Displaying publications 1 - 20 of 516 in total

Abstract:
Sort:
  1. NG PEI QI, NOR HAYATI IBRAHIM, AZLIN SHAFRINA HASIM
    MyJurnal
    Biopolymer interaction in oil-in-water (o/w) emulsions has been demonstrated to positively modify the emulsion physicochemical properties which lead to desirable stability. The present work focused on the effect of pea protein isolate (PPI), pectin, carboxymethyl cellulose (CMC) and their interaction on physicochemical properties and oxidative stability of o/w emulsions using a mixture design approach. The emulsions were prepared with 40 % sunflower oil stabilized with 1 % of PPI, pectin and CMC, respectively, as well as their mixtures according to a simplex-centroid design (10 points). ThepH values for all emulsions were within acidic condition (3.22 to 4.66) and increased significantly (p
    Matched MeSH terms: Oxidation-Reduction
  2. Tehrani RM, Ab Ghani S
    Biosens Bioelectron, 2012 Oct-Dec;38(1):278-83.
    PMID: 22742810 DOI: 10.1016/j.bios.2012.05.044
    A non-enzymatic glucose sensor of multi-walled carbon nanotube-ruthenium oxide/composite paste electrode (MWCNT-RuO(2)/CPE) was developed. The electrode was characterized by using XRD, SEM, TEM and EIS. Meanwhile, cyclic voltammetry and amperometry were used to check on the performances of the MWCNT-RuO(2)/CPE towards glucose. The proposed electrode has displayed a synergistic effect of RuO(2) and MWCNT on the electrocatalytic oxidation of glucose in 3M NaOH. This was possible via the formation of transitions of two redox pairs, viz. Ru(VI)/Ru(IV) and Ru(VII)/Ru(VI). A linear range of 0.5-50mM glucose and a limit of detection of 33 μM glucose (S/N=3) were observed. There was no significant interference observable from the traditional interferences, viz. ascorbic acid and uric acid. Indeed, results so obtained have indicated that the developed MWCNT-RuO(2)/CPE would pave the way for a better future to glucose sensor development as its fabrication was without the use of any enzyme.
    Matched MeSH terms: Oxidation-Reduction
  3. Ghadimi H, Tehrani RM, Ali AS, Mohamed N, Ab Ghani S
    Anal Chim Acta, 2013 Feb 26;765:70-6.
    PMID: 23410628 DOI: 10.1016/j.aca.2012.12.039
    A novel glassy carbon electrode (GCE) modified with a composite film of poly (4-vinylpyridine) (P4VP) and multiwalled carbon nanotubes (P4VP/MWCNT GCE) was used for the voltammetric determination of paracetamol (PCT). This novel electrode displayed a combined effect of P4VP and MWCNT on the electro-oxidation of PCT in a solution of phosphate buffer at pH 7. Hence, conducting properties of P4VP along with the remarkable physical properties of MWCNTs might have combined effects in enhancing the kinetics of PCT oxidation. The P4VP/MWCNT GCE has also demonstrated excellent electrochemical activity toward PCT oxidation compared to that with bare GCE and MWCNT GCE. The anodic peak currents of PCT on the P4VP/MWCNT GCE were about 300 fold higher than that of the non-modified electrodes. By applying differential pulse voltammetry technique under optimized experimental conditions, a good linear ratio of oxidation peak currents and concentrations of PCT over the range of 0.02-450 μM with a limit of detection of 1.69 nM were achieved. This novel electrode was stable for more than 60 days and reproducible responses were obtained at 99% of the initial current of PCT without any influence of physiologically common interferences such as ascorbic acid and uric acid. The application of this electrode to determine PCT in tablets and urine samples was proposed.
    Matched MeSH terms: Oxidation-Reduction
  4. Tay KS, Rahman NA, Abas MR
    Water Environ Res, 2011 Aug;83(8):684-91.
    PMID: 21905405
    This study investigated the removal of parabens, N,N-diethyl-m-toluamide (DEET), and phthalates by ozonation. The second-order rate constants for the reaction between selected compounds with ozone at pH 7 were of (2.2 +/-0.2) X 10(6) to (2.9 +/-0.3) X 10(6) M 1/s for parabens, (2.1+/- 0.3) to (3.9 +/-0.5) M-1/s for phthalates, and (5.2 +/-0.3) M-1/s for DEET. The rate constants for the reaction between selected compounds with hydroxyl radical ranged from (2.49 +/-0.06) x 10(9) to (8.5 +/-0.2) x 10(9) M-1/s. Ozonation of selected compounds in secondary wastewater and surface waters revealed that ozone dose of 1 and 3 mg/L yielded greater than 99% depletion of parabens and greater than 92% DEET and phthalates, respectively. In addition, parabens were found to transform almost exclusively through the reaction with ozone, while DEET and phthalates were transformed almost entirely by hydroxyl radicals (.OH).
