Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Chin KY, Pang KL, Soelaiman IN
    Adv Exp Med Biol, 2016;928:97-130.
    PMID: 27671814
    Tocotrienol is a member of vitamin E family and is well-known for its antioxidant and anti-inflammatory properties. It is also a suppressor of mevalonate pathway responsible for cholesterol and prenylated protein synthesis. This review aimed to discuss the health beneficial effects of tocotrienol, specifically in preventing or treating hyperlipidaemia, diabetes mellitus, osteoporosis and cancer with respect to these properties. Evidence from in vitro, in vivo and human studies has been examined. It is revealed that tocotrienol shows promising effects in preventing or treating the health conditions previously mentioned in in vivo and in vitro models. In some cases, alpha-tocopherol attenuates the biological activity of tocotrienol. Except for its cholesterol-lowering effects, data on the health-promoting effects of tocotrienol in human are limited. As a conclusion, the encouraging results on the health beneficial effects of tocotrienol should motivate researchers to explore its potential use in human.
    Matched MeSH terms: Osteoporosis/drug therapy
  2. Jeevaratnam K, Salvage SC, Li M, Huang CL
    Ann N Y Acad Sci, 2018 Dec;1433(1):18-28.
    PMID: 29846007 DOI: 10.1111/nyas.13861
    Alterations in cellular levels of the second messenger 3',5'-cyclic adenosine monophosphate ([cAMP]i ) regulate a wide range of physiologically important cellular signaling processes in numerous cell types. Osteoclasts are terminally differentiated, multinucleated cells specialized for bone resorption. Their systemic regulator, calcitonin, triggers morphometrically and pharmacologically distinct retraction (R) and quiescence (Q) effects on cell-spread area and protrusion-retraction motility, respectively, paralleling its inhibition of bone resorption. Q effects were reproduced by cholera toxin-mediated Gs -protein activation known to increase [cAMP]i , unaccompanied by the [Ca2+ ]i changes contrastingly associated with R effects. We explore a hypothesis implicating cAMP signaling involving guanine nucleotide-exchange activation of the small GTPase Ras-proximate-1 (Rap1) by exchange proteins directly activated by cAMP (Epac). Rap1 activates integrin clustering, cell adhesion to bone matrix, associated cytoskeletal modifications and signaling processes, and transmembrane transduction functions. Epac activation enhanced, whereas Epac inhibition or shRNA-mediated knockdown compromised, the appearance of markers for osteoclast differentiation and motility following stimulation by receptor activator of nuclear factor kappa-Β ligand (RANKL). Deficiencies in talin and Rap1 compromised in vivo bone resorption, producing osteopetrotic phenotypes in genetically modified murine models. Translational implications of an Epac-Rap1 signaling hypothesis in relationship to N-bisphosphonate actions on prenylation and membrane localization of small GTPases are discussed.
    Matched MeSH terms: Osteoporosis/drug therapy
  3. Shuid AN, El-arabi E, Effendy NM, Razak HS, Muhammad N, Mohamed N, et al.
    PMID: 22967165 DOI: 10.1186/1472-6882-12-152
    Eurycoma longifolia (EL) has been shown recently to protect against bone calcium loss in orchidectomised rats, the model for androgen-deficient osteoporosis. The mechanism behind this is unclear but it may be related to its ability to elevate testosterone levels or it may directly affect bone remodeling. The aim of this study is to determine the mechanism involved by investigating the effects of EL extract on serum testosterone levels, bone biomarkers, biomechanical strength and gene expression of Receptor Activator of Nuclear Factor kappa-B ligand (RANKL), Osteoprotegerin (OPG) and Macrophage-Colony Stimulating Factor (MCSF) in orchidectomised rats.
    Matched MeSH terms: Osteoporosis/drug therapy*
  4. Parvaneh K, Ebrahimi M, Sabran MR, Karimi G, Hwei AN, Abdul-Majeed S, et al.
    Biomed Res Int, 2015;2015:897639.
