Displaying publications 1 - 20 of 517 in total

Abstract:
Sort:
  1. Ong JY, Yong PV, Lim YM, Ho AS
    Life Sci, 2015 Aug 15;135:158-64.
    PMID: 25896662 DOI: 10.1016/j.lfs.2015.03.019
    The compound 2-methoxy-1,4-naphthoquinone (MNQ) was previously shown to be cytotoxic against several cancer cell lines, but its mode of action is poorly understood. In this study, we aimed to explore the molecular mechanism of MNQ-induced cytotoxicity of A549 lung adenocarcinoma cells.
    Matched MeSH terms: Oxidation-Reduction/drug effects
  2. Goh TB, Koh RY, Yam MF, Azhar ME, Mordi MN, Mansor SM
    Food Chem, 2015 Sep 15;183:208-16.
    PMID: 25863630 DOI: 10.1016/j.foodchem.2015.03.044
    Various 6-methoxytetrahydro-β-carboline derivatives, namely BEN (6-methoxy-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole), ANI (6-methoxy-1-(4-methoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole), ACE (6-methoxy-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole) and VAN (2-methoxy-4-(6-methoxy-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-l)phenol), were prepared via the Maillard reaction using food flavours and 5-methoxytryptamine in aqueous medium and were investigated for their in vitro antioxidant and cytotoxicity properties. These derivatives were found to exhibit moderate antioxidant properties, based on a combination of DPPH, ABTS and FRAP assays. The results suggested that the Maillard reaction could be used to generate β-carboline antioxidants. It was beneficial that VAN showed the highest antioxidant activity but the least cytotoxic activities on non-tumourous cell lines of NIH/3T3, CCD18-Co and B98-5 using MTT assay. ACE, ANI and BEN showed mild toxicity at effective antioxidative concentrations derived from DPPH and ABTS assays. Furthermore, they are safer compared to 5-fluorouracil, cisplatin and betulinic acid on NIH/3T3, CCD18-Co and B98-5 cells. In conclusion, the antioxidant and cytotoxicity properties of 6-methoxytetrahydro-β-carbolines were demonstrated for the first time.
    Matched MeSH terms: Oxidation-Reduction
  3. Arifin K, Daud WR, Kassim MB
    PMID: 24508875 DOI: 10.1016/j.saa.2013.12.107
    Bis(dithiolene) tungsten carbonyl complex, W(S2C2Ph2)2(CO)2 was successfully synthesized and the structure, frontier molecular orbital and optical properties of the complex were investigated theoretically using density functional theory calculations. The investigation started with a molecular structure construction, followed by an optimization of the structural geometry using generalized-gradient approximation (GGA) in a double numeric plus polarization (DNP) basis set at three different functional calculation approaches. Vibrational frequency analysis was used to confirm the optimized geometry of two possible conformations of [W(S2C2Ph2)2(CO)2], which showed distorted octahedral geometry. Electronic structure and optical characterization were done on the ground states. Metal to ligand and ligand to metal charge transfer were dominant in this system.
    Matched MeSH terms: Oxidation-Reduction
  4. Wan Khalid WEF, Mat Arip MN, Jasmani L, Lee YH
    Sensors (Basel), 2019 Jun 18;19(12).
    PMID: 31216625 DOI: 10.3390/s19122726
    A new cellulose nanocrystal-reduced graphene oxide (CNC-rGO) nanocomposite was successfully used for mediatorless electrochemical sensing of methyl paraben (MP). Fourier-transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM) studies confirmed the formation of the CNC-rGO nanocomposite. Cyclic voltammetry (CV) studies of the nanocomposite showed quasi-reversible redox behavior. Differential pulse voltammetry (DPV) was employed for the sensor optimization. Under optimized conditions, the sensor demonstrated a linear calibration curve in the range of 2 × 10-4-9 × 10-4 M with a limit of detection (LOD) of 1 × 10-4 M. The MP sensor showed good reproducibility with a relative standard deviation (RSD) of about 8.20%. The sensor also exhibited good stability and repeatability toward MP determinations. Analysis of MP in cream samples showed recovery percentages between 83% and 106%. Advantages of this sensor are the possibility for the determination of higher concentrations of MP when compared with most other reported sensors for MP. The CNC-rGO nanocomposite-based sensor also depicted good reproducibility and reusability compared to the rGO-based sensor. Furthermore, the CNC-rGO nanocomposite sensor showed good selectivity toward MP with little interference from easily oxidizable species such as ascorbic acid.
