Displaying publications 1 - 20 of 844 in total

Abstract:
Sort:
  1. Tan BL, Norhaizan ME, Huynh K, Yeap SK, Hazilawati H, Roselina K
    World J Gastroenterol, 2015 Aug 7;21(29):8826-35.
    PMID: 26269672 DOI: 10.3748/wjg.v21.i29.8826
    To investigate the mechanistic action of brewers' rice in regulating the Wnt/nuclear factor-kappa B (NF-κB)/Nrf2-signaling pathways during colon carcinogenesis in male Sprague-Dawley rats.
    Matched MeSH terms: Oxidative Stress/drug effects*
  2. Jaganathan SK, Supriyanto E, Mandal M
    World J Gastroenterol, 2013 Nov 21;19(43):7726-34.
    PMID: 24282361 DOI: 10.3748/wjg.v19.i43.7726
    AIM: To investigate the events associated with the apoptotic effect of p-Coumaric acid, one of the phenolic components of honey, in human colorectal carcinoma (HCT-15) cells.

    METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tertazolium-bromide assay was performed to determine the antiproliferative effect of p-Coumaric acid against colon cancer cells. Colony forming assay was conducted to quantify the colony inhibition in HCT 15 and HT 29 colon cancer cells after p-Coumaric acid treatment. Propidium Iodide staining of the HCT 15 cells using flow cytometry was done to study the changes in the cell cycle of treated cells. Identification of apoptosis was done using scanning electron microscope and photomicrograph evaluation of HCT 15 cells after exposing to p-Coumaric acid. Levels of reactive oxygen species (ROS) of HCT 15 cells exposed to p-Coumaric acid was evaluated using 2', 7'-dichlorfluorescein-diacetate. Mitochondrial membrane potential of HCT-15 was assessed using rhodamine-123 with the help of flow cytometry. Lipid layer breaks associated with p-Coumaric acid treatment was quantified using the dye merocyanine 540. Apoptosis was confirmed and quantified using flow cytometric analysis of HCT 15 cells subjected to p-Coumaric acid treatment after staining with YO-PRO-1.

    RESULTS: Antiproliferative test showed p-Coumaric acid has an inhibitory effect on HCT 15 and HT 29 cells with an IC₅₀ (concentration for 50% inhibition) value of 1400 and 1600 μmol/L respectively. Colony forming assay revealed the time-dependent inhibition of HCT 15 and HT 29 cells subjected to p-Coumaric acid treatment. Propidium iodide staining of treated HCT 15 cells showed increasing accumulation of apoptotic cells (37.45 ± 1.98 vs 1.07 ± 1.01) at sub-G1 phase of the cell cycle after p-Coumaric acid treatment. HCT-15 cells observed with photomicrograph and scanning electron microscope showed the signs of apoptosis like blebbing and shrinkage after p-Coumaric acid exposure. Evaluation of the lipid layer showed increasing lipid layer breaks was associated with the growth inhibition of p-Coumaric acid. A fall in mitochondrial membrane potential and increasing ROS generation was observed in the p-Coumaric acid treated cells. Further apoptosis evaluated by YO-PRO-1 staining also showed the time-dependent increase of apoptotic cells after treatment.

    CONCLUSION: These results depicted that p-Coumaric acid inhibited the growth of colon cancer cells by inducing apoptosis through ROS-mitochondrial pathway.