    PMID: 26366421 DOI: 10.1155/2015/897639
    Probiotics are live microorganisms that exert beneficial effects on the host, when administered in adequate amounts. Mostly, probiotics affect the gastrointestinal (GI) tract of the host and alter the composition of gut microbiota. Nowadays, the incidence of hip fractures due to osteoporosis is increasing worldwide. Ovariectomized (OVX) rats have fragile bone due to estrogen deficiency and mimic the menopausal conditions in women. Therefore, this study aimed to examine the effects of Bifidobacterium longum (B. longum) on bone mass density (BMD), bone mineral content (BMC), bone remodeling, bone structure, and gene expression in OVX rats. The rats were randomly assigned into 3 groups (sham, OVX, and the OVX group supplemented with 1 mL of B. longum 10(8)-10(9) colony forming units (CFU)/mL). B. longum was given once daily for 16 weeks, starting from 2 weeks after the surgery. The B. longum supplementation increased (p < 0.05) serum osteocalcin (OC) and osteoblasts, bone formation parameters, and decreased serum C-terminal telopeptide (CTX) and osteoclasts, bone resorption parameters. It also altered the microstructure of the femur. Consequently, it increased BMD by increasing (p < 0.05) the expression of Sparc and Bmp-2 genes. B. longum alleviated bone loss in OVX rats and enhanced BMD by decreasing bone resorption and increasing bone formation.
    Matched MeSH terms: Osteoporosis/drug therapy
  5. Mohamad NV, Soelaiman IN, Chin KY
    Biomed Pharmacother, 2018 Jul;103:453-462.
    PMID: 29674281 DOI: 10.1016/j.biopha.2018.04.083
    INTRODUCTION: Osteoporosis is a debilitating skeletal side effect of androgen deprivation therapy based on gonadotropin-releasing hormone (GnRH) agonist in men. Tocotrienol from Bixa orellana (annatto) has been demonstrated to offer protection against osteoporosis by exerting anabolic effects on bone. Thus, it may prevent osteoporosis among GnRH agonist users.

    OBJECTIVE: This study aimed to determine the effectiveness of annatto-tocotrienol on the bone turnover markers and bone histomorphometry in a model of male osteoporosis induced by buserelin (a GnRH agonist).

    METHODS: Forty-six three-months-old male Sprague-Dawley rats (three months old; 300-350 g) were randomly divided into six groups. The baseline control group (n = 6) was sacrificed at the onset of the study. The normal control group (n = 8) received corn oil (the vehicle of tocotrienol) orally daily and normal saline (the vehicle of buserelin) subcutaneously daily. The buserelin control (n = 8) received corn oil orally daily and subcutaneous buserelin injection 75 μg/kg/day daily. The calcium control (n = 8) received 1% calcium in drinking water and subcutaneous buserelin injection 75 μg/kg/day. The remaining rats were treated with two different treatments, i.e., (1) oral annatto tocotrienol at 60 mg/kg/day plus subcutaneous buserelin injection 75 μg/kg/day (n = 8); (2) oral annatto tocotrienol at 100 mg/kg/day plus subcutaneous buserelin injection 75 μg/kg/day (n = 8). The rats were injected with calcein twice before being sacrificed to label the bones. The rats were euthanized, and their blood and right femur were harvested at the end of the treatment for bone turnover markers and bone histomorphometry examination.

    RESULTS: Both serum osteocalcin and C-telopeptide of type 1 collagen were not significantly different between treated groups and buserelin control (P > 0.05). The buserelin control group had a significantly lower bone volume and higher eroded surface compared with the normal control group (P 

    Matched MeSH terms: Osteoporosis/drug therapy*
  6. Moshiri A, Sharifi AM, Oryan A
    Clin Exp Pharmacol Physiol, 2016 Jul;43(7):659-84.
    PMID: 27061579 DOI: 10.1111/1440-1681.12577
    Simvastatin is a lipid lowering drug whose beneficial role on bone metabolism was discovered in 1999. Several in vivo studies evaluated its role on osteoporosis and fracture healing, however, controversial results are seen in the literature. For this reason, Simvastatin has not been the focus of any clinical trials as yet. This systematic review clears the mechanisms of action of Simvastatin on bone metabolism and focuses on in vivo investigations that have evaluated its role on osteoporosis and fracture repair to find out (i) whether Simvastatin is effective on treatment of osteoporosis and fracture repair, and (ii) which of the many available protocols may have the ability to be translated in the clinical setting. Simvastatin induces osteoinduction by increasing osteoblast activity and differentiation and inhibiting their apoptosis. It also reduces osteoclastogenesis by decreasing both the number and activity of osteoclasts and their differentiation. Controversial results between the in vivo studies are mostly due to the differences in the route of administration, dose, dosage and carrier type. Local delivery of Simvastatin through controlled drug delivery systems with much lower doses and dosages than the systemic route seems to be the most valuable option in fracture healing. However, systemic delivery of Simvastatin with much higher doses and dosages than the clinical ones seems to be effective in managing osteoporosis. Simvastatin, in a particular range of doses and dosages, may be beneficial in managing osteoporosis and fracture injuries. This review showed that Simvastatin is effective in the treatment of osteoporosis and fracture healing.
