Displaying publications 1 - 20 of 396 in total

Abstract:
Sort:
  1. Abdullah D, Eziana Hussein F, Abd Ghani H
    Iran Endod J, 2017;12(2):257-260.
    PMID: 28512497 DOI: 10.22037/iej.2017.50
    This case report describes the endodontic treatment of an idiopathic perforated internal root resorption. A 24-year-old male Malay patient presented with internal root resorption of two of his anterior teeth. The medical history was non-contributory and he had no history of traumatic injury or orthodontic treatment. Cone-beam computed tomography (CBCT) determined the nature, location and severity of the resorptive lesion. Non-surgical root canal treatment of tooth #22 and combined non-surgical and surgical approach for tooth #11 were carried out using mineral trioxide aggregate (MTA) as the filling material. The clinical and radiographic examination three years after completion of treatment revealed evidences of periapical healing. The appropriate diagnosis and the treatment of internal root resorption allowed good healing of these lesions and maintained the tooth in function for as long as possible.
    Matched MeSH terms: Oxides
  2. Ahmad A, Ghufran R, Abd Wahid Z
    J Hazard Mater, 2011 Dec 30;198:40-8.
    PMID: 22047724 DOI: 10.1016/j.jhazmat.2011.10.008
    The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO-CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO-CKD at doses of 1.5-20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35°C for 150 days to investigate the effect of CaO-CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5-65.5 g-CODg/l at an OLR of 4.5-12.5 kg-COD/m(3)d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased significantly after long-term operation due to the precipitation of calcium carbonate in the granules. Granulation and methanogenesis decreased with an increase in the influent CaO-CKD concentration.
    Matched MeSH terms: Oxides/chemistry*
  3. Sugeng DA, Yahya WJ, Ithnin AM, Abdul Rashid MA, Mohd Syahril Amri NS, Abd Kadir H, et al.
    Environ Sci Pollut Res Int, 2018 Sep;25(27):27214-27224.
    PMID: 30030755 DOI: 10.1007/s11356-018-2760-1
    The focus of this work is to investigate the emission characteristics of a stationary diesel engine while utilizing an emulsion fuel from a novel preparation process. The emulsion preparation was performed in real time without using any surfactant. Instead of mechanically breaking the water down into droplets, the water is delivered thermally, by changing its phase from gas to liquid. Steam is used in this proposed process, where it will be converted into suspended water droplets once it meets colder diesel. The product is called steam-generated water-in-diesel emulsion fuel (S/D). The method is expected to reduce the moving components of a previous surfactant-less system; therefore, reducing costs and increasing the system reliability. The emission characteristics of S/D were compared with EURO 2 diesel (D2), and a conventional emulsion denoted as E10. E10 was prepared using 10% water (volumetric) and SPAN80 as a surfactant. The emission characterizations were carried out based on the exhaust gas of a single cylinder naturally aspirated CI engine fueled with D2, S/D, and E10. Compared to D2, both emulsions significantly reduced the emissions of nitrogen oxides (NOx) (E10 max ↓58.0%, S/D max ↓40.0%) and particulate matter (PM) (E10 max ↓20.0%, S/D max ↓57.0%).
    Matched MeSH terms: Nitrogen Oxides/analysis*
  4. Nur Suhaili Abd Aziz, Muhammad Khairullah Nor Azmi, Abdul Manaf Hashim
    Sains Malaysiana, 2017;46:1083-1088.
    A one-pot green sonochemical process assisted by ascorbic acid as the reducing agent to produce highly reduced graphene oxide (rGO) decorated with silver nanoparticles (AgNPs) is demonstrated. A complete removal of oxygen-containing group in the GO sheets was confirmed by no observation of the peak corresponds to C-O, C=O and -OH bond. The unexpected decrease of peak intensity corresponds to sp2 hybridized C=C group is explained by a so-called bond polarity effect. The peak observed at ~400 nm seems to show the presence of AgNPs and the red shifting of C=C peak to ~270 nm after the introduction of ascorbic acid indicates the formation of highly reduced GO. The increase of AgNPs size and the crumpled silk-like morphology after the introduction of ascorbic acid also indicate the aggressive reduction of both AgNPs and GO. The increase of ID/IG ratio after the introduction of ascorbic acid seems to indicate the increase of the number of small sp2 domains, the presence of unrepaired defects and the restoration of the sp2 network. This work provides the promising green sonochemical approach by utilizing non-toxic and environmental-friendly reducing agent to produce highly reduced GO decorated with AgNPs for various applications.