    Matched MeSH terms: Oxidation-Reduction
  5. Siwayanan P, Chin LZ, Parthiban A, Ayodele OB, Hong BZ
    J Oleo Sci, 2024;73(4):479-487.
    PMID: 38556282 DOI: 10.5650/jos.ess23121
    Global demand for epoxidized vegetable oil has been steadily growing. Epoxidized vegetable oils are typically produced using a two-pot synthesis process in which the oxidation and epoxidation reactions are carried out sequentially. This two-pot synthesis method, however, has a major drawback in industrialscale production, particularly when it comes to operational and process safety issues. A laboratory-scale one-pot synthesis method was attempted in this study with the aim to safely synthesize epoxidized Moringa Oleifera oil (eMOo) by avoiding the occurrence of undesired exothermic runaway reaction. The oil extracted from Moringa Oleifera oil seed kernel (MOo) was used as a starting component due to its high degree of unsaturation and also because the Moringa Oleifera plant can be freely grown in any soil conditions. Two parallel oxidation and epoxidation reactions were carried out simultaneously in this one-pot synthesis method to produce eMOo. The effect of five different mole ratios of MOo, acetic acid and hydrogen peroxide (1:1:1, 1:1:2, 1:1.5:2, 1:1.75:2 and 1:2:2, respectively) on reaction mechanism was investigated at the controlled temperature range of 43 - 55°C and reaction time of 0 - 120 min. The physicochemical properties of MOo as well as the oxirane oxygen content (OOC) of the resulting eMOo were characterized. In addition, GC-MS and FTIR analysis were performed to verify the molecular composition of MOo and also to identify the epoxy group of the resulting eMOo respectively. Among the five different mole ratios studied, the 1:1.5:2 mole ratio has the highest unsaturation conversion of 79.57% and OOC of 4.12%.
    Matched MeSH terms: Oxidation-Reduction
  6. Lim HP, Liew WYH, Melvin GJH, Jiang ZT
    Materials (Basel), 2021 Mar 29;14(7).
    PMID: 33805462 DOI: 10.3390/ma14071677
    This paper reviews the phase structures and oxidation kinetics of complex Ti-Al alloys at oxidation temperatures in the range of 600-1000 °C. The mass gain and parabolic rate constants of the alloys under isothermal exposure at 100 h (or equivalent to cyclic exposure for 300 cycles) is compared. Of the alloying elements investigated, Si appeared to be the most effective in improving the oxidation resistance of Ti-Al alloys at high temperatures. The effect of alloying elements on the mechanical properties of Ti-Al alloys is also discussed. Significant improvement of the mechanical properties of Ti-Al alloys by element additions has been observed through the formation of new phases, grain refinement, and solid solution strengthening.
    Matched MeSH terms: Oxidation-Reduction
  7. Asadollahi K, Jasemi NS, Riazi GH, Katuli FH, Yazdani F, Sartipnia N, et al.
    Int J Biol Macromol, 2016 Nov;92:1307-1312.
    PMID: 26905468 DOI: 10.1016/j.ijbiomac.2016.02.045
    In this study, the catalase-like activity of monomeric tau protein was reported in the presence of of zinc (Zn(II)) ions at low pH value. Monomeric tau protein contains two SH groups that are a target of disulfide bond formation. However these SH groups are able to interact with Zn(II) ion at pH 7.2 which creates a thiol bond as a mimetic model of chloroperoxidase active site which performs catalase like activity at low pH. Zn(II)/tau protein complex decomposed H2O2 with a high rate (Vm) as well as an efficient turn oven number (kcat) at pH 3. This remarkable catalase like activity is may be attributed to the conformational reorientation of protein at low pH. Circular dichroism (CD) studies did not demonstrate any secondary structural changes of tau protein after addition of Zn(II) ions at pH 7.2. In addition, tau protein shows identical CD bands at pH 7.2 and 3. Moreover, fluorescence quenching of tau by Zn(II) at pH 7.2 was initiated by complex formation rather than by dynamic collision. A significant red shift (6nm) was observed in the emission maximum of the fluorescence spectra when the protein was dissolved at pH 3 compared to pH 7.2. This conformational change can provide information regarding the rearrangements of the protein structure and exposure of Cys-Zn(II) group to the solvent which induces easy access of active site to H2O2 molecules and corresponding enhanced catalytic activity of Zn(II)/tau protein complex. This study introduces tau protein as a bio-inspired high performing scaffold for transition metal encapsulation and introducing an engineered apoprotein-induced biomimetic enzyme.