    Matched MeSH terms: Osteoporosis/drug therapy*
  7. Chin KY, Ima-Nirwana S
    Clin Interv Aging, 2014;9:1247-59.
    PMID: 25120355 DOI: 10.2147/CIA.S67016
    BACKGROUND: Previous animal models have demonstrated that tocotrienol is a potential treatment for postmenopausal osteoporosis. This study evaluated the antiosteoporotic effects of annatto-derived tocotrienol (AnTT) using a testosterone-deficient osteoporotic rat model.
    METHODS: Forty rats were divided randomly into baseline, sham, orchidectomized, AnTT, and testosterone groups. The baseline group was euthanized without undergoing any surgical treatment or intervention. The remaining groups underwent orchidectomy, with the exception of the sham group. AnTT 60 mg/kg/day was given orally to the AnTT group, while the testosterone group received testosterone enanthate 7 mg/kg per week intramuscularly for 8 weeks. Structural changes in trabecular bone at the proximal tibia were examined using microcomputed tomography. Structural and dynamic changes at the distal femur were examined using histomorphometric methods. Serum osteocalcin and C-terminal of type 1 collagen crosslinks were measured. Bone-related gene expression in the distal femur was examined.
    RESULTS: There were significant degenerative changes in structural indices in the orchidectomized group (P<0.05), but no significant changes in dynamic indices, bone remodeling markers, or gene expression (P>0.05) when compared with the sham group. The AnTT group showed significant improvement in structural indices at the femur (P<0.05) and significantly increased expression of bone formation genes (P<0.05). Testosterone was more effective than AnTT in preventing degeneration of bone structural indices in the femur and tibia (P<0.05).
    CONCLUSION: AnTT supplementation improves bone health in testosterone-deficient rats by enhancing bone formation. Its potential should be evaluated further by varying the dosage and treatment duration.
    KEYWORDS: bone remodeling; osteoporosis; testosterone; tocotrienol
    Matched MeSH terms: Osteoporosis/drug therapy*
  8. Shuid AN, Soelaiman IN, Das S
    Curr Drug Targets, 2013 Dec;14(13):1523.
    PMID: 24266612
    Matched MeSH terms: Osteoporosis/drug therapy*
  9. Shuid AN, Ima Nirwana S, Das S
    Curr Drug Targets, 2013 Dec;14(14):1631.
    PMID: 24383964
    Matched MeSH terms: Osteoporosis/drug therapy*
  10. Rufus P, Mohamed N, Shuid AN
    Curr Drug Targets, 2013 Dec;14(14):1689-93.
    PMID: 24354584
    Osteoporosis is a metabolic bone disorder that affects both men and women worldwide. It causes low bone mass and therefore increases bone susceptibility to fracture when bone undergoes a minor trauma. Lack of estrogen is the principal cause of osteoporosis. Estrogen, calcium, calcitonin, vitamin D and several antioxidants help in the prevention of osteoporosis. In order to effectively treat osteoporosis, there has been an extended research on the biological activities of traditional medicines since synthetic medicines possess several side effects that reduce their efficacy. Therefore, there is a need to develop new treatment alternatives for osteoporosis. This review centres on the scientific researches carried out on the evaluation of Chinese traditional medicines in the treatment of osteoporosis. Various plants like Achyranthes bidentata, Davallia formosana, polygonatum sibiricum, Cibotium barometz, Er-Zhi-Wan, Curculigo orchioides and a combined treatment of Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) with alendronate proved active in preventing post-menopausal osteoporosis.
    Matched MeSH terms: Osteoporosis/drug therapy*
  11. Abdul Jalil MA, Shuid AN, Muhammad N
    Curr Drug Targets, 2013 Dec;14(14):1651-8.