    Matched MeSH terms: Oxidation-Reduction
  5. Tay KS, Rahman NA, Abas MR
    Chemosphere, 2010 Dec;81(11):1446-53.
    PMID: 20875662 DOI: 10.1016/j.chemosphere.2010.09.004
    This study investigated the reaction kinetics and degradation mechanism of parabens (methylparaben, ethylparaben, propylparaben and butylparaben) during ozonation. Experiments were performed at pH 2, 6 and 12 to determine the rate constants for the reaction of protonated, undissociated and dissociated paraben with ozone. The rate constants for the reaction of ozone with dissociated parabens (3.3 × 10(9)-4.2 × 10(9)M(-1)s(-1)) were found to be 10(4) times higher than the undissociated parabens (2.5 × 10(5)-4.4 × 10(5)M(-1)s(-1)) and 10(7) times higher than with the protonated parabens (1.02 × 10(2)-1.38 × 10(2)M(-1)s(-1)). The second-order rate constants for the reaction between parabens with hydroxyl radicals were found to vary from 6.8 × 10(9) to 9.2 × 10(9)M(-1)s(-1). Characterization of degradation by-products (DBPs) formed during the ozonation of each selected parabens has been carried out using GCMS after silylation. Twenty DBPs formed during ozonation of selected parabens have been identified. Hydroxylation has been found to be the major reaction for the formation of the identified DBPs. Through the hydroxylation reaction, a variety of hydroxylated parabens was formed.
    Matched MeSH terms: Oxidation-Reduction
  6. Tay KS, Rahman NA, Abas MR
    Environ Sci Pollut Res Int, 2013 May;20(5):3115-21.
    PMID: 23054788 DOI: 10.1007/s11356-012-1223-3
    This study investigated the degradation pathway of metoprolol, a widely used β-blocker, in the ozonation via the identification of generated ozonation by-products (OPs). Structure elucidation of OPs was performed using HPLC coupled with quadrupole time-of-flight high-resolution mass spectrometry. Seven OPs were identified, and four of these have not been reported elsewhere. Identified OPs of metoprolol included aromatic ring breakdown by-products; aliphatic chain degraded by-products and aromatic ring mono-, di-, and tetrahydroxylated derivatives. Based on the detected OPs, metoprolol could be degraded through aromatic ring opening reaction via reaction with ozone (O3) and degradation of aliphatic chain and aromatic ring via reaction with hydroxyl radical (•OH).
    Matched MeSH terms: Oxidation-Reduction
  7. Chen YW, Lee HV, Abd Hamid SB
    Carbohydr Polym, 2017 Feb 10;157:1511-1524.
    PMID: 27987863 DOI: 10.1016/j.carbpol.2016.11.030
    Cellulose in nanostructures was successfully isolated from empty fruit bunch biomass via a novel one-pot oxidative-hydrolysis technique. The physicochemical properties of nanocellulose prepared via one-pot process have shown comparable characteristics as products isolated via conventional multistep purification approach (namely dewaxing, chlorite bleaching process, alkalization, and acid hydrolysis). The chemical composition study indicated that the one-pot oxidative-hydrolysis process successfully extracted cellulose (91.0%), with the remaining minority being hemicellulose and lignin (∼6%) in the final product. Crystallinity profile of one-pot treated product (80.3%) was higher than that of multistep isolated nanocellulose (75.4%), which indicated that the disorder region (amorphous) in cellulose fibers was successfully removed. In additional to that, the morphology study demonstrated that nanocellulose prepared by one-pot process rendered spider-web-like network nanostructure, with an average diameter of fibers at a range of 51.6±15.4nm. The nanocellulose product showed high thermal stability (320°C), which was ready for nanocomposite application. One-pot oxidative-hydrolysis technique is a simple and versatile route for the preparation of nanocellulose from complex biomass within 90°C and 6h period, with minimum wastewater as compared to the multistep process.