    Matched MeSH terms: Oxidative Stress/drug effects
  3. Loy SL, Jan Mohamed HJ
    Women Health, 2014;54(2):145-60.
    PMID: 24329183 DOI: 10.1080/03630242.2013.870632
    This study aimed to examine the associations among prenatal nicotine exposure, oxidative stress, and postpartum visceral fat among women exposed to secondhand smoke (SHS). The study was conducted in Kelantan, Malaysia, from April 2010 to December 2012. Blood samples were collected in the second and third trimesters from 135 healthy pregnant women who were followed-up at delivery, 2 months, 6 months and 12 months postpartum. Maternal hair nicotine and oxidative stress markers during pregnancy were measured. Visceral fat was assessed by bioelectrical impedance. Multiple linear regression analysis revealed that maternal hair nicotine concentration was associated with increased DNA damage (tail moment: β=0.580, p=0.001) and decreased glutathione peroxidase (β=-12.100; p=0.009) in the second trimester of pregnancy. Increased DNA damage, protein oxidation and total antioxidant capacity in the second trimester were associated with 2, 6, and 12 months postpartum visceral fat. No direct association was found between prenatal hair nicotine level and postpartum visceral fat; however, these results suggest that any relation of SHS to visceral adiposity may be indirect, mediated via enhanced oxidative stress.
    Matched MeSH terms: Oxidative Stress*
  4. Kwan PP, Banerjee S, Shariff M, Yusoff FM
    Vet World, 2019 Sep;12(9):1416-1421.
    PMID: 31749575 DOI: 10.14202/vetworld.2019.1416-1421
    Background and Aim: Malachite green (MG) is an effective antiparasitic and antifungal chemical for treatment of fish. However, MG is reported to be a potential carcinogen. Yet, it is widely used in aquaculture despite its prohibition for use in food-producing animals by the EU and USFDA. The present study quantified MG residues and evaluated the oxidative stress in red tilapia when exposed to subacute and sublethal concentrations of MG.

    Materials and Methods: Red tilapia exposed to subacute (0.105 mg/L for 20 days) and sublethal (0.053 mg/L for 60 days) concentrations were evaluated for total plasma protein, total immunoglobulin, nitroblue tetrazolium activity, malondialdehyde, reduced glutathione (GSH), and catalase (CAT) activity levels. The residues of MG and leuco-MG (LMG) were also quantified in the fish muscles using liquid chromatography-tandem mass spectrometry.

    Results: Fish exposed to subacute concentration showed higher CAT on day 10 in the liver and days 5 and 15 in the spleen, whereas in fish exposed to the sublethal concentration, higher levels of GSH were observed on day 1 in the kidney and day 50 in the spleen. Fish muscle was able to accumulate the sum of MG and LMG of 108.04 µg/kg for subacute (day 20) and 82.68 µg/kg for sublethal (day 60).

    Conclusion: This study showed that red tilapia was able to adapt to the stress caused by exposure to MG at sublethal concentration.

    Matched MeSH terms: Oxidative Stress
  5. Albishtue AA, Yimer N, Zakaria MZA, Haron AW, Yusoff R, Assi MA, et al.
    Vet World, 2018 Jan;11(1):71-79.
    PMID: 29479160 DOI: 10.14202/vetworld.2018.71-79
    Aim: This study aimed to evaluate the effect of edible bird's nest (EBN) supplementation on the uteri of rats based on analyses of the morphological and histomorphometric changes, and expressions of epidermal growth factor (EGF) and its receptor (REGF) genes, vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), and steroid receptors.

    Materials and Methods: Twenty-four: Sprague Dawley rats were equally distributed into the following four groups: G1 (control), G2, G3, and G4 represented the groups treated with EBN at graded concentrations of 0, 30, 60, and 120 mg/kg body weight (BW) per day for 8 weeks, respectively. During the experimental period, the BW of each rat was recorded weekly. At the proestrus stage of estrous cycle, blood samples were collected from the hearts of anesthetized rats that were later sacrificed. The uteri were removed for histological and immunohistochemical analyses.

    Results: The EBN-treated groups showed an increase in the weights and lengths of uteri as compared to the control. Results showed that relative to G1 and G2, G3 and G4 exhibited proliferation in their uterine luminal and glandular epithelia and uterine glands, and up-regulated expressions of EGF, REGF, VEGF, PCNA, and progesterone receptor, and estrogen receptor in their uteri. The EBN increased the antioxidant (AO) and total AO capacities and reduced the oxidative stress (OS) levels in non-pregnant rats.