    PMID: 24354586
    With improvements in living standards and healthcare, life expectancy has been increasing dramatically in most parts of the world. These situations lead to the increase in the reported cases of geriatrics-related diseases such as hypogonadal osteoporosis with skeletal fracture being the ultimate outcome, which eventually causes significant morbidity and mortality. The deficient gonadal hormones, which are the main cause of hypogonadal osteoporosis, could be substituted with hormone replacement therapy to hinder bone loss. However, the artificial hormonal therapy has been linked to grievous conditions such as breast and prostate cancers. In view of the various adverse effects associated with conventional treatment, many researchers are now focusing on finding alternative remedies from nature. This article explores the possibilities of certain medicinal plants native to Malaysia that possess androgenic and antioxidant properties to potentially be used in the treatment of fracture due to osteoporosis in ageing people.
    Matched MeSH terms: Osteoporosis/drug therapy
  12. Das S, Sakthiswary R
    Curr Drug Targets, 2013 Dec;14(14):1667-74.
    PMID: 24354585
    Preventing osteoporotic fractures in millions of individuals may significantly reduce the associated morbidity and health-care expenditures incurred. As such, the search for newer anti-osteoporotic agents has been ongoing for years. Genetic studies have proven that the secreted protein sclerostin is one of the main culprits, which negatively regulates the bone formation. Recently, sclerostin-neutralizing monoclonal antibodies (Scl-Ab) in rodent studies have shown positive effects on bone homeostasis. An extensive search of the literature was performed in the BIOSIS, Cinahl, EMBASE, Pub- Med, Web of Science and Cochrane Library databases to evaluate the published murine studies on the effects of Scl-Ab on the bone metabolism and histomorphometric parameters. Our systematic review depicts a significant association between Scl-Ab administration and improvement in bone formation, bone density, bone volume and trabecular thickness.
    Matched MeSH terms: Osteoporosis/drug therapy*
  13. Ibrahim N', Mohamad S, Mohamed N, Shuid AN
    Curr Drug Targets, 2013 Dec;14(14):1642-50.
    PMID: 24350807
    Osteoporosis may cause bone fracture even under slight trauma. Osteoporotic fracture has become a major public health problem but until today, the treatments available are not satisfactory. Many pre-clinical testings on animals were done to find new agents that can be sourced from natural products and synthetic drugs for osteoporotic fracture healing. Animal models are more appropriate for fracture healing study than human subject due to several reasons including the ethical issues involved. The bones of rodents are similar to human in term of their morphological change and response to therapy. Small rodents such as rats and mice are suitable animal models for fracture healing studies as they have a similar bone remodeling system to human. To date, there is no specific guideline to carry out fracture healing studies in animal models for the evaluation of new agents. This paper highlights the protocols of various fracture and fixation methods for experimental osteoporotic fracture healing using rodent models.
    Matched MeSH terms: Osteoporosis/drug therapy
  14. Abukhadir SS, Mohamed N, Mohamed N
    Curr Drug Targets, 2013 Dec;14(13):1601-10.
    PMID: 24138635
    Osteoporosis is the most common bone disease in humans; it represents a major public health problem. This chronic disease is characterized by increase in bone fracture due to: reduced bone mass, deterioration of micro architectural and decreased bone strength, bone fragility; and bone mineral density 2.5 or more standard deviations below the normal mean. Secondary osteoporosis is a common cause of osteoporosis, and there are many underlying risk factors for osteoporosis. Chronic alcohol abuse is one of the modifiable risk factors in osteoporosis. There is evidence of correlation between chronic alcohol abuse and low bone mass. Alcohol is directly toxic to the bone; with increased incidence of fractures and complications. Although there is a paucity of studies regarding alcohol induced osteoporosis therapy, it can be classified into antiresorptive therapy and anabolic therapy. Bisphosphonates have been demonstrated to be clinically relevant to prevent bone damage associated with alcohol use while parathyroid hormone increased bone mineralization as well as bone formation in alcohol treated rats. Vitamin D supplementation could prevent bone toxicity in chronic drinkers. This review discussed the pathogenesis of alcohol-induced osteoporosis and the agents available for its treatment. Other potential therapies are also discussed.
    Matched MeSH terms: Osteoporosis/drug therapy*
  15. Mohd Fozi NF, Mazlan M, Shuid AN, Isa Naina M
    Curr Drug Targets, 2013 Dec;14(14):1659-66.
