Displaying all 11 publications

Abstract:
Sort:
  1. Wan Hasan WN, Abd Ghafar N, Chin KY, Ima-Nirwana S
    Drug Des Devel Ther, 2018;12:1715-1726.
    PMID: 29942115 DOI: 10.2147/DDDT.S168935
    PURPOSE: Annatto-derived tocotrienol (AnTT) has been shown to improve bone formation in animal models of osteoporosis. However, detailed studies of the effects of AnTT on preosteoblastic cells were limited. This study was conducted to investigate the osteogenic effect of AnTT on preosteoblast MC3T3-E1 cells in a time-dependent manner.

    MATERIALS AND METHODS: Murine MC3T3-E1 preosteoblastic cells were cultured in the different concentrations of AnTT (0.001-1 µg/mL) up to 24 days. Expression of osteoblastic differentiation markers was measured by qPCR (osterix [OSX], collagen 1 alpha 1 [COL1α1], alkaline phosphatase [ALP], and osteocalcin [OCN]) and by fluorometric assay for ALP activity. Detection of collagen and mineralized nodules was done via Direct Red staining and Alizarin Red staining, respectively.

    RESULTS: The results showed that osteoblastic differentiation-related genes, such as OSX, COL1α1, ALP, and OCN, were significantly increased in the AnTT-treated groups compared to the vehicle group in a time-dependent manner (P<0.05). Type 1 collagen level was increased from day 3 to day 15 in the AnTT-treated groups, while ALP activity was increased from day 9 to day 21 in the AnTT-treated groups (P<0.05). Enhanced mineralization was observed in the AnTT-treated groups via increasing Alizarin Red staining from day 3 to day 21 (P<0.05).

    CONCLUSION: Our results suggest that AnTT enhances the osteogenic activity by promoting the bone formation-related genes and proteins in a temporal and sequential manner.

    Matched MeSH terms: Osteocalcin/metabolism
  2. Raghavendran HR, Mohan S, Genasan K, Murali MR, Naveen SV, Talebian S, et al.
    Colloids Surf B Biointerfaces, 2016 Mar 1;139:68-78.
    PMID: 26700235 DOI: 10.1016/j.colsurfb.2015.11.053
    Scaffolds with structural features similar to the extracellular matrix stimulate rapid osteogenic differentiation in favorable microenvironment and with growth factor supplementation. In this study, the osteogenic potential of electrospun poly-l-lactide/hydroxyapatite/collagen (PLLA/Col/HA, PLLA/HA and PLLA/Col) scaffolds were tested in vitro with the supplementation of platelet derived growth factor-BB (PDGF-BB). Cell attachment and topography, mineralization, extracellular matrix protein localization, and gene expression of the human mesenchymal stromal cells were compared between the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA. The levels of osteocalcin, calcium, and mineralization were significantly greater in the PLLA/Col/HA and PLLA/HA compared with PLLA/Col. High expression of fibronectin, intracellular adhesion molecule, cadherin, and collagen 1 (Col1) suggests that PLLA/Col/HA and PLLA/HA scaffolds had superior osteoinductivity than PLLA/Col. Additionally, osteopontin, osteocalcin, osterix, Runt-related transcription