    Conclusion: Findings of this study revealed that EBN promotes proliferation of the uterine structures as evidenced by the upregulation of the expressions of steroid receptors, EGF, REGF, VEGF, and PCNA in the uterus and increased in the plasma concentrations of AO and reduced levels of OS.

    Matched MeSH terms: Oxidative Stress
  6. Ng CY, Leong XF, Masbah N, Adam SK, Kamisah Y, Jaarin K
    Vascul. Pharmacol., 2014 Apr;61(1):1-9.
    PMID: 24632108 DOI: 10.1016/j.vph.2014.02.004
    Cardiovascular disease (CVD) is one of the leading major causes of morbidity and mortality worldwide. It may result from the interactions between multiple genetic and environmental factors including sedentary lifestyle and dietary habits. The quality of dietary oils and fats has been widely recognised to be inextricably linked to the pathogenesis of CVD. Vegetable oil is one of the essential dietary components in daily food consumption. However, the benefits of vegetable oil can be deteriorated by repeated heating that leads to lipid oxidation. The practice of using repeatedly heated cooking oil is not uncommon as it will reduce the cost of food preparation. Thermal oxidation yields new functional groups which may be potentially hazardous to cardiovascular health. Prolonged consumption of the repeatedly heated oil has been shown to increase blood pressure and total cholesterol, cause vascular inflammation as well as vascular changes which predispose to atherosclerosis. The harmful effect of heated oils is attributed to products generated from lipid oxidation during heating process. In view of the potential hazard of oxidation products, therefore this review article will provide an insight and awareness to the general public on the consumption of repeatedly heated oils which is detrimental to health.
    Matched MeSH terms: Oxidative Stress
  7. Siti HN, Kamisah Y, Kamsiah J
    Vascul. Pharmacol., 2015 Aug;71:40-56.
    PMID: 25869516 DOI: 10.1016/j.vph.2015.03.005
    The concept of mild chronic vascular inflammation as part of the pathophysiology of cardiovascular disease, most importantly hypertension and atherosclerosis, has been well accepted. Indeed there are links between vascular inflammation, endothelial dysfunction and oxidative stress. However, there are still gaps in our understanding regarding this matter that might be the cause behind disappointing results of antioxidant therapy for cardiovascular risk factors in large-scale long-term randomised controlled trials. Apart from the limitations of our knowledge, limitations in methodology and assessment of the body's endogenous and exogenous oxidant-antioxidant status are a serious handicap. The pleiotropic effects of antioxidant and anti-inflammation that are shown by some well-established antihypertensive agents and statins partly support the idea of using antioxidants in vascular diseases as still relevant. This review aims to provide an overview of the links between oxidative stress, vascular inflammation, endothelial dysfunction and cardiovascular risk factors, importantly focusing on blood pressure regulation and atherosclerosis. In view of the potential benefits of antioxidants, this review will also examine the proposed role of vitamin C, vitamin E and polyphenols in cardiovascular diseases as well as the success or failure of antioxidant therapy for cardiovascular diseases in clinical trials.
    Matched MeSH terms: Oxidative Stress/drug effects; Oxidative Stress/physiology*
  8. Loh WM, Ling WC, Murugan DD, Lau YS, Achike FI, Vanhoutte PM, et al.
    Vascul. Pharmacol., 2015 Aug;71:151-8.
    PMID: 25869508 DOI: 10.1016/j.vph.2015.03.011
    Des-aspartate angiotensin I (DAA-I), an endogenous nonapeptide, counteracts several effects of angiotensin II on vascular tone. The aim of this study was to investigate the acute protective effect of DAA-I on endothelial function in the spontaneously hypertensive rat (SHR) as well as its effect on angiotensin II-induced contractions and oxidative stress. Aortic rings were incubated with DAA-I (0.1μM) for 30min prior to the assessment of angiotensin II-induced contractions (0.1nM-10μM) in WKY and SHR aortas. Total nitrate and nitrite levels were assessed using a colorimetric method and reactive oxygen species (ROS) were measured by dihydroethidium (DHE) fluorescence and lucigenin-enhanced chemiluminescence. The effect of DAA-I was also assessed against endothelium-dependent and -independent relaxations to acetylcholine and sodium nitroprusside, respectively. Angiotensin II-induced contractions were significantly reduced by DAA-I, losartan and tempol. Incubation with ODQ (soluble guanylyl cyclase inhibitor) and removal of the endothelium prevented the reduction of angiotensin II-induced contractions by DAA-I. Total nitrate and nitrite levels were increased in DAA-I, losartan and tempol treated-SHR tissues while ROS level was reduced by DAA-I and the latter inhibitors. In addition, DAA-I significantly improved the impaired acetylcholine-induced relaxation in SHR aortas whilst sodium nitroprusside-induced endothelium-independent relaxation remained unaffected. The present findings indicate that improvement of endothelial function by DAA-I in the SHR aorta is mediated through endothelium-dependent release of nitric oxide and inhibition of angiotensin II-induced oxidative stress.
    Matched MeSH terms: Oxidative Stress/drug effects*; Oxidative Stress/physiology
  9. Ling WC, Mustafa MR, Vanhoutte PM, Murugan DD
    Vascul. Pharmacol., 2018 03;102:11-20.
    PMID: 28552746 DOI: 10.1016/j.vph.2017.05.003
    AIM: Endothelial dysfunction accompanied by an increase in oxidative stress is a key event leading to hypertension. As dietary nitrite has been reported to exert antihypertensive effect, the present study investigated whether chronic oral administration of sodium nitrite improves vascular function in conduit and resistance arteries of hypertensive animals with elevated oxidative stress.