    PMID: 24093748
    Osteoporosis is a progressive disease of the skeleton characterised by bone fragility due to a reduction in bone mass and possibly to alteration in bone architecture that lead to a propensity to fracture with minimum trauma. Most osteoporotic fractures occur at locations rich in trabecular or cancellous bone and usually related to post menopausal women. Recently, silymarin received attention due to its alternative beneficial effect on bone formation. It is a mixture of flavonoids with powerful antioxidant properties. This review focuses on the use of milk thistle or silymarin for the treatment of osteoporosis that may be related to fracture bone. Silymarin shows potent antioxidant herb that may modulate multiple genes in favour of helping to build bone and prevent bone loss. In the mouse fracture healing model, silymarin supplementation improved tibial healing with elevated BMD and serum levels of ALP and osteocalcin. Silymarin also demonstrated clear estrogenic antiosteoporotic effects in bone structure. Silymarin appears to play a crucial role to prevent bone loss and might regulate osteogenesis and may be beneficial for fracture healing. If silymarin is considered for the use of post menopausal women, it may be used for the treatment of osteoporosis. It would be of great benefit to postmenopausal women to develop an oestrogen antagonist that is as potent and efficacious as oestrogen in preventing bone loss without the major side effect associated with HRT.
    Matched MeSH terms: Osteoporosis/drug therapy*
  16. Chin KY, Mo H, Soelaiman IN
    Curr Drug Targets, 2013 Dec;14(13):1533-41.
    PMID: 23859472
    Osteoporosis is posing a tremendous healthcare problem globally. Much effort has been invested in finding novel antiosteoporotic agents to stop the progression of this disease. Tocotrienol, one of the isoforms of vitamin E, is poised as a potential antiosteoporotic agent. Previous studies showed that tocotrienol as a single isomer or as a mixture demonstrated both anabolic and antiresorptive effects in various rodent models of osteoporosis. In vitro experiments further demonstrated that tocotrienol could up-regulate genes related to osteoblastogenesis and modify receptor activator of nuclear factor kappa B signaling against osteoclastogenesis. Additionally, tocotrienol was also shown to be a strong 3- hydroxy-3-methyl-glutaryl-CoA reductase down-regulator with a mechanism different from that of statins. Inhibition of the mevalonate pathway affects both osteoblast and osteoclast formation in favor of the former. Tocopherol, a more commonly used isoform of vitamin E does not possess similar effects. Tocotrienol is also a potent antioxidant. It can scavenge free radicals and prevent oxidative damage on osteoblast thus promoting its survival. It may also up-regulate the antioxidant defense network in osteoclast and indirectly act against free radical signaling essential in osteoclastogenesis. The effects of tocotrienol on Wnt/β-catenin signaling essential in osteoblastogenesis have not been determined. More mechanistic studies need to be conducted to illustrate the antiosteoporotic effects of tocotrienol. Clinical trials are also required to confirm its effects in humans. In conclusion, tocotrienol demonstrates great potential as an antiosteoporotic agent and much research effort should be invested to develop it as an agent to curb osteoporosis.
    Matched MeSH terms: Osteoporosis/drug therapy*
  17. Shuid AN, Mohamed IN
    Curr Drug Targets, 2013 Dec;14(13):1565-78.
    PMID: 24200293
    This review explores the effects of pomegranate on the pathogenesis of bone loss in osteoporosis, osteoarthritis and rheumatoid arthritis. A systematic review of the literature was conducted to identify the relevant studies on pomegranate and osteoporosis/osteoarthritis/rheumatoid arthritis. A comprehensive search was conducted in Medline and CINAHL for relevant studies published between the years 1946 to 2012. The main inclusion criteria were research articles published in English, studies had to report the association or effect of pomegranate and these bone and joint diseases: osteoporosis, osteoarthritis or rheumatoid arthritis. The literature search identified 35 potentially relevant articles, whereby 8 met the inclusion criteria. Two animal studies, two combinations of animal and in vitro studies, three in vitro studies and one human study were included in this review. All the studies reported positive effects of pomegranate extract or juice on osteoporosis, osteoarthritis and rheumatoid arthritis. This evidence-based review highlighted the potential of pomegranate extract being used for treating bone loss in osteoporosis, osteoarthritis and rheumatoid arthritis. Further studies are required to identify the active ingredients and molecular mechanisms before controlled human observational studies are conducted to provide stronger evidence.
    Matched MeSH terms: Osteoporosis/drug therapy*
  18. Mohd Ramli ES, Suhaimi F, Ahmad F, Shuid AN, Mohamad N, Ima-Nirwana S
    Curr Drug Targets, 2013 Dec;14(14):1675-82.
