Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Puvaneswary S, Balaji Raghavendran HR, Ibrahim NS, Murali MR, Merican AM, Kamarul T
    Int J Med Sci, 2013;10(12):1608-14.
    PMID: 24151432 DOI: 10.7150/ijms.6496
    The objective of this study was to compare the morphological and chemical composition of bone graft (BG) and coral graft (CG) as well as their osteogenic differentiation potential using rabbit mesenchymal stem cells (rMSCs) in vitro. SEM analysis of BG and CG revealed that the pores in these grafts were interconnected, and their micro-CT confirmed pore sizes in the range of 107-315 µm and 103-514 µm with a total porosity of 92% and 94%, respectively. EDS analysis indicated that the level of calcium in CG was relatively higher than that in BG. FTIR of BG and CG confirmed the presence of functional groups corresponding to carbonyl, aromatic, alkyl, and alkane groups. XRD results revealed that the phase content of the inorganic layer comprised highly crystalline form of calcium carbonate and carbon. Atomic force microscopy analysis showed CG had better surface roughness compared to BG. In addition, significantly higher levels of osteogenic differentiation markers, namely, alkaline phosphatase (ALP), Osteocalcin (OC) levels, and Osteonectin and Runx2, Integrin gene expression were detected in the CG cultures, when compared with those in the BG cultures. In conclusion, our results demonstrate that the osteogenic differentiation of rMSCs is relatively superior in coral graft than in bone graft culture system.
    Matched MeSH terms: Osteogenesis/drug effects*
  2. Mansur SA, Mieczkowska A, Flatt PR, Bouvard B, Chappard D, Irwin N, et al.
    Bone, 2016 06;87:102-13.
    PMID: 27062994 DOI: 10.1016/j.bone.2016.04.001
    Obesity and type 2 diabetes mellitus (T2DM) progress worldwide with detrimental effects on several physiological systems including bone tissue mainly by affecting bone quality. Several gut hormones analogues have been proven potent in ameliorating bone quality. In the present study, we used the leptin receptor-deficient db/db mice as a model of obesity and severe T2DM to assess the extent of bone quality alterations at the organ and tissue levels. We also examined the beneficial effects of gut hormone therapy in this model by using a new triple agonist ([d-Ala(2)]GIP-Oxm) active at the GIP, GLP-1 and glucagon receptors. As expected, db/db mice presented with dramatic alterations of bone strength at the organ level associated with deterioration of trabecular and cortical microarchitectures and an augmentation in osteoclast numbers. At the tissue level, these animals presented also with alterations of bone strength (reduced hardness, indentation modulus and dissipated energy) with modifications of tissue mineral distribution, collagen glycation and collagen maturity. The use of [d-Ala(2)]GIP-Oxm considerably improved bone strength at the organ level with modest effects on trabecular microarchitecture. At the tissue level, [d-Ala(2)]GIP-Oxm ameliorated bone strength reductions with positive effects on collagen glycation and collagen maturity. This study provides support for including gut hormone analogues as possible new therapeutic strategies for improving bone quality in bone complications associated to T2DM.
    Matched MeSH terms: Osteogenesis/drug effects
  3. Chin KY, Mo H, Soelaiman IN
    Curr Drug Targets, 2013 Dec;14(13):1533-41.
    PMID: 23859472
    Osteoporosis is posing a tremendous healthcare problem globally. Much effort has been invested in finding novel antiosteoporotic agents to stop the progression of this disease. Tocotrienol, one of the isoforms of vitamin E, is poised as a potential antiosteoporotic agent. Previous studies showed that tocotrienol as a single isomer or as a mixture demonstrated both anabolic and antiresorptive effects in various rodent models of osteoporosis. In vitro experiments further demonstrated that tocotrienol could up-regulate genes related to osteoblastogenesis and modify receptor activator of nuclear factor kappa B signaling against osteoclastogenesis. Additionally, tocotrienol was also shown to be a strong 3- hydroxy-3-methyl-glutaryl-CoA reductase down-regulator with a mechanism different from that of statins. Inhibition of the mevalonate pathway affects both osteoblast and osteoclast formation in favor of the former. Tocopherol, a more commonly used isoform of vitamin E does not possess similar effects. Tocotrienol is also a potent antioxidant. It can scavenge free radicals and prevent oxidative damage on osteoblast thus promoting its survival. It may also up-regulate the antioxidant defense network in osteoclast and indirectly act against free radical signaling essential in osteoclastogenesis. The effects of tocotrienol on Wnt/β-catenin signaling essential in osteoblastogenesis have not been determined. More mechanistic studies need to be conducted to illustrate the antiosteoporotic effects of tocotrienol. Clinical trials are also required to confirm its effects in humans. In conclusion, tocotrienol demonstrates great potential as an antiosteoporotic agent and much research effort should be invested to develop it as an agent to curb osteoporosis.
    Matched MeSH terms: Osteogenesis/drug effects
  4. Abdul-Majeed S, Mohamed N, Soelaiman IN
    Curr Drug Targets, 2013 Dec;14(13):1579-90.
    PMID: 23848479
    Skeletal tissue undergoes continuous remodeling which makes it unique among other body tissues. Osteoporosis is a common bone metabolic disorder affecting both men and women. Osteoporosis and its complications mainly osteoporotic fractures, have a high impact on health and economy. Current approved medications are associated with numerous side effects, which limit their use. Identification of a new and safe therapy is mandatory. Statins, also known as HMGCoA reductase inhibitors, are frequently used for the treatment of hypercholesterolemia and for the prevention of morbidity and mortality associated with cardiovascular disease. Statins improved bone health status in intact and ovariectomised rodents following high clinically intolerable oral doses. However, this beneficial effect of statins could not be significantly demonstrated in humans. The reason behind this discrepancy might be due to the safety and bioavailability of the currently used oral statins. Vitamin E, especially the tocotrienols at the dose 60 mg/kg/day provided significant antiosteoporotic effects in different animal models of osteoporosis. The use of the aforementioned dose of tocotrienols was shown to be safe in both humans and animals. Enhancement of bone formation and reduction of bone resorption were achieved more effectively by a combination of tocotrienols and statins than by either treatment when supplemented separately at clinically tolerable doses. Therefore, the adverse effects associated with high statin doses might be avoided with the coadministration of tocotrienols. Moreover, the combination therapy strategy might be useful for patients who are at high risk of osteoporosis, cardiovascular events and hypercholesterolaemia.
    Matched MeSH terms: Osteogenesis/drug effects
  5. Wan Hasan WN, Abd Ghafar N, Chin KY, Ima-Nirwana S
    Drug Des Devel Ther, 2018;12:1715-1726.
    PMID: 29942115 DOI: 10.2147/DDDT.S168935
    PURPOSE: Annatto-derived tocotrienol (AnTT) has been shown to improve bone formation in animal models of osteoporosis. However, detailed studies of the effects of AnTT on preosteoblastic cells were limited. This study was conducted to investigate the osteogenic effect of AnTT on preosteoblast MC3T3-E1 cells in a time-dependent manner.