    Matched MeSH terms: Oxidation-Reduction
  8. Ali AQ, Teoh SG, Salhin A, Eltayeb NE, Khadeer Ahamed MB, Abdul Majid AM
    PMID: 24607427 DOI: 10.1016/j.saa.2014.01.086
    New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (k(b)=5.03-33.00×10(5) M(-1)) for L1-L3 and L5 and (6.14-9.47×10(4) M(-1)) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency.
    Matched MeSH terms: Oxidation-Reduction/drug effects
  9. Ahmed, H.O., Hassan, Z., Abdul Manap, M.N.
    MyJurnal
    Slaughtering is the first step in meat processing. It involves killing an animal for the production of meat. Effectiveness of slaughter is determined by the amount of blood removed from the animal. This study aimed to compare the chemical changes and microbiological quality of broiler chicken meat slaughtered by Halal and Non-Halal slaughter methods during refrigerated storage. A total of sixty (60) broiler chickens were slaughtered by: i) Neck cutting (NC) - by severing the jugular veins, carotid arteries, trachea and the oesophagus according to the Islamic ritual method of slaughter and (ii) Neck poking (NP) - by poking the neck of the bird with a sharp object. Residual blood was quantified by measuring the haem iron content in the breast meat samples. Storage stability of chicken meat was evaluated by measuring the extent of lipid oxidation determined by thiobarbituric acid reactive substances (TBARS) and by assessing the microbiological quality of the meat. Haem iron content decreased significantly (P0.05) on chicken meat lipid oxidation at 1, 3, and 9 day of storage at 4oC. However, at 5 and 7 day of storage, significant differences (P
    Matched MeSH terms: Oxidation-Reduction
  10. Sazwi NN, Nalina T, Abdul Rahim ZH
    PMID: 24330738 DOI: 10.1186/1472-6882-13-351
    Betel quid chewing is a popular habit in Southeast Asia. It is believed that chewing betel quid could reduce stress, strengthen teeth and maintain oral hygiene. The aim of this study was to investigate the antioxidant and cytoprotective activities of each of the ingredients of betel quid and compared with betel quid itself (with and without calcium hydroxide). The correlation of their cytoprotective and antioxidant activities with phenolic content was also determined.
    Matched MeSH terms: Oxidation-Reduction/drug effects
  11. Lau CP, Abdul-Wahab MF, Jaafar J, Chan GF, Abdul Rashid NA
    J Microbiol Immunol Infect, 2017 Aug;50(4):427-434.
    PMID: 26427880 DOI: 10.1016/j.jmii.2015.08.004
    BACKGROUND/PURPOSE: Currently, silver nanoparticles (AgNPs) have gained importance in various industrial applications. However, their impact upon release into the environment on microorganisms remains unclear. The aim of this study was to analyze the effect of polyvinylpyrrolidone-capped AgNPs synthesized in this laboratory on two bacterial strains isolated from the environment, Gram-negative Citrobacter sp. A1 and Gram-positive Enterococcus sp. C1.

    METHODS: Polyvinylpyrrolidone-capped AgNPs were synthesized by ultrasound-assisted chemical reduction. Characterization of the AgNPs involved UV-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. Citrobacter sp. A1 and Enterococcus sp. C1 were exposed to varying concentrations of AgNPs, and cell viability was determined. Scanning electron microscopy was performed to evaluate the morphological alteration of both species upon exposure to AgNPs at 1000 mg/L.

    RESULTS: The synthesized AgNPs were spherical in shape, with an average particle size of 15 nm. The AgNPs had different but prominent effects on either Citrobacter sp. A1 or Enterococcus sp. C1. At an AgNP concentration of 1000 mg/L, Citrobacter sp. A1 retained viability for 6 hours, while Enterococcus sp. C1 retained viability only for 3 hours. Citrobacter sp. A1 appeared to be more resistant to AgNPs than Enterococcus sp. C1. The cell wall of both strains was found to be morphologically altered at that concentration.

    CONCLUSION: Minute and spherical AgNPs significantly affected the viability of the two bacterial strains selected from the environment. Enterococcus sp. C1 was more vulnerable to AgNPs, probably due to its cell wall architecture and the absence of silver resistance-related genes.

    Matched MeSH terms: Oxidation-Reduction
  12. Kong KW, Mat-Junit S, Ismail A, Aminudin N, Abdul-Aziz A
    Food Chem, 2014 Mar 1;146:85-93.
