants. However, current methods of introducing graded porosity involves postprocessing techniques that lead to formation of microcracks, delamination, loss of fatigue strength, and, overall, poor mechanical properties. To address these issues, we developed a microwave sintering procedure whereby pure titanium powder can be readily densified into implants with graded porosity in a single step. Using this approach, surface topography of implants can be closely controlled to have a distinctive combination of surface area, pore size, and surface roughness. In this study, the effect of various surface topographies on in vitro response of neonatal rat calvarial osteoblast in terms of attachment and proliferation is studied. Certain graded surfaces nearly double the chance of cell viability in early stages (∼one month) and are therefore expected to improve the rate of healing. On the other hand, while the osteoblast morphology significantly differs in each sample at different periods, there is no straightforward correlation between early proliferation and quantitative surface parameters such as average roughness or surface area. This indicates that the nature of cell-surface interactions likely depends on other factors, including spatial parameters.
    Matched MeSH terms: Osteoblasts/cytology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links