    MATERIALS AND METHODS: Murine MC3T3-E1 preosteoblastic cells were cultured in the different concentrations of AnTT (0.001-1 µg/mL) up to 24 days. Expression of osteoblastic differentiation markers was measured by qPCR (osterix [OSX], collagen 1 alpha 1 [COL1α1], alkaline phosphatase [ALP], and osteocalcin [OCN]) and by fluorometric assay for ALP activity. Detection of collagen and mineralized nodules was done via Direct Red staining and Alizarin Red staining, respectively.

    RESULTS: The results showed that osteoblastic differentiation-related genes, such as OSX, COL1α1, ALP, and OCN, were significantly increased in the AnTT-treated groups compared to the vehicle group in a time-dependent manner (P<0.05). Type 1 collagen level was increased from day 3 to day 15 in the AnTT-treated groups, while ALP activity was increased from day 9 to day 21 in the AnTT-treated groups (P<0.05). Enhanced mineralization was observed in the AnTT-treated groups via increasing Alizarin Red staining from day 3 to day 21 (P<0.05).

    CONCLUSION: Our results suggest that AnTT enhances the osteogenic activity by promoting the bone formation-related genes and proteins in a temporal and sequential manner.

    Matched MeSH terms: Osteogenesis/drug effects*
  6. Ekeuku SO, Chin KY
    Molecules, 2021 May 25;26(11).
    PMID: 34070497 DOI: 10.3390/molecules26113156
    Chronic inflammation and oxidative stress are two major mechanisms leading to the imbalance between bone resorption and bone formation rate, and subsequently, bone loss. Thus, functional foods and dietary compounds with antioxidant and anti-inflammatory could protect skeletal health. This review aims to examine the current evidence on the skeletal protective effects of propolis, a resin produced by bees, known to possess antioxidant and anti-inflammatory activities. A literature search was performed using Pubmed, Scopus, and Web of Science to identify studies on the effects of propolis on bone health. The search string used was (i) propolis AND (ii) (bone OR osteoporosis OR osteoblasts OR osteoclasts OR osteocytes). Eighteen studies were included in the current review. The available experimental studies demonstrated that propolis could prevent bone loss due to periodontitis, dental implantitis, and diabetes in animals. Combined with synthetic and natural grafts, it could also promote fracture healing. Propolis protects bone health by inhibiting osteoclastogenesis and promoting osteoblastogenesis, partly through its antioxidant and anti-inflammatory actions. Despite the promising preclinical results, the skeletal protective effects of propolis are yet to be proven in human studies. This research gap should be bridged before nutraceuticals based on propolis with specific health claims can be developed.
    Matched MeSH terms: Osteogenesis/drug effects
  7. Hadzir SN, Ibrahim SN, Abdul Wahab RM, Zainol Abidin IZ, Senafi S, Ariffin ZZ, et al.
    Cytotherapy, 2014 May;16(5):674-82.
    PMID: 24176546 DOI: 10.1016/j.jcyt.2013.07.013
    Suspension mononuclear cells (MNCs) can be differentiated into osteoblasts with the induction of ascorbic acid and β-glycerophosphate. The aim of this study was to determine the ability of suspension MNCs to differentiate into osteoblasts using ascorbic acid only.
    Matched MeSH terms: Osteogenesis/drug effects
  8. Hermizi H, Faizah O, Ima-Nirwana S, Ahmad Nazrun S, Norazlina M
    Calcif. Tissue Int., 2009 Jan;84(1):65-74.
    PMID: 19020790 DOI: 10.1007/s00223-008-9190-x