    Matched MeSH terms: Oxides
  5. Al-Bayaty F, Abdulla MA
    PMID: 22666291 DOI: 10.1155/2012/468764
    Background and Purpose. This study aimed to evaluate the wound healing activities of Aftamed and chlorine dioxide gels in streptozotocin-induced diabetic rats. Experimental Approach. Forty-eight Sprague Dawley rats were chosen for this study, divided into 4 groups. Diabetes was induced. Two-centimeter-diameter full-thickness skin excision wounds were created. Animals were topically treated twice daily. Groups 1, the diabetic control group, were treated with 0.2 mL of sterile distilled water. Group 2 served as a reference standard were treated with 0.2 mL of Intrasite gel. Groups 3 and 4 were treated with 0.2 mL of Aftamed and 0.2 mL of chlorine dioxide gels respectively. Granulation tissue was excised on the 10th day and processed for histological and biochemical analysis. The glutathione peroxidase ,superoxide dismutase activities and the malondialdehyde (MDA) levels were determined. Results. Aftamed-treated wounds exhibited significant increases in hydroxyproline, cellular proliferation, the number of blood vessels, and the level of collagen synthesis. Aftamed induced an increase in the free radical-scavenging enzyme activity and significantly reduced the lipid peroxidation levels in the wounds as measured by the reduction in the MDA level. Conclusions. This study showed that Aftamed gel is able to significantly accelerate the process of wound healing in diabetic rats.
    Matched MeSH terms: Oxides
  6. Khan MF, Maulud KNA, Latif MT, Chung JX, Amil N, Alias A, et al.
    Sci Total Environ, 2018 Feb 01;613-614:1401-1416.
    PMID: 29898507 DOI: 10.1016/j.scitotenv.2017.08.025
    Air pollution can be detected through rainwater composition. In this study, long-term measurements (2000-2014) of wet deposition were made to evaluate the physicochemical interaction and the potential sources of pollution due to changes of land use. The rainwater samples were obtained from an urban site in Kuala Lumpur and a highland-rural site in the middle of Peninsular Malaysia. The compositions of rainwater were obtained from the Malaysian Meteorological Department. The results showed that the urban site experienced more acidity in rainwater (avg=277mm, range of 13.8 to 841mm; pH=4.37) than the rural background site (avg=245mm, range of 2.90 to 598mm; pH=4.97) due to higher anthropogenic input of acid precursors. The enrichment factor (EF) analysis showed that at both sites, SO42-, Ca2+ and K+ were less sensitive to seawater but were greatly influenced by soil dust. NH4+ and Ca2+ can neutralise a larger fraction of the available acid ions in the rainwater at the urban and rural background sites. However, acidifying potential was dominant at urban site compared to rural site. Source-receptor relationship via positive matrix factorisation (PMF 5.0) revealed four similar major sources at both sites with a large variation of the contribution proportions. For urban, the major sources influence on the rainwater chemistry were in the order of secondary nitrates and sulfates>ammonium-rich/agricultural farming>soil components>marine sea salt and biomass burning, while at the background site the order was secondary nitrates and sulfates>marine sea salt and biomass burning=soil components>ammonia-rich/agricultural farming. The long-term trend showed that anthropogenic activities and land use changes have greatly altered the rainwater compositions in the urban environment while the seasonality strongly affected the contribution of sources in the background environment.
    Matched MeSH terms: Sulfur Oxides
  7. Nazmi NASM, Razak FIA, Mokhtar WNAW, Ibrahim MNM, Adam F, Yahaya N, et al.
    Environ Sci Pollut Res Int, 2022 Jan;29(1):1009-1020.