    METHODS: Sodium nitrite (50mg/L) was given to angiotensin II-infused hypertensive C57BL/6J (eight to ten weeks old) mice for two weeks in the drinking water. Arterial systolic blood pressure was measured using the tail-cuff method. Vascular responsiveness of isolated aortae and renal arteries was studied in wire myographs. The level of nitrite in the plasma and the cyclic guanosine monophosphate (cGMP) content in the arterial wall were determined using commercially available kits. The production of reactive oxygen species (ROS) and the presence of proteins (nitrotyrosine, NOx-2 and NOx-4) involved in ROS generation were evaluated with dihydroethidium (DHE) fluorescence and by Western blotting, respectively.

    RESULTS: Chronic administration of sodium nitrite for two weeks to mice with angiotensin II-induced hypertension decreased systolic arterial blood pressure, reversed endothelial dysfunction, increased plasma nitrite level as well as vascular cGMP content. In addition, sodium nitrite treatment also decreased the elevated nitrotyrosine and NOx-4 protein level in angiotensin II-infused hypertensive mice.

    CONCLUSIONS: The present study demonstrates that chronic treatment of hypertensive mice with sodium nitrite improves impaired endothelium function in conduit and resistance vessels in addition to its antihypertensive effect, partly through inhibition of ROS production.