    This study was conducted to determine the effectiveness of three forms of vitamin E supplements following nicotine treatment on bone histomorphometric parameters in an adult male rat model. Rats were divided into seven groups: baseline (B, killed without treatment), control (C, normal saline for 4 months), nicotine (N, nicotine for 2 months), nicotine cessation (NC), tocotrienol-enhanced fraction (TEF), gamma-tocotrienol (GTT), and alpha-tocopherol (ATF). Treatments for the NC, TEF, GTT, and ATF groups were performed in two phases. For the first 2 months they were given nicotine (7 mg/kg), and for the following 2 months nicotine administration was stopped and treatments with respective vitamin E preparations (60 mg/kg) were commenced except for the NC group, which was allowed to recover without treatment. Rats in the N and NC groups had lower trabecular bone volume, mineral appositional rate (MAR), and bone formation rate (BFR/BS) and higher single labeled surface and osteoclast surface compared to the C group. Vitamin E treatment reversed these nicotine effects. Both the TEF and GTT groups, but not the ATF group, had a significantly higher trabecular thickness but lower eroded surface (ES/BS) than the C group. The tocotrienol-treated groups had lower ES/BS than the ATF group. The GTT group showed a significantly higher MAR and BFR/BS than the TEF and ATF groups. In conclusion, nicotine induced significant bone loss, while vitamin E supplements not only reversed the effects but also stimulated bone formation significantly above baseline values. Tocotrienol was shown to be slightly superior compared to tocopherol. Thus, vitamin E, especially GTT, may have therapeutic potential to repair bone damage caused by chronic smoking.
    Matched MeSH terms: Osteogenesis/drug effects*
  9. Rufus P, Mohamed N, Shuid AN
    Curr Drug Targets, 2013 Dec;14(14):1689-93.
    PMID: 24354584
    Osteoporosis is a metabolic bone disorder that affects both men and women worldwide. It causes low bone mass and therefore increases bone susceptibility to fracture when bone undergoes a minor trauma. Lack of estrogen is the principal cause of osteoporosis. Estrogen, calcium, calcitonin, vitamin D and several antioxidants help in the prevention of osteoporosis. In order to effectively treat osteoporosis, there has been an extended research on the biological activities of traditional medicines since synthetic medicines possess several side effects that reduce their efficacy. Therefore, there is a need to develop new treatment alternatives for osteoporosis. This review centres on the scientific researches carried out on the evaluation of Chinese traditional medicines in the treatment of osteoporosis. Various plants like Achyranthes bidentata, Davallia formosana, polygonatum sibiricum, Cibotium barometz, Er-Zhi-Wan, Curculigo orchioides and a combined treatment of Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) with alendronate proved active in preventing post-menopausal osteoporosis.
    Matched MeSH terms: Osteogenesis/drug effects
  10. Das S, Sakthiswary R
    Curr Drug Targets, 2013 Dec;14(14):1667-74.
    PMID: 24354585
    Preventing osteoporotic fractures in millions of individuals may significantly reduce the associated morbidity and health-care expenditures incurred. As such, the search for newer anti-osteoporotic agents has been ongoing for years. Genetic studies have proven that the secreted protein sclerostin is one of the main culprits, which negatively regulates the bone formation. Recently, sclerostin-neutralizing monoclonal antibodies (Scl-Ab) in rodent studies have shown positive effects on bone homeostasis. An extensive search of the literature was performed in the BIOSIS, Cinahl, EMBASE, Pub- Med, Web of Science and Cochrane Library databases to evaluate the published murine studies on the effects of Scl-Ab on the bone metabolism and histomorphometric parameters. Our systematic review depicts a significant association between Scl-Ab administration and improvement in bone formation, bone density, bone volume and trabecular thickness.
    Matched MeSH terms: Osteogenesis/drug effects
  11. Chin KY, Ima-Nirwana S
    Curr Drug Targets, 2013 Dec;14(14):1632-41.
    PMID: 24354587