    Matched MeSH terms: Oxidation-Reduction
  8. Shahid MM, Rameshkumar P, Numan A, Shahabuddin S, Alizadeh M, Khiew PS, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Jul;100:388-395.
    PMID: 30948075 DOI: 10.1016/j.msec.2019.02.107
    Cobalt oxide nanocubes incorporated with reduced graphene oxide (rGO-Co3O4) was prepared by using simple one-step hydrothermal route. Crystallinity and structural characteristics of the nanocomposite were analyzed and confirmed using X-ray diffraction (XRD) and Raman analysis, respectively. The cubical shape of the Co3O4 nanostructures and the distribution of Co3O4 nanocubes on the surface of rGO sheets were identified through field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) mapping analysis, respectively. Raman spectra depicted the presence of D and G bands for GO and rGO with different ID/IG values and thus confirmed the reduction of GO into rGO. The electrochemical study reflects that the rGO-Co3O4 nanocomposite shows good electrocatalytic activity in oxidation of depression biomarker serotonin (5-HT) in phosphate buffer (pH 7.2). The detection of 5-HT was carried out by using rGO-Co3O4 nanocomposite modified glassy carbon electrode under dynamic condition using amperometry technique with a linear range of 1-10 μM. The limit of detection and limit of quantification were calculated and found to be 1.128 and 3.760 μM, respectively with a sensitivity value of 0.133 μΑ·μM-1. The sensor showed selectivity in the presence of different interferent species such as ascorbic acid, dopamine and uric acid.
    Matched MeSH terms: Oxidation-Reduction
  9. Tan JC, Chuah CH, Cheng SF
    J Sci Food Agric, 2017 Apr;97(6):1784-1789.
    PMID: 27470073 DOI: 10.1002/jsfa.7975
    BACKGROUND: Conventional palm oil milling involves multiple stages after fruit collection; in particular, oil clarification introduces water into the pressed oil, which results in a large quantity of wastewater.

    RESULTS: A combined process of microwave pretreatment and solvent extraction to mill crude palm oil, without introducing water or steam, is described. An excellent yield (up to 30%) of oil was obtained with pretreatment in a 42 L, 1000 W and 2450 MHz microwave oven followed by hexane extraction. The optimum conditions (10 min microwave pretreatment and 12 h solvent extraction) yielded an oil with a low free fatty acid content (<1.0%) and an acceptable anisidine value (<3.0 meq kg(-1) ). The oil had a fatty acid composition not resembling those of conventional crude palm oil and crude palm kernel oil. In the pretreatment, the leached oil had 6.3% lauric acid whereas the solvent extracted oil had only 1.5% lauric acid. Among the factors affecting the oil quality, microwave pretreatment affected the oil quality significantly; however, an optimised duration that would ensure high efficiency in solvent extraction also resulted in ruptured fruitlets, although not to the extent of causing excessive oxidation. In fact, microwave pretreatment should exceed 12 min; after only 15 min, the oil had 1-methylcyclopentanol (12.96%), 1-tetradecanol (9.44%), 1-nonadecene (7.22%), nonanal (7.13%) and 1-tridecene (5.09%), which probably arose from the degradation of fibres.

    CONCLUSION: Microwave pretreatment represents an alternative milling process for crude palm oil compared with conventional processes in the omission of wet treatment with steam. © 2016 Society of Chemical Industry.

    Matched MeSH terms: Oxidation-Reduction
  10. Asghar A, Abdul Raman AA, Daud WM
    ScientificWorldJournal, 2014;2014:869120.
    PMID: 25258741 DOI: 10.1155/2014/869120
    In the present study, a comparison of central composite design (CCD) and Taguchi method was established for Fenton oxidation. [Dye]ini, Dye:Fe(+2), H2O2:Fe(+2), and pH were identified control variables while COD and decolorization efficiency were selected responses. L 9 orthogonal array and face-centered CCD were used for the experimental design. Maximum 99% decolorization and 80% COD removal efficiency were obtained under optimum conditions. R squared values of 0.97 and 0.95 for CCD and Taguchi method, respectively, indicate that both models are statistically significant and are in well agreement with each other. Furthermore, Prob > F less than 0.0500 and ANOVA results indicate the good fitting of selected model with experimental results. Nevertheless, possibility of ranking of input variables in terms of percent contribution to the response value has made Taguchi method a suitable approach for scrutinizing the operating parameters. For present case, pH with percent contribution of 87.62% and 66.2% was ranked as the most contributing and significant factor. This finding of Taguchi method was also verified by 3D contour plots of CCD. Therefore, from this comparative study, it is concluded that Taguchi method with 9 experimental runs and simple interaction plots is a suitable alternative to CCD for several chemical engineering applications.