    Matched MeSH terms: Oxidative Stress/drug effects*
  10. NG PEI QI, NOR HAYATI IBRAHIM, AZLIN SHAFRINA HASIM
    MyJurnal
    Biopolymer interaction in oil-in-water (o/w) emulsions has been demonstrated to positively modify the emulsion physicochemical properties which lead to desirable stability. The present work focused on the effect of pea protein isolate (PPI), pectin, carboxymethyl cellulose (CMC) and their interaction on physicochemical properties and oxidative stability of o/w emulsions using a mixture design approach. The emulsions were prepared with 40 % sunflower oil stabilized with 1 % of PPI, pectin and CMC, respectively, as well as their mixtures according to a simplex-centroid design (10 points). ThepH values for all emulsions were within acidic condition (3.22 to 4.66) and increased significantly (p
    Matched MeSH terms: Oxidative Stress
  11. Lee TY, Muniandy L, Teh LK, Abdullah M, George E, Sathar J, et al.
    Turk J Haematol, 2016 Mar 05;33(1):15-20.
    PMID: 26377036 DOI: 10.4274/tjh.2014.0197
    The diverse clinical phenotype of hemoglobin E (HbE)/β-thalassemia has not only confounded clinicians in matters of patient management but has also led scientists to investigate the complex mechanisms involved in maintaining the delicate red cell environment where, even with apparent similarities of α- and β-globin genotypes, the phenotype tells a different story. The BTB and CNC homology 1 (BACH1) protein is known to regulate α- and β-globin gene transcriptions during the terminal differentiation of erythroid cells. With the mutations involved in HbE/β-thalassemia disorder, we studied the role of BACH1 in compensating for the globin chain imbalance, albeit for fine-tuning purposes.
    Matched MeSH terms: Oxidative Stress
  12. Abdul Hisam EE, Rofiee MS, Khalid AM, Jalaluddin AF, Mohamad Yusof MI, Idris MH, et al.
    Turk J Biol, 2018;42(1):33-44.
    PMID: 30814868 DOI: 10.3906/biy-1708-23
    Moringa oleifera Lam. and Centella asiatica (L.) Urb. leaves have been previously reported to exhibit antioxidant activity. The objective of the present study is to determine the in vitro antioxidant activity of the combined extracts of M. oleifera and C. asiatica (TGT-PRIMAAGE) and its effect on hydrogen peroxide (H 2O2)-induced oxidative stress in human dermal fibroblasts. TGTPRIMAAGE acted on the mechanism of hydrogen transfer as it showed scavenging activity in the DPPH assay. This is due to the presence of phenolics and flavonoids in TGT-PRIMAAGE. TGT-PRIMAAGE effectively reduced cellular generation of reactive oxygen species induced by H O2. The activities of superoxide dismutase and catalase were also increased in cells treated with TGT-PRIMAAGE. 2 Treatment with TGT-PRIMAAGE showed significant reduction (P < 0.05) in the number of senescent cells. Significant reduction (P < 0.05) of malondialdehyde was also seen in cells treated with TGT-PRIMAAGE. The p53 protein level was reduced in TGT-PRIMAAGEtreated cells, which indicates its potential in protecting the cells from oxidative stress induced by H2O2.
    Matched MeSH terms: Oxidative Stress
  13. Beoy LA, Woei WJ, Hay YK
    Trop Life Sci Res, 2010 Dec;21(2):91-9.
    PMID: 24575202 MyJurnal
    Studies have shown an association between oxidative stress and alopecia. Patients with alopecia generally exhibit lower levels of antioxidants in their scalp area as well as a higher lipid peroxidation index. Tocotrienols belong to the vitamin E family and are known to be potent antioxidants. Hence, a study was conducted to investigate the effect of tocotrienol supplementation on hair growth in volunteers suffering from hair loss. Twenty one volunteers were randomly assigned to orally receive 100 mg of mixed tocotrienols daily while 17 volunteers were assigned to receive placebo capsule orally. The volunteers were monitored for the number of hairs in a pre-determined scalp area as well as the weight of 20 strands of 1 cm length hair clippings at 0 (before supplementation), 4 and 8 months. The number of hairs of the volunteers in the tocotrienol supplementation group increased significantly as compared to the placebo group, with the former recording a 34.5% increase at the end of the 8-month supplementation as compared to a 0.1% decrease for the latter. Nevertheless, the cumulative weight of 20 strands of hair clippings did not differ much from the baseline for both supplementation groups at the end of the study period. In conclusion, this trial demonstrated that supplementation with tocotrienol capsules increases hair number in volunteers suffering from hair loss as compared to the placebo group. This observed effect was most likely to be due to the antioxidant activity of tocotrienols that helped to reduce lipid peroxidation and oxidative stress in the scalp, which are reported to be associated with alopecia.
    Matched MeSH terms: Oxidative Stress
  14. Idris ZHC, Abidin AAZ, Subki A, Yusof ZNB
    Trop Life Sci Res, 2018 Mar;29(1):71-85.
    PMID: 29644016 MyJurnal DOI: 10.21315/tlsr2018.29.1.5