factor 2 (Runx2), and bone morphogenic protein (BMP2) expression were higher in PLLA/Col/HA and PLLA/HA compared with PLLA/Col. In comparison with PLLA/Col, the PLLA/Col/HA and PLLA/HA scaffolds presented a significant upregulation of the genes Runx2, Col 1, Integrin, osteonectin (ON), bone gamma-carboxyglutamic acid-containing protein (BGALP), osteopontin (OPN), and BMP2. The upregulation of these genes was further increased with PDGF-BB supplementation. These results show that PDGF-BB acts synergistically with PLLA/Col/HA and PLLA/HA to enhance the osteogenic differentiation potential. Therefore, this combination can be used for the rapid expansion of bone marrow stromal cells into bone-forming cells for tissue engineering.
    Matched MeSH terms: Osteocalcin/metabolism
  3. Krishnamurithy G, Murali MR, Hamdi M, Abbas AA, Raghavendran HB, Kamarul T
    Regen Med, 2015;10(5):579-90.
    PMID: 26237702 DOI: 10.2217/rme.15.27
    To compare the effect of bovine bone derived porous hydroxyapatite (BDHA) scaffold on proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hMSCs) compared with commercial hydroxyapatite (CHA) scaffold.
    Matched MeSH terms: Osteocalcin/metabolism
  4. Jawad MM, Husein A, Azlina A, Alam MK, Hassan R, Shaari R
    J Biomed Opt, 2013 Dec;18(12):128001.
    PMID: 24337495 DOI: 10.1117/1.JBO.18.12.128001
    Bone regeneration is essential in medical treatment, such as in surgical bone healing and orthodontics. The aim of this study is to examine the effect of different powers of 940 nm diode low-level laser treatment (LLLT) on osteoblast cells during their proliferation and differentiation stages. A human fetal osteoblast cell line was cultured and treated with LLLT. The cells were divided into experimental groups according to the power delivered and periods of exposure per day for each laser power. The (3-(4,5-dimethylthiazol-2yl)-2,5 diphenyl tetrazolium bromide) (MTT) assay was used to determine cell proliferation. Both alkaline phosphatase and osteocalcin activity assays were assessed for cell differentiation. All treatment groups showed a significant increase in cell proliferation and differentiation compared to the control group. Regarding the exposure time, the subgroups treated with the LLLT for 6 min showed higher proliferation and differentiation rates for the powers delivered, the 300-mW LLLT group significantly increased the amount of cell proliferation. By contrast, the 100 and 200 mW groups showed significantly greater amounts of cell differentiation. These results suggest that the use of LLLT may play an important role in stimulating osteoblast cells for improved bone formation.
    Matched MeSH terms: Osteocalcin/metabolism
  5. Bukhari SNA, Hussain F, Thu HE, Hussain Z
    J Integr Med, 2019 Jan;17(1):38-45.
    PMID: 30139656 DOI: 10.1016/j.joim.2018.08.003
    OBJECTIVE: The present study explored the effects of the combined herbal therapy consisting of curcumin (CUR) and Fructus Ligustri Lucidi (FLL) on aspects of bone regeneration.