    PMID: 24107234
    Osteoporosis is a major global health problem. Osteoporosis is characterized by the loss of bone mass and strength which leads to an increased risk of fracture. Glucocorticoid treatment is the leading cause of secondary osteoporosis. Glucocorticoid action in bone depends upon the expression of 11beta-hydroxysteroid dehydrogenase type 1 enzyme (11β-HSD1). The oestrogen deficient state causes osteoporosis due to enhancement of osteoclastogenesis by oxidative stress which leads to increased bone resorption. Piper sarmentosum (Daun Kaduk) is commonly used in the local cuisine of South East Asia. It is also traditionally used to treat many diseases such as inflammation, dermatitis and joint pain. Studies have revealed antioxidant properties through its flavonoids compound naringenin which acts as a superoxide scavenger that may help in the endogenous antioxidant defence system to protect bone against osteoporosis. Recent studies found that Ps extract has the ability to inhibit the expression and activity of 11β-HSD1 in adipose tissue and bone which restored bone structure and strength. It also accelerates fracture healing in the oestrogen deficient state through its antioxidant properties. The cost of conventional treatment is high and together with the adverse effects it leads to noncompliance. Treatment modalities with herbal medicine, less side effects and is cheaper need to be explored.This review focused on the therapeutic effect of Ps extract on fracture healing in ovariectomized rats and its protective effects against glucocorticoid induced osteoporotic rats.
    Matched MeSH terms: Osteoporosis/drug therapy*
  19. Abdul-Majeed S, Mohamed N, Soelaiman IN
    Curr Drug Targets, 2013 Dec;14(13):1579-90.
    PMID: 23848479
    Skeletal tissue undergoes continuous remodeling which makes it unique among other body tissues. Osteoporosis is a common bone metabolic disorder affecting both men and women. Osteoporosis and its complications mainly osteoporotic fractures, have a high impact on health and economy. Current approved medications are associated with numerous side effects, which limit their use. Identification of a new and safe therapy is mandatory. Statins, also known as HMGCoA reductase inhibitors, are frequently used for the treatment of hypercholesterolemia and for the prevention of morbidity and mortality associated with cardiovascular disease. Statins improved bone health status in intact and ovariectomised rodents following high clinically intolerable oral doses. However, this beneficial effect of statins could not be significantly demonstrated in humans. The reason behind this discrepancy might be due to the safety and bioavailability of the currently used oral statins. Vitamin E, especially the tocotrienols at the dose 60 mg/kg/day provided significant antiosteoporotic effects in different animal models of osteoporosis. The use of the aforementioned dose of tocotrienols was shown to be safe in both humans and animals. Enhancement of bone formation and reduction of bone resorption were achieved more effectively by a combination of tocotrienols and statins than by either treatment when supplemented separately at clinically tolerable doses. Therefore, the adverse effects associated with high statin doses might be avoided with the coadministration of tocotrienols. Moreover, the combination therapy strategy might be useful for patients who are at high risk of osteoporosis, cardiovascular events and hypercholesterolaemia.
    Matched MeSH terms: Osteoporosis/drug therapy*
  20. Mitchell PJ, Cooper C, Fujita M, Halbout P, Åkesson K, Costa M, et al.
    Curr Osteoporos Rep, 2019 12;17(6):510-520.
    PMID: 31734907 DOI: 10.1007/s11914-019-00544-8
    PURPOSE OF REVIEW: This review sought to describe quality improvement initiatives in fragility fracture care and prevention.

    RECENT FINDINGS: A major care gap persists throughout the world in the secondary prevention of fragility fractures. Systematic reviews have confirmed that the Fracture Liaison Service (FLS) model of care is associated with significant improvements in rates of bone mineral density testing, initiation of osteoporosis treatment and adherence with treatment for individuals who sustain fragility fractures. Further, these improvements in the processes of care resulted in significant reductions in refracture risk and lower post-fracture mortality. The primary challenge facing health systems now is to ensure that best practice is delivered effectively in the local healthcare setting. Publication of clinical standards for FLS at the organisational and patient level in combination with the establishment of national registries has provided a mechanism for FLS to benchmark and improve their performance. Major efforts are ongoing at the global, regional and national level to improve the acute care, rehabilitation and secondary prevention for individuals who sustain fragility fractures. Active participation in these initiatives has the potential to eliminate current care gaps in the coming decade.

    Matched MeSH terms: Osteoporosis/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links