    PMID: 24176317 DOI: 10.1016/j.foodchem.2013.09.012
    The polyphenolic profiles and antioxidant activities of the water extracts of Barringtonia racemosa shoots (leaves and stems) were explored. Two methods, freeze drying and air drying, for preparation of the shoots, were also compared. Freeze drying was better as air drying caused 5-41% reduction of polyphenols. Three phenolic acids and three flavonoids were identified, using UHPLC. The descending order of polyphenols in the leaves and stems was gallic acid>ellagic acid>quercetin>protocatechuic acid>rutin>kaempferol. In vitro antioxidant analyses were performed using biological samples. In the LDL oxidation assay, B. racemosa leaf extract (IC50=73.0μg/ml) was better than stem extract (IC50=226μg/ml) at inhibiting the formation of TBARS and lipid hydroperoxides. Similar trends were observed for serum and haemoglobin oxidation. B. racemosa leaf extract was better than its stem extract in delaying the time required to oxidise haemoglobin to methaemoglobin. The high polyphenolic content of B. racemosa shoots could have contributed towards their antioxidative effects.
    Matched MeSH terms: Oxidation-Reduction
  13. Wong KC, Sankaran S, Jayapalan JJ, Subramanian P, Abdul-Rahman PS
    Arch Insect Biochem Physiol, 2021 May;107(1):e21785.
    PMID: 33818826 DOI: 10.1002/arch.21785
    Mutant lethal giant larvae (lgl) flies (Drosophila melanogaster) are known to develop epithelial tumors with invasive characteristics. The present study has been conducted to investigate the influence of melatonin (0.025 mM) on behavioral responses of lgl mutant flies as well as on biochemical indices (redox homeostasis, carbohydrate and lipid metabolism, transaminases, and minerals) in hemolymph, and head and intestinal tissues. Behavioral abnormalities were quantitatively observed in lgl flies but were found normalized among melatonin-treated lgl flies. Significantly decreased levels of lipid peroxidation products and antioxidants involved in redox homeostasis were observed in hemolymph and tissues of lgl flies, but had restored close to normalcy in melatonin-treated flies. Carbohydrates including glucose, trehalose, and glycogen were decreased and increased in the hemolymph and tissues of lgl and melatonin-treated lgl flies, respectively. Key enzymes of carbohydrate metabolism showed a significant increment in their levels in lgl mutants but had restored close to wild-type baseline levels in melatonin-treated flies. Variables of lipid metabolism showed significantly inverse levels in hemolymph and tissues of lgl flies, while normalization of most of these variables was observed in melatonin-treated mutants. Lipase, chitinase, transaminases, and alkaline phosphatase showed an increment in their activities and minerals exhibited decrement in lgl flies; reversal of changes was observed under melatonin treatment. The impairment of cognition, disturbance of redox homeostasis and metabolic reprogramming in lgl flies, and restoration of normalcy in all these cellular and behavioral processes indicate that melatonin could act as oncostatic and cytoprotective agents in Drosophila.
    Matched MeSH terms: Oxidation-Reduction/drug effects
  14. Ahmad R, Vaali-Mohammed MA, Elwatidy M, Al-Obeed O, Al-Khayal K, Eldehna WM, et al.
    Int J Mol Med, 2019 Jul 23.
    PMID: 31364730 DOI: 10.3892/ijmm.2019.4284
    The emergence of colorectal cancer in developed nations can be attributed to dietary habits, smoking, a sedentary lifestyle and obesity. Several treatment regimens are available for primary and metastatic colorectal cancer; however, these treatment options have had limited impact on cure and disease‑free survival, and novel agents need to be developed for treating colorectal cancer. Thus, the objective of this study was to explore the anticancer mechanism of a benzo(1,3)dioxol‑based derivative of sulfonamide. The compound's inhibitory effect on cell proliferation was determined using the MTT assay and the xCelligence RTDP machine. Alternations in the expression of Bcl‑2 and inhibitor of apoptosis protein families were detected by western blotting. Apoptotic marker protein expression, including cytochrome c and cleaved poly(ADP‑ribose)polymerase was measured in the cytosolic extract of cells. Apoptosis and necrosis were detected by flow cytometry and immunofluorescence. Reactive oxygen species (ROS), and activation of caspase‑3 and caspase‑7 were measured using flow cytometry. Activation of the JNK pathway was detected by western blotting. We investigated the molecular mechanism of action of the sulfonamide derivative on colorectal cancer cells and found that the compound possesses a potent anticancer effect, which is primarily exerted by inducing apoptosis and necrosis. Interestingly, this compound exhibited little antiproliferative effect against the normal colonic epithelial cell line FHC. Furthermore, our results showed that the compound could significantly increase ROS production. Apoptosis induction could be attenuated by the free oxygen radical scavenger N‑acetyl cysteine (NAC), indicating that the antiproliferative effect of this compound on colorectal cancer cells is at least partially dependent on the redox balance. In addition, JNK signaling was activated by treatment with this derivative, which led to the induction of apoptosis. On the contrary, a JNK inhibitor could suppress the cell death induced by this compound. Our findings thus suggested a novel anticancer mechanism of a benzo(1,3)dioxol‑based derivative of sulfonamide for colorectal cancer cells and may have therapeutic potential for the treatment of colorectal cancer; however, further investigation is required.