    METHODS: Prior to analyzing the ability of this novel combined herbal therapy to promote aspects of bone regeneration, its cytotoxicity was determined using MC3T3-E1 cells (pre-osteoblast model). Cell proliferation was evaluated using phase-contrast microscopy and cell differentiation was estimated using alkaline phosphatase activity. The effect of the combined herbal therapy (CUR + FLL) was also assessed in terms of mineralization in the extracellular matrix (ECM) of cultured cells. Further, to explore the molecular mechanisms of bone formation, time-dependent expression of bone-regulating protein biomarkers was also evaluated.

    RESULTS: Combined herbal therapy (CUR + FLL) significantly upregulated the viability, proliferation and differentiation of MC3T3-E1 cells compared to the monotherapy of CUR or FLL. The magnitude of ECM mineralization (calcium deposition) was also higher in MC3T3-E1 cells treated with combined therapy. The time-dependent expression of bone-forming protein biomarkers revealed that the tendency of expression of these bone-regulating proteins was remarkably higher in cells treated with combined therapy.

    CONCLUSION: The co-administration of CUR and FLL had superior promotion of elements of bone regeneration in cultured cells, thus could be a promising alternative herbal therapy for the management of bone erosive disorders such as osteoporosis.

    Matched MeSH terms: Osteocalcin/metabolism
  6. Boukari Y, Qutachi O, Scurr DJ, Morris AP, Doughty SW, Billa N
    J Biomater Sci Polym Ed, 2017 Nov;28(16):1966-1983.
    PMID: 28777694 DOI: 10.1080/09205063.2017.1364100
    The development of patient-friendly alternatives to bone-graft procedures is the driving force for new frontiers in bone tissue engineering. Poly (dl-lactic-co-glycolic acid) (PLGA) and chitosan are well-studied and easy-to-process polymers from which scaffolds can be fabricated. In this study, a novel dual-application scaffold system was formulated from porous PLGA and protein-loaded PLGA/chitosan microspheres. Physicochemical and in vitro protein release attributes were established. The therapeutic relevance, cytocompatibility with primary human mesenchymal stem cells (hMSCs) and osteogenic properties were tested. There was a significant reduction in burst release from the composite PLGA/chitosan microspheres compared with PLGA alone. Scaffolds sintered from porous microspheres at 37 °C were significantly stronger than the PLGA control, with compressive strengths of 0.846 ± 0.272 MPa and 0.406 ± 0.265 MPa, respectively (p 
    Matched MeSH terms: Osteocalcin/metabolism
  7. Al-Obaidi MM, Al-Bayaty FH, Al Batran R, Hassandarvish P, Rouhollahi E
    Arch Oral Biol, 2014 Sep;59(9):987-99.
    PMID: 24952163 DOI: 10.1016/j.archoralbio.2014.06.001
    This study has attempted to evaluate the effects of ellagic acid (EA) on alveolar bone healing after tooth extraction in rats.
    Matched MeSH terms: Osteocalcin/metabolism
  8. Al-Obaidi MM, Al-Bayaty FH, Al Batran R, Ibrahim OE, Daher AM
    Curr Pharm Des, 2016;22(16):2403-10.
    PMID: 27139374
    OBJECTIVES: -To examine the effect of nicotine (Ni) on bone socket healing treated with Ellagic acid (EA) after tooth extraction in rat.

    MATERIALS AND METHODS: Thirty-Two Sprague Dawley (SD) male rats were divided into four groups. The group 1 was administrated with distilled water intragastrically and injected sterile saline subcutaneously. The group 2 was administrated with EA orally and injected with sterile saline subcutaneously. The groups 3 & 4 were subcutaneously exposed to Ni for 4 weeks twice daily before tooth extraction procedure, and maintained Ni injection until the animals were sacrificed. After one month Ni exposure, the group 4 was fed with EA while continuing Ni injection. All the groups were anesthetized, and the upper left incisor was extracted. Four rats from each group were sacrificed on 14(th) and 28(th) days. Tumour necrosis factor alpha (TNFα), Interleukin-1 beta (IL-1β) and Interleukin-6 (IL-6) were applied to assess in serum rat at 14th and 28(th) days. Superoxide dismutase (SOD) and Thiobarbituric acid reactive substances (TBRAS) levels were assessed to evaluate the antioxidant status and lipid peroxidation accordingly after tooth extraction in homogenized gingival maxilla tissue of rat at 14(th) and 28(th) days. The socket hard tissue was stained by eosin and hematoxylin (H&E); immunohistochemical technique was used to assess the healing process by Osteocalcin (OCN) and Alkaline Phosphatase (ALP) biomarkers.

    RESULTS: Ni-induced rats administered with EA compound (Group 4) dropped the elevated concentration of pro-inflammatory cytokines significantly when compared to Ni-induced rats (Group 3) (p<0.05). Ni-induced rats administrated with EA compound (Group 4) showed significant production of SOD and recession in TBRAS level when compared to Ni-induced rats (Group 3) (p<0.05). The immunohistochemistry analysis has revealed that OCN and ALP have presented stronger expression in Ni-induced rats treated with EA (Group 4), as against Ni-induced rats (Group 3).

    CONCLUSION: We have concluded that, Ni-induced rats, treated with EA have exerted positive effect on the trabecular bone formation after tooth extraction in nicotinic rats could be due to the antioxidant activity of EA which lead to upregulate of OCN and ALP proteins which are responsible for osteogenesis.