    PMID: 34341936 DOI: 10.1007/s11356-021-15733-1
    The world faces the challenge to produce ultra-low sulfur diesel with low-cost technology. Therefore, this research emphasised on production of low sulfur fuel utilising nanoparticle catalyst under mild condition. A small amount of cobalt oxide (10-30 wt%) was introduced into the Fe/Al2O3 catalyst through the wet impregnation method. Cobalt modification induces a positive effect on the performance of the iron catalyst. Hence, the insertion of cobalt species into Fe/Al2O3 led to the formation of lattice fringes in all directions which resulted in the formation of Co3O4 and Fe3O4 species. The optimised catalyst, Co/Fe-Al2O3, calcined at 400 °C with a dopant ratio of 10:90 indicating the highest desulfurisation activity by removing 96% of thiophene, 100% of dibenzothiophene (DBT) and 92% of 4,6-dimethyl dibenzothiophene (4,6-DMDBT). Based on the density functional theory (DFT) on Co/Fe-Al2O3, two pathways with the overall energy of -40.78 eV were suggested for the complete oxidation of DBT.
    Matched MeSH terms: Oxides
  8. Ibrahim R, Hussein MZ, Yusof NA, Abu Bakar F
    Nanomaterials (Basel), 2019 Aug 31;9(9).
    PMID: 31480466 DOI: 10.3390/nano9091239
    Carbon nanotube-quicklime nanocomposites (CQNs) have been synthesized via the chemical vapor deposition (CVD) of n-hexane using a nickel metal catalyst supported on calcined carbonate stones at temperatures of 600-900 °C. The use of a Ni/CaO(10 wt%) catalyst required temperatures of at least 700 °C to obtain XRD peaks attributable to carbon nanotubes (CNTs). The CQNs prepared using a Ni/CaO catalyst of various Ni contents showed varying diameters and the remaining catalyst metal particles could still be observed in the samples. Thermogravimetric analysis of the CQNs showed that there were two major weight losses due to the amorphous carbon decomposition (300-400 °C) and oxidation of CNTs (400-600 °C). Raman spectroscopy results showed that the CQNs with the highest graphitization were synthesized using Ni/CaO (10 wt%) at 800 °C with an IG/ID ratio of 1.30. The cyclic voltammetry (CV) of screen-printed carbon electrodes (SPCEs) modified with the CQNs showed that the performance of nanocomposite-modified SPCEs were better than bare SPCEs. When compared to carboxylated multi-walled carbon nanotubes or MWNT-COOH-modified SPCEs, the CQNs synthesized using Ni/CaO (10 wt%) at 800 °C gave higher CV peak currents and comparable electron transfer, making it a good alternative for screen-printed electrode modification.
    Matched MeSH terms: Oxides
  9. Chee, Fuei Pien, Saafie Salleh, Afishah Alias, Haider F. Abdul Amir, Abu Hassan Husin
    MyJurnal
    The most sensitive part of a metal-oxide-semiconductor (MOS) structure to ionizing radiation is the
    oxide insulating layer. When ionizing radiation passes through the oxide, the energy deposited creates
    electron/hole pairs. Oxide trapped charge causes a negative shift in capacitance-voltage (C-V)
    characteristics. These changes are the results of, firstly, incre using trapped positive charge in the
    oxide, which causes a parallel shift of the curve to more negative voltages, and secondly, increasing
    interface trap density, which causes the curve to stretch-out.
    Matched MeSH terms: Oxides
  10. Tripathy A, Pramanik S, Manna A, Bhuyan S, Azrin Shah NF, Radzi Z, et al.
    Sensors (Basel), 2016 Jul 21;16(7).
    PMID: 27455263 DOI: 10.3390/s16071135
    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%-95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors.
    Matched MeSH terms: Oxides
  11. Gan DKW, Loy ACM, Chin BLF, Yusup S, Unrean P, Rianawati E, et al.
    Bioresour Technol, 2018 Oct;265:180-190.
    PMID: 29894912 DOI: 10.1016/j.biortech.2018.06.003
    Thermodynamic and kinetic parameters of catalytic pyrolysis of rice hull (RH) pyrolysis using two different types of renewable catalysts namely natural limestone (LS) and eggshells (ES) using thermogravimetric analysis (TG) approach at different heating rates of 10-100 K min-1 in temperature range of 323-1173 K are investigated. Catalytic pyrolysis mechanism of both catalysts had shown significant effect on the degradation of RH. Model free kinetic of iso-conversional method (Flynn-Wall-Ozawa) and multi-step reaction model (Distributed Activation Energy Model) were employed into present study. The average activation energy was found in the range of 175.4-177.7 kJ mol-1 (RH), 123.3-132.5 kJ mol-1 (RH-LS), and 96.1-100.4 kJ mol-1 (RH-ES) respectively. The syngas composition had increased from 60.05 wt% to 63.1 wt% (RH-LS) and 63.4 wt% (RH-ES). However, the CO2 content had decreased from 24.1 wt% (RH) to 20.8 wt% (RH-LS) and 19.9 wt% (RH-ES).