    Matched MeSH terms: Oxidation-Reduction
  15. Hajrezaie M, Hassandarvish P, Moghadamtousi SZ, Gwaram NS, Golbabapour S, Najihussien A, et al.
    PLoS One, 2014;9(3):e91246.
    PMID: 24618844 DOI: 10.1371/journal.pone.0091246
    Based on the potential of Schiff base compounds to act as sources for the development of cancer chemotherapeutic agents, this in vivo study was performed to investigate the inhibitory properties of the synthetic Schiff base compound Cu(BrHAP)2 on colonic aberrant crypt foci (ACF).
    Matched MeSH terms: Oxidation-Reduction
  16. Bhatia S, Wong CT, Abdullah AZ
    J Hazard Mater, 2009 May 30;164(2-3):1110-7.
    PMID: 18976860 DOI: 10.1016/j.jhazmat.2008.09.040
    The low concentration and high flow rate of air-borne butyl acetate (BA) could be effectively removed using combined adsorption-catalytic oxidation system. Ag-Y (Si/Al=80) dual-function adsorbent was investigated for the adsorption step of 1000 ppm of butyl acetate at gas hourly space velocity of 13,000 h(-1) at ambient temperature under dry and humid feeds. A central composite design (CCD) coupled with response surface methodology (RSM) was employed to obtain the optimum process conditions and the interactions between process variables were demonstrated and elucidated. Humidity and increasing organic concentration shortened the adsorption service time. The effect of moisture was more pronounced at low BA concentration. The interactions between the BA concentration and humidity were statistically significant at 95% confidence level. The optimum conditions were found to be at 4500 ppm of BA with 37 min saturation time to give 58 mg BA/g as adsorption capacity. The simulated data fitted the experimental data satisfactorily. The simulated data also correctly demonstrated the overall behaviors of the adsorption process.
    Matched MeSH terms: Oxidation-Reduction
  17. Al-Qaim FF, Mussa ZH, Othman MR, Abdullah MP
    J Hazard Mater, 2015 Dec 30;300:387-397.
    PMID: 26218306 DOI: 10.1016/j.jhazmat.2015.07.007
    The electrochemical oxidation of caffeine, a widely over-the-counter stimulant drug, has been investigated in effluent wastewater and deionized water (DIW) using graphite-poly vinyl chloride (PVC) composite electrode as anode. Effects of initial concentration of caffeine, chloride ion (Cl(-)) loading, presence of hydrogen peroxide (H2O2), sample volume, type of sample and applied voltage were determined to test and to validate a kinetic model for the oxidation of caffeine by the electrochemical oxidation process. The results revealed that the electrochemical oxidation rates of caffeine followed pseudo first-order kinetics, with rate constant values ranged from 0.006 to 0.23 min(-1) depending on the operating parameters. The removal efficiency of caffeine increases with applied voltage very significantly, suggesting a very important role of mediated oxidation process. However, the consumption energy was considered during electrochemical oxidation process. In chloride media, removal of caffeine is faster and more efficiently, although occurrence of more intermediates takes place. The study found that the adding H2O2 to the NaCl solution will inhibit slightly the electrochemical oxidation rate in comparison with only NaCl in solution. Liquid chromatography-time of flight-mass spectrometry (LC-TOF-MS) technique was applied to the identification of the by-products generated during electrochemical oxidation, which allowed to construct the proposed structure of by-products.
    Matched MeSH terms: Oxidation-Reduction
  18. Mayakrishnan V, Veluswamy S, Sundaram KS, Kannappan P, Abdullah N
    Asian Pac J Trop Med, 2013 Jan;6(1):20-6.