    Matched MeSH terms: Osteocalcin/metabolism*
  9. Akhir HM, Teoh PL
    Biosci Rep, 2020 12 23;40(12).
    PMID: 33245097 DOI: 10.1042/BSR20201325
    Collagen has been widely shown to promote osteogenesis of bone marrow mesenchymal stromal cells (BM-MSCs). Due to the invasive procedure of obtaining BM-MSCs, MSCs from other tissues have emerged as a promising alternative for regenerative therapy. MSCs originated from different sources, exhibiting different differentiation potentials. Therefore, the applicability of collagen type I (COL), combining with amniotic membrane (AM)-MSCs was examined through proliferation and differentiation assays together with the expression of surface markers and genes associated with stemness and differentiation under basal or induction conditions. No increase in cell growth was observed because AM-MSCs might be directed toward spontaneous osteogenesis. This was evidenced by the calcium deposition and elevated expression of osteogenic genes when AM-MSCs were cultured in collagen plate with basal media. Under the osteogenic condition, reciprocal expression of OCN and CEBPA suggested a shift toward adipogenesis. Surprisingly, adipogenic genes were not elevated upon adipogenic induction, although oil droplets deposition was observed. In conclusion, our findings demonstrated that collagen causes spontaneous osteogenesis in AM-MSCs. However, the presence of exogenous inductors could shift the direction of adipo-osteogenic gene regulatory network modulated by collagen.
    Matched MeSH terms: Osteocalcin/metabolism
  10. Aisha MD, Nor-Ashikin MN, Sharaniza AB, Nawawi HM, Kapitonova MY, Froemming GR
    Exp Cell Res, 2014 Aug 1;326(1):46-56.
    PMID: 24928274 DOI: 10.1016/j.yexcr.2014.06.003
    Exposure of Normal Human Osteoblast cells (NHOst) to a period of hypothermia may interrupt their cellular functions, lead to changes in bone matrix and disrupt the balance between bone formation and resorption, resulting in bone loss or delayed fracture healing. To investigate this possibility, we exposed NHOst cells to moderate (35 °C) and severe (27 °C) hypothermia for 1, 12, 24 and 72 h. The effects of hypothermia with respect to cell cytoskeleton organization, metabolic activity and the expression of cold shock chaperone proteins, osteoblast transcription factors and functional markers, were examined. Our findings showed that prolonged moderate hypothermia retained the polymerization of the cytoskeletal components. NHOst cell metabolism was affected differently according to hypothermia severity. The osteoblast transcription factors Runx2 and osterix were necessary for the transcription and translation of bone matrix proteins, where alkaline phosphatase (Alp) activity and osteocalcin (OCN) bone protein were over expressed under hypothermic conditions. Consequently, bone mineralization was stimulated after exposure to moderate hypothermia for 1 week, indicating bone function was not impaired. The cold shock chaperone protein Rbm3 was significantly upregulated (p<0.001) during the cellular stress adaption under hypothermic conditions. We suggest that Rbm3 has a dual function: one as a chaperone protein that stabilizes mRNA transcripts and a second one in enhancing the transcription of Alp and Ocn genes. Our studies demonstrated that hypothermia permitted the in vitro maturation of NHOst cells probably through an osterix-dependent pathway. For that reason, we suggest that moderate hypothermia can be clinically applied to counteract heat production at the fracture site that delays fracture healing.
    Matched MeSH terms: Osteocalcin/metabolism*
  11. Abdullah D, Ford TR, Papaioannou S, Nicholson J, McDonald F
    Biomaterials, 2002 Oct;23(19):4001-10.
    PMID: 12162333
    Biocompatibility of two variants of accelerated Portland cement (APC) were investigated in vitro by observing the cytomorphology of SaOS-2 osteosarcoma cells in the presence of test materials and the effect of these materials on the expression of markers of bone remodelling. Glass ionomer cement (GIC), mineral trioxide aggregate (MTA) and unmodified Portland cement (RC) were used for comparison. A direct contact assay was undertaken in four samples of each test material, collected at 12, 24, 48 and 72 h. Cell morphology was observed using scanning electron microscopy (SEM) and scored. Culture media were collected for cytokine quantification using enzyme-linked immunosorbent assay (ELISA). On SEM evaluation, healthy SaOS-2 cells were found adhering onto the surfaces of APC variant, RC and MTA. In contrast, rounded and dying cells were observed on GIC. Using ELISA, levels of interleukin (IL)-1beta, IL-6, IL-18 and OC were significantly higher in APC variants compared with controls and GIC (p<0.01), but these levels of cytokines were not statistically significant compared with MTA. The results of this study provide evidence that both APC variants are non-toxic and may have potential to promote bone healing. Further development of APC is indicated to produce a viable dental restorative material and possibly a material for orthopaedic
    Matched MeSH terms: Osteocalcin/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links