    Matched MeSH terms: Oxides/chemistry*
  12. Fathul Karim Sahrani, Madzlan Abd. Aziz, Zaharah Ibrahim, Adibah Yahya
    The aim of this study was to determine the surface chemistry during biocorrosion process on growth and on the production of exopolymeric substances (EPS) in batch cultures of mix-strains of marine sulphate-reducing bacteria (SRB) isolated from Malaysian Shipyard and Engineering Harbours, Pasir Gudang. The EPS and precipitates were analyzed by x-ray photoelectron spectroscopy (XPS). The XPS results indicate that Fe(2p3/2) spectrum for iron sulphide can be fitted with Fe(II) and Fe(III) components, both corresponding to Fe-S bond types. The absence of oxide oxygen in the O(1s) spectrum and Fe(III)-O bond types in the Fe(2p3/2) spectrum supports the conclusion that iron sulphides are composed of both ferric and ferrous iron coordinated with monosulphide and disulphide.
    Matched MeSH terms: Oxides
  13. Azizan A, Samsudin AA, Shamshul Baharin MB, Dzulkiflee MH, Rosli NR, Abu Bakar NF, et al.
    Environ Sci Pollut Res Int, 2023 Feb;30(7):16779-16796.
    PMID: 35084685 DOI: 10.1007/s11356-022-18515-5
    Cellulosic fiber (CF) in nanoform is emergingly finding its way for COVID-19 solution for instance via nanocomposite/nanoparticle from various abundant biopolymeric waste materials, which may not be widely commercialized when the pandemic strikes recently. The possibility is wide open but needs proper collection of knowledge and research data. Thus, this article firstly reviews CF produced from various lignocellulosic or biomass feedstocks' pretreatment methods in various nanoforms or nanocomposites, also serving together with metal oxide (MeO) antimicrobial agents having certain analytical reporting. CF-MeO hybrid product can be a great option for COVID-19 antimicrobial resistant environment to be proposed considering the long-established CF and MeO laboratory investigations. Secondly, a preliminary pH investigation of 7 to 12 on zinc oxide synthesis discussing on Fouriertransform infrared spectroscopy (FTIR) functional groups and scanning electron microscope (SEM) images are also presented, justifying the knowledge requirement for future stable nanocomposite formulation. In addition to that, recent precursors suitable for zinc oxide nanoparticle synthesis with emergingly prediction to serve as COVID-19 purposes via different products, aligning with CFs or nanocellulose for industrial applications are also reviewed.
    Matched MeSH terms: Oxides
  14. Mohd-Hanif H, Shamsudin R, Adzahan NM
    Food Sci Biotechnol, 2016;25(Suppl 1):63-67.
    PMID: 30263487 DOI: 10.1007/s10068-016-0099-2
    Lime juice is in high demand due to a sour taste. Commercial thermal pasteurization extends juice shelf-life; however, fruit juice subjected to thermal pasteurization tends to change color and lose vitamin content. Lime juice was irradiated with ultraviolet-C (UVC) at dosages of 22.76, 30.19, and 44.24 mJ/cm2 to investigate effects on the physicochemical properties of lime juice. pH values of lime juice did not change while total soluble solids, turbidity, titratable acidity, sweetness, and color values of lime juice did change after UV treatments. Changes in quality index indicators were prominent at the highest UV dosage of 44.24 mJ/cm2. A low UVC dosage was effective for treatment of lime juice with minimal changes in juice properties.
    Matched MeSH terms: Oxides
  15. Chong WY, Lim WH, Yap YK, Lai CK, De La Rue RM, Ahmad H
    Sci Rep, 2016 Apr 01;6:23813.