    The Asian population whose soy intake is higher compared to Western populations shows a significantly lower incidence of osteoporotic fracture. Several meta-analyses have revealed that supplementation of soy isoflavones improve bone health status in women. This review examined the current evidence as to whether soy could exhibit similar bone protective effects on the male population. In vivo studies revealed that supplementation of soy protein or soy isoflavones improved bone health in both normal and osteoporotic male rodents. Cell culture studies showed that soy isoflavones influenced osteogenesis and osteoclastogenesis through mechanisms such as estrogen receptor binding activity, antiinflammatory activity and anti-parathyroid hormone activity. Soy isoflavones also affected calcium channel signaling and might exhibit direct effects on the osteoblastogenesis modulator, core binding factor 1. However, limited clinical trials involving soy intervention in males generally showed insignificant results. This could be attributed to the short duration of intervention, characteristics of the subjects or method of bone health assessment. More well-planned clinical trials are required to establish possible bone protective effects of soy in men.
    Matched MeSH terms: Osteogenesis/drug effects
  12. Helali AM, Iti FM, Mohamed IN
    Curr Drug Targets, 2013 Dec;14(13):1591-600.
    PMID: 23957815
    Osteoporosis is a pathologic process characterized by low bone mass with skeletal fragility and an increased risk of fracture. It occurs due to an imbalance between bone resorption and formation. Although current antiresorptive therapy halts bone loss, it does not cure the condition as it also inhibits bone formation. Recent preclinical and clinical trials suggest that the inhibition of resorption by cathepsin K inhibitors increases bone formation. Cathepsin K is a papainlike cysteine protease with high potent collagenase activity and predominantly expressed in osteoclasts. While allowing demineralization, cathepsin K inhibitors suppress the degradation of type I collagen (the major organic matrix of bone) and thus enhancing bone formation. Many of these inhibitors have passed preclinical studies and are presently in clinical trials at different stages of advancement. This review explores the promising role of cathepsin K as a novel antiresorptive for the treatment of osteoporosis.
    Matched MeSH terms: Osteogenesis/drug effects
  13. Akhir HM, Teoh PL
    Biosci Rep, 2020 12 23;40(12).
    PMID: 33245097 DOI: 10.1042/BSR20201325
    Collagen has been widely shown to promote osteogenesis of bone marrow mesenchymal stromal cells (BM-MSCs). Due to the invasive procedure of obtaining BM-MSCs, MSCs from other tissues have emerged as a promising alternative for regenerative therapy. MSCs originated from different sources, exhibiting different differentiation potentials. Therefore, the applicability of collagen type I (COL), combining with amniotic membrane (AM)-MSCs was examined through proliferation and differentiation assays together with the expression of surface markers and genes associated with stemness and differentiation under basal or induction conditions. No increase in cell growth was observed because AM-MSCs might be directed toward spontaneous osteogenesis. This was evidenced by the calcium deposition and elevated expression of osteogenic genes when AM-MSCs were cultured in collagen plate with basal media. Under the osteogenic condition, reciprocal expression of OCN and CEBPA suggested a shift toward adipogenesis. Surprisingly, adipogenic genes were not elevated upon adipogenic induction, although oil droplets deposition was observed. In conclusion, our findings demonstrated that collagen causes spontaneous osteogenesis in AM-MSCs. However, the presence of exogenous inductors could shift the direction of adipo-osteogenic gene regulatory network modulated by collagen.
    Matched MeSH terms: Osteogenesis/drug effects*
  14. Shamsul BS, Chowdhury SR, Hamdan MY, Ruszymah BHI
    Indian J Med Res, 2019 05;149(5):641-649.
    PMID: 31417032 DOI: 10.4103/ijmr.IJMR_45_17
    Background & objectives: Seeding density is one of the major parameters affecting the quality of tissue-engineered cartilage. The objective of this study was to evaluate different seeding densities of osteoarthritis chondrocytes (OACs) to obtain the highest quality cartilage.