    Thiamine is known to be an important compound in human diet and it is a cofactor required for vital metabolic processes such as acetyl-CoA biosynthesis, amino acid biosynthesis, Krebs and Calvin cycle. Besides that, thiamine has been shown to be involved in plant protection against stress. In this study, the level of expression of THIC and THI1/THI4, the genes for the first two enzymes in the thiamine biosynthesis pathway were observed when oil palm (Elaeis guineensis) was subjected to oxidative stress. Primers were designed based on the consensus sequence of thiamine biosynthesis genes obtained from Arabidopsis thaliana, Zea mays, Oryza sativa, and Alnus glutinosa. Oxidative stress were induced with various concentrations of paraquat and samplings were done at various time points post-stress induction. The expression of THIC and THI1/THI4 genes were observed via RT-PCR and qPCR analysis. The expression of THIC was increased 2-fold, while THI1/THI4 gene transcript was increased 4-fold upon induction of oxidative stress. These findings showed that oil palm responded to oxidative stress by over-expressing the genes involved in thiamine biosynthesis. These findings support the suggestion that thiamine may play an important role in plant protection against stress.
    Matched MeSH terms: Oxidative Stress
  15. Khor, Soo Ping, Rahmad Zakaria, Subramaniam, Sreeramanan
    Trop Life Sci Res, 2016;27(11):139-143.
    MyJurnal
    Throughout the cryopreservation process, plants were exposed to a series of
    abiotic stresses such as desiccation and osmotic pressure due to highly concentrated
    vitrification solution. Abiotic stress stimulates the production of reactive oxygen species
    (ROS) which include hydrogen peroxide, superoxide radicals, and singlet oxygen. Higher
    production of ROS may lead to oxidative stress which contributes to the major injuries in
    cryopreserved explants. Antioxidant enzymes in plant such as ascorbate peroxidase
    (APX) can protect plants from cell damage by scavenging the free radicals. This study was
    determined based on APX enzyme activity of Aranda Broga Blue orchid’s protocorm-like
    bodies (PLBs) in response to PVS2 (Plant Vitrification Solution 2) cryopreservation
    treatments at different stages. PLBs that were precultured at 0.25 M sucrose for 3 days
    were subjected to vitrification cryopreservation method. Results obtained showed that the
    highest APX activity was achieved at PVS2 cryoprotectant treatment prior liquid nitrogen
    (LN) storage. This phenomenon indicating that accumulation of osmotic and dehydrating
    stress throughout the cryopreservation treatment resulted in oxidative burst which in turn
    leads to higher APX activity in order to control the excess production of ROS. To
    conclude, PVS2 treatment was revealed as the most detrimental step throughout
    cryopreservation treatment. Thus, this research also suggested that exogenous
    antioxidant such as ascorbic acid can be added throughout cryopreservation procedure
    especially at PVS2 treatment in the future experiments to aid in regrowth of cryopreserved
    explants by reducing oxidative stress.
    Matched MeSH terms: Oxidative Stress
  16. Widowati W, Ginting CN, Lister INE, Girsang E, Amalia A, Wibowo SHB, et al.
    Trop Life Sci Res, 2020 Oct;31(3):127-144.
    PMID: 33214860 DOI: 10.21315/tlsr2020.31.3.9
    Skin aging is a complex natural process characterised by gradual diminishment of structural integrity and physiological imbalance of the skin tissue. Since the oxidative stress is tightly corelated to the skin aging process, the usage of antioxidant may serve as favourable strategies for slowing down the skin aging process. Mangosteen is an important fruit commodity and its extract had been extensively studied and revealing various biological activities. Present study aimed to assess the antioxidant and antiaging activity of mangosteen peel extract (MPE) and its phytochemical compounds. MPE and its compounds were subjected to ferric reducing antioxidant power (FRAP), hydroperoxide (H2O2) scavenging, anti-collagenase, anti-elastase, anti-hyaluronidase and anti-tyrosinase assay. MPE has the highest FRAP 116.31 ± 0.60 μM Fe(II) μg-1 extract, IC50 of MPE on H2O2 scavenging activity was 54.61 μg mL-1. MPE also has the highest anti elastase activity at IC50 7.40 μg mL-1. Alpha-mangostin showed potent anti-collagenase activity (IC50 9.75 μg mL-1). While gamma-mangostin showed potent anti-hyaluronidase (IC50 23.85 μg mL-1) and anti-tyrosinase (IC50 50.35 μg mL-1). MPE and its compounds were evaluated in vitro for antioxidant and antiaging activities. Current findings may provide scientific evidence for possible usage of mangosteen extract and its compounds as antioxidant and antiaging agent.
    Matched MeSH terms: Oxidative Stress
  17. Lua YH, Ong WW, Wong HK, Chew CH
    Trop Life Sci Res, 2020 Oct;31(3):63-75.
    PMID: 33214856 DOI: 10.21315/tlsr2020.31.3.5