    PMID: 27034015 DOI: 10.1038/srep23813
    Increased absorption of transverse-magnetic (TM)-polarised light by a graphene-oxide (GO) coated polymer waveguide has been observed in the presence of transverse-electric (TE)-polarised light. The GO-coated waveguide exhibits very strong photo-absorption of TE-polarised light--and acts as a TM-pass waveguide polariser. The absorbed TE-polarised light causes a significant temperature increase in the GO film and induces thermal reduction of the GO, resulting in an increase in optical-frequency conductivity and consequently increased optical propagation loss. This behaviour in a GO-coated waveguide gives the action of an inverted optical switch/modulator. By varying the incident TE-polarised light power, a maximum modulation efficiency of 72% was measured, with application of an incident optical power level of 57 mW. The GO-coated waveguide was able to respond clearly to modulated TE-polarised light with a pulse duration of as little as 100 μs. In addition, no wavelength dependence was observed in the response of either the modulation (TE-polarised light) or the signal (TM-polarised light).
    Matched MeSH terms: Oxides
  16. Suhel A, Norwazan AR, Rahman MRA, Ahmad KAB
    Data Brief, 2021 Apr;35:106838.
    PMID: 33659596 DOI: 10.1016/j.dib.2021.106838
    Present data article based on the investigation which enumerates the influence of CNG (compressed natural gas) and HCNG (hydrogen enriched compressed natural gas) on performance and emission parameters of direct injection diesel engine at 200, 220, and 240 bar injection pressures. The CNG and HCNG gaseous alternative fuels were injected in amount (by mass) of 10%, 20% and 30% as secondary fuels to enrich the pilot fuel (pure diesel) during the operation. The performance and emission data of dual fuel (CNG + pure diesel, HCNG + pure diesel) operation was analysed to compare with the pure diesel data. The data for present investigational work were assessed at 25%, 50%, 75% and 100% diverse engine loads for all trials under diverse injection pressures. Eddy current dynamometer was employed to raise the engine load from quartile to maximum. AVL DiGAS 444 N multi gas analyser was used to measure the values of carbon monoxide (CO), unburned hydrocarbon (UHC), and oxides of nitrogen (NOx) detrimental emissions in engine exhaust.
    Matched MeSH terms: Oxides
  17. Minhat FI, Yahya K, Talib A, Ahmad O
    Trop Life Sci Res, 2013 Aug;24(1):35-43.
    PMID: 24575240 MyJurnal
    The distribution of benthic Foraminifera throughout the coastal waters of Taman Negara Pulau Pinang (Penang National Park), Malaysia was studied to assess the impact of various anthropogenic activities, such as fishing, ecotourism and floating cage culture. Samples were obtained at 200 m intervals within the subtidal zone, extending up to 1200 m offshore at Teluk Bahang, Teluk Aling, Teluk Ketapang and Pantai Acheh. The depth within coastal waters ranged between 1.5 m and 10.0 m, with predominantly muddy substrate at most stations. Water quality analysis showed little variation in micronutrient (nitrite, NO2; nitrate, NO3; ammonia, NH4 and orthophosphate, PO4) concentrations between sampling stations. Temperature (29.6±0.48°C), salinity (29.4±0.28 ppt), dissolved oxygen content (5.4±0.95 mg/l) and pH (8.5± 0.13) also showed little fluctuation between stations. A total of nine genera of foraminifera were identified in the study (i.e., Ammonia, Elphidium, Ammobaculites, Bigenerina, Quinqueloculina, Reopax, Globigerina, Textularia and Nonion). The distribution of benthic foraminifera was dominated by opportunistic groups that have a high tolerance to anthropogenic stressors. Ammonia had the highest frequency of occurrence (84.7%), followed by Bigenerina (50%), Ammobaculites (44.2%) and Elphidium (38.9%). The Ammonia-Elphidium Index (AEI) was used to describe the hypoxic condition of benthic communities at all sites. Teluk Bahang had the highest AEI value. The foraminiferal assemblages and distribution in Teluk Bahang, Teluk Aling, Teluk Ketapang and Pantai Acheh showed no correlation with physical or chemical environmental parameters.
    Matched MeSH terms: Nitrogen Oxides
  18. Usman MS, Hussein MZ, Kura AU, Fakurazi S, Masarudin MJ, Ahmad Saad FF
    Molecules, 2018 Feb 24;23(2).