    Methods: The OACs were expanded from passage 0 (P0) to P3, and cells in each passage were analyzed for gross morphology, growth rate, RNA expression and immunochemistry (IHC). The harvested OACs were assigned into two groups: low (1×10[7] cells/ml) and high (3×10[7] cells/ml) cell density. Three-dimensional (3D) constructs for each group were created using polymerised fibrin and cultured for 7, 14 and 21 days in vitro using chondrocyte growth medium. OAC constructs were analyzed with gross assessments and microscopic evaluation using standard histology, IHC and immunofluorescence staining, in addition to gene expression and biochemical analyses to evaluate tissue development.

    Results: Constructs with a high seeding density of 3×10[7] cells/ml were associated with better quality cartilage-like tissue than those seeded with 1×10[7] cells/ml based on overall tissue formation, cell association and extracellular matrix distribution. The chondrogenic properties of the constructs were further confirmed by the expression of genes encoding aggrecan core protein and collagen type II.

    Interpretation & conclusions: Our results confirmed that cell density was a significant factor affecting cell behaviour and aggregate production, and this was important for establishing good quality cartilage.

    Matched MeSH terms: Osteogenesis/drug effects
  15. Ekeuku SO, Pang KL, Chin KY
    Drug Des Devel Ther, 2021;15:259-275.
    PMID: 33519191 DOI: 10.2147/DDDT.S287280
    Purpose: Caffeic acid is a metabolite of hydroxycinnamate and phenylpropanoid, which are commonly synthesized by all plant species. It is present in various food sources that are known for their antioxidant properties. As an antioxidant, caffeic acid ameliorates reactive oxygen species, which have been reported to cause bone loss. Some studies have highlighted the effects of caffeic acid against bone resorption.

    Methods: A systematic review of the literature was conducted to identify relevant studies on the effects of caffeic acid on bone. A comprehensive search was conducted from July to November 2020 using PubMed, Scopus, Cochrane Library and Web of Science databases. Cellular, animal and human studies reporting the effects of caffeic acid, as a single compound, on bone cells or bone were considered.

    Results: The literature search found 226 articles on this topic, but only 24 articles met the inclusion criteria and were included in this review. The results showed that caffeic acid supplementation reduced osteoclastogenesis and bone resorption, possibly through its antioxidant potential and increased expression of osteoblast markers. However, some studies showed that caffeic acid did not affect bone resorption in ovariectomized rats and might impair bone mechanical properties in normal rats.

    Conclusion: Caffeic acid potentially regulates the bone remodelling process by inhibiting osteoclastogenesis and bone resorption, as well as osteoblast apoptosis. Thus, it has medicinal values against bone diseases.