    Matched MeSH terms: Oxidation-Reduction
  11. Bayrami A, Alioghli S, Rahim Pouran S, Habibi-Yangjeh A, Khataee A, Ramesh S
    Ultrason Sonochem, 2019 Jul;55:57-66.
    PMID: 31084791 DOI: 10.1016/j.ultsonch.2019.03.010
    The synthesis of nanoparticles often result in the generation of harmful chemical pollutants. As such, many researchers have focused on developing green processes, which include the biosynthesis. In this research, ZnO nanoparticles were prepared using the leaf extract of whortleberry (Vaccinium arctostaphylos L.) via a simple ultrasonic-assisted method. The morphology, crystal size and structure, surface, thermal, and optical properties of the bio-mediated ZnO sample (ZnOext) were analyzed and compared with that produced without incorporating the extract (ZnOchem). The ZnO samples were evaluated for their antidiabetic, antibacterial, as well as their sono- and photo-catalytic performances. Initially, the samples were intraperitoneal injected to alloxan-diabetic rats to examine their treatment efficiency in terms of effects on fasting blood glucose, insulin, cholesterol, high-density lipoprotein, and total triglyceride levels. The ZnOext showed significantly higher efficiency for improving the health status of alloxan-diabetic rats in contrast with other tested treatments, vis. ZnOchem, insulin, and only leaf extract. In addition, both the ZnO samples were assessed against gram-negative and gram-positive bacteria and through sono- and photo-catalytic processes for removing rhodamine B, respectively. The results of this study indicated that not only the ZnOext sample was pollution free, it also exhibited higher potentials for treating diabetic rats, bacterial decontamination, and also oxidative removal of organic compounds under the influences of ultrasound and UV irradiations when compared with ZnOchem sample.
    Matched MeSH terms: Oxidation-Reduction/drug effects
  12. He J, Sunarso J, Miao J, Sun H, Dai J, Zhang C, et al.
    J Hazard Mater, 2019 05 05;369:699-706.
    PMID: 30831522 DOI: 10.1016/j.jhazmat.2019.02.070
    Effective regulation of p-phenylenediamine (PPD), a widely used precursor of hair dye that is harmful to human health in large concentration, relies upon an accurate yet simple detection of PPD. In this context, amperometric electrode sensor based on perovskite oxide becomes attractive given its portability, low cost, high sensitivity, and rapid processing time. This work reports the systematic characterization of a series of Sr-doped PrCoO3-δ perovskite oxides with composition of Pr1-xSrxCoO3-δ(x = 0, 0.2, 0.4, 0.6, 0.8, and 1) for PPD detection in an alkaline solution. PSC82 deposited onto glassy carbon electrode (PSC82/GCE) generates the highest redox currents which correlates with the highest hydrogen peroxide intermediates (HO2-) yield and the σ*-orbital (eg) filling of Co that is closest to unity for PSC82. PSC82/GCE provides the highest sensitivities of 655 and 308 μA mM-1 cm-2 in PPD concentration range of 0.5-2,900 and 2,900-10,400 μM, respectively, with a limit of detection of 0.17 μM. PSC82/GCE additionally demonstrates high selectivity to PPD and long term stability during 50 consecutive cyclic voltammetry scans and over 1-month storage period. The potential applicability of PSC82/GCE was also demonstrated by confirming the presence of very low concentration of PPD of below 0.5% in real hair dyes.
    Matched MeSH terms: Oxidation-Reduction
  13. Ghafari S, Hasan M, Aroua MK
    Bioresour Technol, 2010 Apr;101(7):2236-42.
