Displaying all 7 publications

Abstract:
Sort:
  1. Fadilah A, Zuki AB, Loqman MY, Zamri-Saad M, Al-Salihi KA, Norimah Y, et al.
    Med J Malaysia, 2004 May;59 Suppl B:127-8.
    PMID: 15468851
    The study was carried out with the aim to evaluate natural coral (Porites spp.) implanted in sheep femur microscopically. Twelve adult, male sheep were used in this study. The defect area was implanted with coral and monitored for up to 12 weeks. The sheep were euthanased at 2,4,8, and 12 weeks post-implantation. Microscopically, natural coral implanted into bone tissue have shown gradual resorption and progressively replaced by new bone. At 12 weeks post-implantation, the implanted site was almost completely surrounded by mature bone. The results showed that natural coral was found to be a biodegradable and osteo-conductive biomaterial, which acted as a scaffold for a direct osteoblastic apposition.
    Matched MeSH terms: Osteoblasts/pathology
  2. Khadijah K, Mashita M, Saidu MF, Fazilah F, Khalid KA
    Med J Malaysia, 2004 May;59 Suppl B:123-4.
    PMID: 15468849
    This study is to qualitatively evaluate a locally produced hydroxyapatite (HA), made by AMREC-SIRIM in an experimental animal bone defect using New Zealand White (NZW) rabbits. HA cylindrical blocks measuring 2.5 mm (D) x 1.0 mm (H) were implanted in the rabbits' left tibia. The tibias were harvested within one to three weeks post-implantation. The implantion site was cut into thin undecalcified sections of about 30 microm to 60 microm and stained with Toluidine Blue and Goldner's Masson Trichrome. Microscopic examinations using standard light microscopy of these slides were performed.
    Matched MeSH terms: Osteoblasts/pathology
  3. Najafpour HD, Suzina AH, Nizam A, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:121-2.
    PMID: 15468848
    There was a significant increased in Absolute Contact Length measurements of endosteal bone growth along the Nickel-Titanium (NiTi) implant coated with the natural coral powder and Hydroxyapatite (HA) compared to the non-calcium coated implants. This study demonstrated that coated implants seemed to show earlier and higher osseointergration phenomena compared to non coated ones. Furthermore, there was significantly greater bone-to-implant contact at the apical 1/3rd of the coated implants.
    Matched MeSH terms: Osteoblasts/pathology
  4. Jayash SN, Hashim NM, Misran M, Baharuddin NA
    J Biomed Mater Res A, 2017 02;105(2):398-407.
    PMID: 27684563 DOI: 10.1002/jbm.a.35919
    The osteoprotegerin (OPG) system plays a critical role in bone remodelling by regulating osteoclast formation and activity. The study aimed to determine the physicochemical properties and biocompatibility of a newly formulated OPG-chitosan gel. The OPG-chitosan gel was formulated using human OPG protein and water-soluble chitosan. The physicochemical properties were determined using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Gel morphology was determined using scanning electron microscopy (SEM) and then it was subjected to a protein release assay and biodegradability test. An in vitro cytotoxicity test on normal human periodontal ligament (NHPL) fibroblasts and normal human (NH) osteoblasts was carried out using the AlamarBlue assay. In vivo evaluation in a rabbit model involved creating critical-sized defects in calvarial bone, filling with the OPG-chitosan gel and sacrificing at 12 weeks. In vitro results demonstrated that the 25 kDa OPG-chitosan gel had the highest rate of protein release and achieved 90% degradation in 28 days. At 12 weeks, the defects filled with 25 kDa OPG-chitosan gel showed significant (p 
    Matched MeSH terms: Osteoblasts/pathology
  5. Dong J, Tao L, Abourehab MAS, Hussain Z
    Int J Biol Macromol, 2018 Sep;116:1268-1281.
    PMID: 29782984 DOI: 10.1016/j.ijbiomac.2018.05.116
    Osteoporosis is a medical condition of fragile bones with an increased susceptibility to fracture. Despite having availability of a wide range of pharmacological agents, prevalence of osteoporosis is continuously escalating. Owing to excellent biomedical achievements of nanomedicines in the last few decades, we aimed combo-delivery of bone anti-resorptive agent, alendronate (ALN), and bone density enhancing drug, curcumin (CUR) in the form of polymeric nanoparticles. To further optimize the therapeutic efficacy, the prepared ALN/CUR nanoparticles (NPs) were decorated with hyaluronic acid (HA) which is a well-documented biomacromolecule having exceptional bone regenerating potential. The optimized nanoformulation was then evaluated for bone regeneration efficacy by assessing time-mannered modulation in the proliferation, differentiation, and mineralization of MC3T3-E1 cells, a pre-osteoblastic model. Moreover, the time-mannered expression of various bone-forming protein biomarkers such as bone morphogenetic protein, runt related transcription factor 2, and osteocalcin were assessed in the cell lysates. Results revealed that HA-ALN/CUR NPs provoke remarkable increase in the proliferation, differentiation, and mineralization in the ECM of MC3T3-E1 cells which ultimately leads to enhanced bone formation. This new strategy of employing simultaneous delivery of anti-resorptive and bone forming agents would open new horizons for scientists as an efficient alternative pharmacotherapy for the management of osteoporosis.
    Matched MeSH terms: Osteoblasts/pathology
  6. Chin KY, Ima-Nirwana S
    Curr Drug Targets, 2013 Dec;14(14):1632-41.
    PMID: 24354587
    The Asian population whose soy intake is higher compared to Western populations shows a significantly lower incidence of osteoporotic fracture. Several meta-analyses have revealed that supplementation of soy isoflavones improve bone health status in women. This review examined the current evidence as to whether soy could exhibit similar bone protective effects on the male population. In vivo studies revealed that supplementation of soy protein or soy isoflavones improved bone health in both normal and osteoporotic male rodents. Cell culture studies showed that soy isoflavones influenced osteogenesis and osteoclastogenesis through mechanisms such as estrogen receptor binding activity, antiinflammatory activity and anti-parathyroid hormone activity. Soy isoflavones also affected calcium channel signaling and might exhibit direct effects on the osteoblastogenesis modulator, core binding factor 1. However, limited clinical trials involving soy intervention in males generally showed insignificant results. This could be attributed to the short duration of intervention, characteristics of the subjects or method of bone health assessment. More well-planned clinical trials are required to establish possible bone protective effects of soy in men.
    Matched MeSH terms: Osteoblasts/pathology
  7. George J, Lai FM
    Singapore Med J, 1995 Apr;36(2):224-7.
    PMID: 7676275
    A 60-year-old Chinese lady presented with a left flank mass and weight loss. Plain films showed a sclerotic L1 vertebral body, osteopenic L2 and L3 vertebral bodies and loss of left psoas outline. However initially unrevealed history of previous carcinoma of the cervix caused confusion as to the aetiology of a sclerotic vertebral body associated with an left flank collection. Psoas abscess with adjacent bony osteomyelitis was initially suspected. The left flank mass turned out to be an infected necrotic large metastatic lymph node compressing the lower pole of the left kidney. The sclerotic and osteopenic vertebral bodies represented an unusual presentation of bony cervical carcinoma metastases.
    Matched MeSH terms: Osteoblasts/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links