    Matched MeSH terms: Osteogenesis/drug effects
  16. Thent ZC, Froemming GRA, Ismail ABM, Fuad SBSA, Muid S
    Life Sci, 2018 Oct 01;210:214-223.
    PMID: 30145154 DOI: 10.1016/j.lfs.2018.08.057
    AIMS: Phytoestrogens and xenoestrogens act as agonists/antagonists in bone formation and differentiation. Strong bones are depending of the ability of osteoblasts to form new tissue and to mineralize the newly formed tissue. Dysfunctional or loss of mineralization leads to weak bone and increased fracture risk. In this study, we reported the effect of different types of phytoestrogens (daidzein, genistein and equol) on mineralization in hFOB 1.19 cells stimulated with bisphenol A (BPA).

    MAIN METHODS: Cell mineralization capacity of phytoestrogens was investigated by evaluating calcium, phosphate content and alkaline phosphatase activity. Bone related markers, osteocalcin and osteonectin, responsible in maintaining mineralization were also measured.

    KEY FINDINGS: BPA is significantly interfering with bone mineralization in hFOB 1.19 cells. However, the enhanced mineralization efficacy of daidzein and genistein (particularly at a dose of 5 and 40 μg/mL, respectively) was evidenced by increasing calcium and phosphate content, higher ALP activity, compared to the untreated BPA group. The quantitative analyses were confirmed through morphological findings. Osteocalcin and osteonectin levels were increased in phytoestrogens-treated cells. These findings revealed the potential effect of phytoestrogens in reverting the demineralization process due to BPA exposure in hFOB 1.19 cells.

    SIGNIFICANCE: We found that osteoblast differentiation and mineralization were maintained following treatment with phytoestrogens under BPA exposure.

    Matched MeSH terms: Osteogenesis/drug effects*
  17. Thu HE, Mohamed IN, Hussain Z, Shuid AN
    J Ethnopharmacol, 2017 Jan 04;195:143-158.
    PMID: 27818256 DOI: 10.1016/j.jep.2016.10.085
    ETHNOPHARMACOLOGICAL RELEVANCE: Eurycoma longifolia (EL) has been well-studied traditionally as a chief ingredient of many polyherbal formulations for the management of male osteoporosis. It has also been well-recognised to protect against bone calcium loss in orchidectomised rats.

    AIM OF THE STUDY: To evaluate the effects of EL on the time-mannered sequential proliferative, differentiative, and morphogenic modulation in osteoblasts compared with testosterone.

    MATERIALS AND METHODS: Cell proliferation was analysed using MTS assay and phase contrast microscopy. Osteogenic differentiation of MC3T3-E1 cells was assessed through a series of characteristic assays which include crystal violet staining, alkaline phosphatase (ALP) activity and Van Gieson staining. Taken together, the bone mineralization of extra cellular matrix (ECM) was estimated using alizarin red s (ARS) staining, von kossa staining, scanning electron microscopic (SEM) and energy dispersive x-ray (EDX) analysis.

    RESULTS: The cell proliferation data clearly revealed the efficiency of EL particularly at a dose of 25µg/mL, in improving the growth of MC3T3-E1 cells compared with the untreated cells. Data also showed the prominence of EL in significantly promoting ALP activity throughout the entire duration of treatment compared with the testosterone-treated cells. The osteogenic differentiation potential of EL was further explored by analysing mineralization data which revealed that the calcified nodule formation (calcium deposition) and phosphate deposition was more pronounced in cells treated with 25µg/mL concentration of EL at various time points compared with the untreated and testosterone treated cells. The scanning electron microscopic (SEM) analysis also revealed highest globular masses of mineral deposits (identified as white colour crystals) in the ECM of cultured cells treated with 25µg/mL concentration of EL.

    CONCLUSION: Compared to testosterone, greater potential of EL in promoting the proliferation and osteogenic differentiation of MC3T3-E1 cells provides an in vitro basis for the prevention of male osteoporosis. Thus, we anticipate that EL can be considered as an alternative approach to testosterone replacement therapy (TRT) for the treatment of male osteoporosis.