    PMID: 29495251 DOI: 10.3390/molecules23020500
    We have synthesized a graphene oxide (GO)-based theranostic nanodelivery system (GOTS) for magnetic resonance imaging (MRI) using naturally occurring protocatechuic acid (PA) as an anticancer agent and gadolinium (III) nitrate hexahydrate (Gd) as the starting material for a contrast agent,. Gold nanoparticles (AuNPs) were subsequently used as second diagnostic agent. The GO nanosheets were first prepared from graphite via the improved Hummer's protocol. The conjugation of the GO and the PA was done via hydrogen bonding and π-π stacking interactions, followed by surface adsorption of the AuNPs through electrostatic interactions. GAGPA is the name given to the nanocomposite obtained from Gd and PA conjugation. However, after coating with AuNPs, the name was modified to GAGPAu. The physicochemical properties of the GAGPA and GAGPAu nanohybrids were studied using various characterization techniques. The results from the analyses confirmed the formation of the GOTS. The powder X-ray diffraction (PXRD) results showed the diffractive patterns for pure GO nanolayers, which changed after subsequent conjugation of the Gd and PA. The AuNPs patterns were also recorded after surface adsorption. Cytotoxicity and magnetic resonance imaging (MRI) contrast tests were also carried out on the developed GOTS. The GAGPAu was significantly cytotoxic to the human liver hepatocellular carcinoma cell line (HepG2) but nontoxic to the standard fibroblast cell line (3T3). The GAGPAu also appeared to possess higher T1 contrast compared to the pure Gd and water reference. The GOTS has good prospects of serving as future theranostic platform for cancer chemotherapy and diagnosis.
    Matched MeSH terms: Oxides/chemistry*
  19. Usman MS, Hussein MZ, Fakurazi S, Masarudin MJ, Ahmad Saad FF
    PLoS One, 2018;13(7):e0200760.
    PMID: 30044841 DOI: 10.1371/journal.pone.0200760
    We have synthesized a bimodal theranostic nanodelivery system (BIT) that is based on graphene oxide (GO) and composed of a natural chemotherapeutic agent, chlorogenic acid (CA) used as the anticancer agent, while gadolinium (Gd) and gold nanoparticles (AuNPs) were used as contrast agents for magnetic resonance imaging (MRI) modality. The CA and Gd guest agents were simultaneously loaded on the GO nanolayers using chemical interactions, such as hydrogen bonding and π-π non-covalent interactions to form GOGCA nanocomposite. Subsequently, the AuNPs were doped on the surface of the GOGCA by means of electrostatic interactions, which resulted in the BIT. The physico-chemical studies of the BIT affirmed its successful development. The X-ray diffractograms (XRD) collected of the various stages of BIT synthesis showed the successive development of the hybrid system, while 90% of the chlorogenic acid was released in phosphate buffer solution (PBS) at pH 4.8. This was further reaffirmed by the in vitro evaluations, which showed stunted HepG2 cancer cells growth against the above 90% cell growth in the control cells. A reverse case was recorded for the 3T3 normal cells. Further, the acquired T1-weighted image of the BIT doped samples obtained from the MRI indicated contrast enhancement in comparison with the plain Gd and water references. The abovementioned results portray our BIT as a promising future chemotherapeutic for anticancer treatment with diagnostic modalities.
    Matched MeSH terms: Oxides/chemistry
  20. Abd Muain MF, Cheo KH, Omar MN, Amir Hamzah AS, Lim HN, Salleh AB, et al.
    Bioelectrochemistry, 2018 Aug;122:199-205.
    PMID: 29660648 DOI: 10.1016/j.bioelechem.2018.04.004
    Hepatitis B virus core antigen (HBcAg) is the major structural protein of hepatitis B virus (HBV). The presence of anti-HBcAg antibody in a blood serum indicates that a person has been exposed to HBV. This study demonstrated that the immobilization of HBcAg onto the gold nanoparticles-decorated reduced graphene oxide (rGO-en-AuNPs) nanocomposite could be used as an antigen-functionalized surface to sense the presence of anti-HBcAg. The modified rGO-en-AuNPs/HBcAg was then allowed to undergo impedimetric detection of anti-HBcAg with anti-estradiol antibody and bovine serum albumin as the interferences. Upon successful detection of anti-HBcAg in spiked buffer samples, impedimetric detection of the antibody was then further carried out in spiked human serum samples. The electrochemical response showed a linear relationship between electron transfer resistance and the concentration of anti-HBcAg ranging from 3.91ngmL-1 to 125.00ngmL-1 with lowest limit of detection (LOD) of 3.80ngmL-1 at 3σm-1. This established method exhibits potential as a fast and convenient way to detect anti-HBcAg.
    Matched MeSH terms: Oxides/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links