    The metabolism of alcohol involves cytochrome P450 2E1 (CYP2E1)-induced oxidative stress, with the association of phosphatidylinositol-3-kinases (PI3K) and nuclear factor kappa B (NFκB) signalling pathways. CYP2E1 is primarily involved in the microsomal ethanol oxidising system, which generates massive reactive oxygen species (ROS) and ultimately leads to oxidative stress and tissue damage. Lauric acid, a major fatty acid in palm kernel oil, has been shown as a potential antioxidant. Here, we aimed to evaluate the use of lauric acid as a potential antioxidant against ethanol-mediated oxidative stress by investigating its effect on CYP2E1 mRNA expression and the signalling pathway in ethanol-induced HepG2 cells. HepG2 cells were firstly treated with different concentrations of ethanol, and subsequently co-treated with different concentrations of lauric acid for 24 h. Total cellular RNA and total protein were extracted, and qPCR and Western blot was carried out. Ethanol induced the mRNA expression of CYP2E1 significantly, but lauric acid was able to downregulate the induced CYP2E1 expression in a dose-dependent manner. Similarly, Western blot analysis and densitometry analysis showed that the phosphorylated PI3K p85 (Tyr458) protein was significantly elevated in ethanol-treated HepG2 cells, but co-treatment with lauric acid repressed the activation of PI3K. However, there was no significant difference in NFκB pathway, in which the normalised NFκB p105 (Ser933) phosphorylation remained constant in any treatment conditions in this study. This suggests that ethanol induced CYP2E1 expression by activating PI3K p85 (Tyr458) pathway, but not the NFκB p105 (Ser933) pathway in HepG2 cells.
    Matched MeSH terms: Oxidative Stress
  18. Sorour SS, Abou Asa S, Elhawary NM, Ghazy EW, Abd El Latif A, El-Abasy MA, et al.
    Trop Biomed, 2018 Dec 01;35(4):926-943.
    PMID: 33601842
    Coccidiosis is one of the most dangerous diseases that affect poultry, resulting in worldwide economic losses. Plant extracts and essential oils have been used as potential alternatives for chemotherapeutics, because they don't have the negative consequence of creating tissue residue and drug resistance. Therefore, this study had been conducted to determine the efficacy of artemisinin liquid extract, cinnamon essential oil and clove essential oil against Eimeria stiedae in rabbits. Sixty New Zealand white rabbits were divided into six equal groups, where group 1 and group 2 represented the negative and the positive controls, respectively, and groups 3-6 were infected with Eimeria stiedae and received 15 ppm toltrazuril, 200 ppm artemisinin, 100 mg/kg cinnamon oil, and 100 mg/kg clove oil, respectively. The results showed that artemisinin had a significant beneficial role in protection against hepatic coccidiosis: it mitigated the clinical symptoms, reduced the mortality rates, improved body weight and feed conversion, decreased the oocyst output, prevented oxidative stress, improved biochemical parameters, and decreased the lesion formation. Moreover, it has been found that cinnamon and clove essential oils induced partial protection against hepatic coccidiosis. Our findings suggested that artemisinin liquid extract and cinnamon and clove essential oils could be used for protection against hepatic coccidiosis. However, further investigations are needed in order to elucidate the active components, optimal doses, and mode of action of these extracts and essential oils before their clinical applications.
    Matched MeSH terms: Oxidative Stress
  19. Tan YH, Alias Z
    Trop Biomed, 2020 Sep 01;37(3):744-755.
    PMID: 33612787 DOI: 10.47665/tb.37.3.744
    The study was aimed to investigate the expression of cytosolic and thiolated proteins of Musca domestica larvae under oxidative stress. Proteins from acute treatment of hydrogen peroxide (LC50 = 21.52% (v/v)) on 3rd stage larvae of housefly were extracted and purified using an activated Thiol Sepharose® for thiolated protein purification. Two dimensional gel electrophoresis was used for visualizing and analyzing expression of cytosolic and thiolated proteins. Protein spots with more than 5 fold of expression change were identified using liquid chromatography- tandem mass spectrometry (LC-MS/MS). The cytosolic proteins were actin, tropomyosin, ubiquitin, arginine kinase, pheromone binding protein/general odorant binding protein, and ATP: guanidino phosphotransferase. The thiolated proteins with more than 5 fold change in expression as an effect to the acute treatment were fructose bisphosphate aldolase, short chain dehydrogenase and lactate/malate dehydrogenase. The proteins identified in the study should provide vital information for future reference in oxidative stress defence and response occurring in houseflies.
    Matched MeSH terms: Oxidative Stress
  20. Cooper DJ, Plewes K, Grigg MJ, Rajahram GS, Piera KA, William T, et al.
    Trials, 2018 Apr 24;19(1):250.
    PMID: 29690924 DOI: 10.1186/s13063-018-2600-0
    BACKGROUND: Plasmodium knowlesi is the most common cause of human malaria in Malaysia. Acute kidney injury (AKI) is a frequent complication. AKI of any cause can have long-term consequences, including increased risk of chronic kidney disease, adverse cardiovascular events and increased mortality. Additional management strategies are therefore needed to reduce the frequency and severity of AKI in malaria. In falciparum malaria, cell-free haemoglobin (CFHb)-mediated oxidative damage contributes to AKI. The inexpensive and widely available drug paracetamol inhibits CFHb-induced lipid peroxidation via reduction of ferryl haem to the less toxic Fe3+ state, and has been shown to reduce oxidative damage and improve renal function in patients with sepsis complicated by haemolysis as well as in falciparum malaria. This study aims to assess the ability of regularly dosed paracetamol to reduce the incidence and severity of AKI in knowlesi malaria by attenuating haemolysis-induced oxidative damage.