    PMID: 20015639 DOI: 10.1016/j.biortech.2009.11.068
    In this study the kinetics of autohydrogenotrophic denitrification was studied under optimum solution pH and bicarbonate concentration. The optimal pH and bicarbonate concentration were firstly obtained using a design of experiment (DOE) methodology. For this purpose a total of 11 experiments were carried out. Sodium bicarbonate concentrations ranging of 20-2000 mg/L and pH values from 6.5 to 8.5 were used in the optimization runs. It was found that the pH has a more pronounced effect on the denitrification process as compared to the bicarbonate dose. The developed quadratic model predicted the optimum conditions at pH 8 and 1100 mg NaHCO(3)/L. Using these optimal conditions, the kinetics of denitrification for nitrate and nitrite degradation were investigated in separate experiments. Both processes were found to follow a zero order kinetic model. The ultimate specific degradation rates for nitrate and nitrite remediation were 29.60 mg NO(3)(-)-N/g MLVSS/L and 34.85 mg NO(3)(-)-N/g MLVSS/L respectively, when hydrogen was supplied every 0.5h.
    Matched MeSH terms: Oxidation-Reduction/drug effects
  14. Dear JW, Ng ML, Bateman DN, Leroy Sivappiragasam P, Choi H, Khoo BBJ, et al.
    Clin Transl Sci, 2021 Jul;14(4):1476-1489.
    PMID: 33742775 DOI: 10.1111/cts.13009
    N-acetylcysteine (NAC) is an antidote to prevent acetaminophen (paracetamol-APAP)-induced acute liver injury (ALI). The 3-bag licensed 20.25 h standard regimen, and a 12 h modified regimen, are used to treat APAP overdose. This study evaluated the redox thiol response and APAP metabolites, in patients with a single APAP overdose treated with either the 20.25 h standard or 12 h modified regimen. We used liquid chromatography tandem mass spectrometry to quantify clinically important oxidative stress biomarkers and APAP metabolites in plasma samples from 45 patients who participated in a randomized controlled trial (SNAP trial). We investigated the time course response of plasma metabolites at predose, 12 h, and 20.25 h post-start of NAC infusion. The results showed that the 12 h modified regimen resulted in a significant elevation of plasma NAC and cysteine concentrations at 12 h post-infusion. We found no significant alteration in the metabolism of APAP, mitochondrial, amino acids, and other thiol biomarkers with the two regimens. We examined APAP and purine metabolism in overdose patients who developed ALI. We showed the major APAP-metabolites and xanthine were significantly higher in patients with ALI. These biomarkers correlated well with alanine aminotransferase activity at admission. Receiver operating characteristic analysis showed that at admission, plasma APAP-metabolites and xanthine concentrations were predictive for ALI. In conclusion, a significantly higher redox thiol response with the modified NAC regimen at 12 h postdose suggests this regimen may produce greater antioxidant efficacy. At baseline, plasma APAP and purine metabolites may be useful biomarkers for early prediction of APAP-induced ALI.
    Matched MeSH terms: Oxidation-Reduction/drug effects
  15. Shukor Y, Shamsuddin B, Mohamad O, Ithnin K
    Pak J Biol Sci, 2008 Feb 15;11(4):672-5.
    PMID: 18817148
    In this research, we modify a previously developed assay for the quantification molybdenum blue to determine whether inhibitors to molybdate reduction in bacteria inhibits cellular reduction or inhibit the chemical formation of one of the intermediate of molybdenum blue; phosphomolybdate. We manage to prove that inhibition of molybdate reduction by phosphate and arsenate is at the level of phosphomolybdate and not cellular. We also prove that mercury is a physiological inhibitor to molybdate reduction. We suggest the use of this method to assess the effect of inhibitors and activators to molybdate reduction in bacteria.
    Matched MeSH terms: Oxidation-Reduction
  16. Khairiah Haji Badri, Muhammad Syukri Ngah
    Sains Malaysiana, 2015;44:861-867.
    An investigation on a batch production of palm kernel oil polyol (PKO-p) was conducted via esterification and condensation.
    The process design was thoroughly studied as a preliminary step for future upscaling. The process variables included
    necessity of vacuum pump, controlling of heating rate, recording the production time, nitrogen gas flow and agitator
    speed. About 250 mL PKO-p was successfully synthesized within 3 h. Vacuum pressure was applied to haul out moisture
    from the system. The control of heating rate and production time are vital to avoid sudden oxidation.
    Matched MeSH terms: Oxidation-Reduction
  17. Abdollahi Y, Sabbaghi S, Abouzari-Lotf E, Jahangirian H, Sairi NA
    Water Sci Technol, 2018 Mar;77(5-6):1493-1504.