    PMID: 23317881 DOI: 10.1016/S1995-7645(12)60195-3
    OBJECTIVE: To elucidate free radical scavenging activity of ethanolic extract Lagenaria siceraria (L. siceraria) (Molina) fruit.

    METHODS: The free radical scavenging activity of the L. siceraria (Molina) fruit extract was assayed by using α,α-diphenyl-β-picrylhydrazyl (DPPH), 2,20-azinobis 3-ethyl benzothiazoline-6-sulfonate (ABTS), FRAP, reducing power, chelating ability and β-carotene bleaching assay.

    RESULTS: The IC(50) values of DPPH and ABTS radical-scavenging activity was found to be 1.95 mg/mL and 19 mg/mL, respectively. In ferrous chelation assay, the percentage of inhibition was found to be 89.21%. The reducing power of ethanolic extract of L. siceraria (Molina) fruit was 0.068 at 1 mg/mL and increased to 0.192 at 5 mg/mL. The β-carotene linoleate bleaching assay was 46.7% at 5 mg/mL and antioxidant activity using FRAP at 0.305 for 1 mg/mL to 0.969 for 5 mg/mL.

    CONCLUSIONS: The results indicate that L. siceraria (Molina) fruit could be an important sources of natural radical scavengers.

    Matched MeSH terms: Oxidation-Reduction/drug effects
  19. Nazmi NASM, Razak FIA, Mokhtar WNAW, Ibrahim MNM, Adam F, Yahaya N, et al.
    Environ Sci Pollut Res Int, 2022 Jan;29(1):1009-1020.
    PMID: 34341936 DOI: 10.1007/s11356-021-15733-1
    The world faces the challenge to produce ultra-low sulfur diesel with low-cost technology. Therefore, this research emphasised on production of low sulfur fuel utilising nanoparticle catalyst under mild condition. A small amount of cobalt oxide (10-30 wt%) was introduced into the Fe/Al2O3 catalyst through the wet impregnation method. Cobalt modification induces a positive effect on the performance of the iron catalyst. Hence, the insertion of cobalt species into Fe/Al2O3 led to the formation of lattice fringes in all directions which resulted in the formation of Co3O4 and Fe3O4 species. The optimised catalyst, Co/Fe-Al2O3, calcined at 400 °C with a dopant ratio of 10:90 indicating the highest desulfurisation activity by removing 96% of thiophene, 100% of dibenzothiophene (DBT) and 92% of 4,6-dimethyl dibenzothiophene (4,6-DMDBT). Based on the density functional theory (DFT) on Co/Fe-Al2O3, two pathways with the overall energy of -40.78 eV were suggested for the complete oxidation of DBT.
    Matched MeSH terms: Oxidation-Reduction
  20. Abidin MH, Abdullah N, Abidin NZ
    Int J Med Mushrooms, 2016;18(2):109-21.
    PMID: 27279533 DOI: 10.1615/IntJMedMushrooms.v18.i2.20
    This study evaluated the in vitro antioxidant capacities of extracts from Pleurotus pulmonarius via Folin-Ciocalteu, 1,1-diphenyl-2-picrylhydrazyl free radical scavenging, metal chelating, cupric ion reducing antioxidant capacity, and lipid peroxidation inhibition assays. Extract compositions were determined by phenol-sulfuric acid; Coomassie Plus (Bradford) protein; Spectroquant zinc, copper, and manganese test assays; and liquid chromatography-tandem mass spectrometry (LC/MS/MS) and gas chromatography-mass spectrometry (GC/MS). Methanol-dichloromethane extract, water fraction, hot water, aqueous extract and hexane fraction exhibited the most potent extracts in the antioxidant activities. LC/MS/MS and GC/MS showed that the extracts contained ergothioneine, ergosterol, flavonoid, and phenolic compounds. The selected potent extracts were evaluated for their inhibitory effect against oxidation of human low-density lipoproteins and protective effects against hydrogen peroxide-induced cytotoxic injury in human aortic endothelial cells. The crude aqueous extract was deemed most potent for the prevention of human low-density lipoprotein oxidation and endothelial membrane damage. Ergothioneine might be the compound responsible for the activities, as supported by previous reports. Thus, P. pulmonarius may be a valuable antioxidant ingredient in functional foods or nutraceuticals.
    Matched MeSH terms: Oxidation-Reduction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links