    Matched MeSH terms: Osteogenesis/drug effects*
  18. Samsulrizal N, Goh YM, Ahmad H, Md Dom S, Azmi NS, NoorMohamad Zin NS, et al.
    Pharm Biol, 2021 Dec;59(1):66-73.
    PMID: 33399485 DOI: 10.1080/13880209.2020.1865411
    CONTEXT: Diabetes mellitus increases the risk of bone diseases including osteoporosis and osteoarthritis. We have previously demonstrated that Ficus deltoidea Jack (Moraceae) is capable of reducing hyperglycaemia. However, whether F. deltoidea could protect against diabetic osteoporosis remains to be determined.

    OBJECTIVE: The study examines the effect of F. deltoidea on bone histomorphometric parameters, oxidative stress, and turnover markers in diabetic rats.

    MATERIALS AND METHODS: Streptozotocin (STZ)-induced diabetic Sprague-Dawley rats (n = 6 animals per group) received one of the following treatments via gavage for 8 weeks: saline (diabetic control), metformin (1000 mg/kg bwt), and methanol leaves extract of F. deltoidea (1000 mg/kg bwt). A group of healthy rats served as normal control. The femoral bones were excised and scanned ex vivo using micro-computed tomography (micro-CT) for histomorphometric analysis. The serum levels of insulin, oxidative stress, and bone turnover markers were determined by ELISA assays.

    RESULTS: Treatment of diabetic rats with F. deltoidea could significantly increase bone mineral density (BMD) (from 526.98 ± 11.87 to 637.74 ± 3.90). Higher levels of insulin (2.41 ± 0.08 vs. 1.58 ± 0.16), osteocalcin (155.66 ± 4.11 vs. 14.35 ± 0.97), and total bone n-3 PUFA (2.34 ± 0.47 vs. 1.44 ± 0.18) in parallel with the presence of chondrocyte hypertrophy were also observed following F. deltoidea treatment compared to diabetic control.

    CONCLUSIONS: F. deltoidea could prevent diabetic osteoporosis by enhancing osteogenesis and inhibiting bone oxidative stress. These findings support the potential use of F. deltoidea for osteoporosis therapy in diabetes.

    Matched MeSH terms: Osteogenesis/drug effects*
  19. Chowdhury SR, Ng MH, Hassan NS, Aminuddin BS, Ruszymah BH
    Hum. Cell, 2012 Sep;25(3):69-77.
    PMID: 22968953
    This study was undertaken in order to identify the best culture strategy to expand and osteogenic differentiation of human bone marrow stem cells (hBMSCs) for subsequent bone tissue engineering. In this regard, the experiment was designed to evaluate whether it is feasible to bypass the expansion phase during hBMSCs differentiation towards osteogenic lineages by early induction, if not identification of suitable culture media for enhancement of hBMSCs expansion and osteogenic differentiation. It was found that introduction of osteogenic factors in alpha-minimum essential medium (αMEM) during expansion phase resulted in significant reduction of hBMSCs growth rate and osteogenic gene expressions. In an approach to identify suitable culture media, the growth and differentiation potential of hBMSCs were evaluated in αMEM, F12:DMEM (1:1; FD), and FD with growth factors. It was found that αMEM favors the expansion and osteogenic differentiation of hBMSCs compared to that in FD. However, supplementation of growth factors in FD, only during expansion phase, enhances the hBMSCs growth rate and significantly up-regulates the expression of CBFA-1 (the early markers of osteogenic differentiation) during expansion, and, other osteogenic genes at the end of induction compared to the cells in αMEM and FD. These results suggested that the expansion and differentiation phase of the hBMSCs should be separately and carefully timed. For bone tissue engineering, supplementation of growth factors in FD only during the expansion phase was sufficient to promote hBMSCs expansion and differentiation, and preferably the most efficient culture condition.
    Matched MeSH terms: Osteogenesis/drug effects*
  20. Al-Obaidi MM, Al-Bayaty FH, Al Batran R, Hussaini J, Khor GH
    ScientificWorldJournal, 2014;2014:908098.
    PMID: 25485304 DOI: 10.1155/2014/908098
    To estimate the impact of ellagic acid (EA) towards healing tooth socket in diabetic animals, after tooth extraction.
    Matched MeSH terms: Osteogenesis/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links