    PMID: 29595152 DOI: 10.2166/wst.2018.017
    The global attention has been focused on degradation of the environmental organic pollutants through green methods such as advanced oxidation processes (AOPs) under sunlight. However, AOPs have not yet been efficient in function of the photocatalyst that has been used. In this work, firstly, CaCu3Ti4O12 nanocomposite was simultaneously synthesized and decorated in different amounts of graphene oxide to enhance photodegradation of the organics. The result of the photocatalyst characterization showed that the sample with 8% graphene presented optimum photo-electrical properties such as low band gap energy and a great surface area. Secondly, the photocatalyst was applied for photodegradation of an organic model in a batch photoreactor. Thirdly, to scale up the process and optimize the efficiency, the photodegradation was modeled by multivariate semi-empirical methods. As the optimized condition showed, 45 mg/L of the methyl-orange has been removed at pH 5.8 by 0.96 g/L of the photocatalyst during 288 min of the light irradiation. Moreover, the photodegradation has been scaled up for industrial applications by determining the importance of the input effective variables according to the following organics order > photocatalyst > pH > irradiation time.
    Matched MeSH terms: Oxidation-Reduction
  18. Musa KH, Abdullah A, Kuswandi B, Hidayat MA
    Food Chem, 2013 Dec 15;141(4):4102-6.
    PMID: 23993591 DOI: 10.1016/j.foodchem.2013.06.112
    A stable chromogenic radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) is commonly used for the determination of antioxidant activity. In this paper, DPPH was dried into 96 well microplate to produce DPPH dry reagent array plate, based on which the highly sensitive and high throughput determination of antioxidant activities was achieved. The spectrophotometric characterization of the microplate containing dried or fresh DPPH free radicals was reported. The response of the DPPH dry reagent array towards different standard antioxidants was studied. The reaction for DPPH in fresh or dry reagent array with Trolox was reported and compared. The DPPH dry reagent array was used to study the antioxidant activity of banana, green tea, pink guava, and honeydew and the results were compared to the samples reacted with freshly prepared DPPH. The proposed method is comparable to the classical DPPH method, more convenient, simple to operate with minimal solvent required and excellent sensitivity.
    Matched MeSH terms: Oxidation-Reduction
  19. Das S, Tripathy S, Pramanik P, Saha B, Roy S
    Cytokine, 2021 08;144:155555.
    PMID: 33992538 DOI: 10.1016/j.cyto.2021.155555
    Emergence and spread of resistant parasites to the newest chemotherapeutic anti-malarial agents are the biggest challenges against malaria control programs. Therefore, developing a novel effective treatment to reduce the overgrowing burden of multidrug resistant malaria is a pressing need. Herein, we have developed a biocompatible and biodegradable, non-toxic chitosan-tripolyphosphate-chloroquine (CS-TPP CQ) nanoparticle. CS-TPP CQ nanoparticles effectively kill the parasite through redox generation and induction of the pro- and anti-inflammatory cytokines in both sensitive and resistant parasite in vitro. The in vitro observations showed a strong inhibitory effect (p 
    Matched MeSH terms: Oxidation-Reduction/drug effects*
  20. Khuzaimah Arifin, Wan Ramli Wan Daud, Mohammad B. Kassim
    Sains Malaysiana, 2014;43:95-101.
    A novel bimetallic double thiocyanate-bridged ruthenium and tungsten metal complex containing bipyridyl and dithiolene co-ligands was synthesized and the behavior of the complex as a dye-sensitizer for a photoelectrochemical (PEG) cell for a direct water splitting reaction was investigated. The ligands and metal complexes were characterized on the basis of elemental analysis as well as uv-Vis, Fourier transform infrared ( Pim) and nuclear magnetic resonance (11I and 13C NMR) spectroscopy. Cyclic voltammetry of the bimetallic complex showed multiple redox couples, in which half potentials E 112 at 0 .625 , 0.05 and 0.61 V were assigned as the formal redox processes of Ru(III)IRu(II) reduction, W(IV)IW(V) and W(V)IW(VI) oxidations, respectively. Photocurrent measurements were performed in homogeneous system and TiO2 was used as the photoanode for photocurrent measurements. Current density generated by the bimetallic complex was higher than that of N3 commercial dye which suggested that the bimetallic complex donated more electrons to the semiconductor.
    Matched MeSH terms: Oxidation-Reduction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links