    METHODS: PACKNOW is a two-arm, open-label randomised controlled trial of adjunctive paracetamol versus no paracetamol in patients aged ≥ 5 years with knowlesi malaria, conducted over a 2-year period at four hospital sites in Sabah, Malaysia. The primary endpoint of change in creatinine from enrolment to 72 h will be evaluated by analysis of covariance (ANCOVA) using enrolment creatinine as a covariate. Secondary endpoints include longitudinal changes in markers of oxidative stress (plasma F2-isoprostanes and isofurans) and markers of endothelial activation/Weibel-Palade body release (angiopoietin-2, von Willebrand Factor, P-selectin, osteoprotegerin) over 72 h, as well as blood and urine biomarkers of AKI. This study will be powered to detect a difference between the two treatment arms in a clinically relevant population including adults and children with knowlesi malaria of any severity.

    DISCUSSION: Paracetamol is widely available and has an excellent safety profile; if a renoprotective effect is demonstrated, this trial will support the administration of regularly dosed paracetamol to all patients with knowlesi malaria. The secondary outcomes in this study will provide further insights into the pathophysiology of haemolysis-induced oxidative damage and acute kidney injury in knowlesi malaria and other haemolytic diseases.

    TRIAL REGISTRATION: Clinicaltrials.gov, NCT03056391 . Registered on 12 October 2016.

    Matched MeSH terms: Oxidative Stress/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links