Displaying publications 1 - 20 of 88 in total

Abstract:
Sort:
  1. Liu Z, Gopinath SCB, Wang Z, Li Y, Anbu P, Zhang W
    Mikrochim Acta, 2021 05 15;188(6):187.
    PMID: 33990848 DOI: 10.1007/s00604-021-04834-w
    A new zeolite-iron oxide nanocomposite (ZEO-IO) was extracted from waste fly ash of a thermal power plant and utilized for capturing aptamers used to quantify the myocardial infarction (MI) biomarker N-terminal prohormone B-type natriuretic peptide (NT-ProBNP); this was used in a probe with an integrated microelectrode sensor. High-resolution microscopy revealed that ZEO-IO displayed a clubbell structure and a particle size range of 100-200 nm. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirmed the presence of Si, Al, Fe, and O in the synthesized ZEO-IO. The limit of detection for NT-ProBNP was 1-2 pg/mL (0.1-0.2 pM) when the aptamer was sandwiched with antibody and showed the doubled current response even at a low NT-ProBNP abundance. A dose-dependent interaction was identified for this sandwich with a linear plot in the concentration range 1 to 32 pg/mL (0.1-3.2 pM) with a determination coefficient R2 = 0.9884; y = 0.8425x-0.5771. Without  sandwich, the detection limit was 2-4 pg/mL (0.2-0.4 pM) and the determination coefficient was R2 = 0.9854; y = 1.0996x-1.4729. Stability and nonfouling assays in the presence of bovine serum albumin, cardiac troponin I, and myoglobin revealed that the aptamer-modified surface is stable and specific for NT-Pro-BNP. Moreover, NT-ProBNP-spiked human serum exhibited selective detection. This new nanocomposite-modified surface helps in detecting NT-Pro-BNP and diagnosing MI at stages of low expression.
    Matched MeSH terms: Oxides/chemistry
  2. Muthoosamy K, Abubakar IB, Bai RG, Loh HS, Manickam S
    Sci Rep, 2016 Sep 06;6:32808.
    PMID: 27597657 DOI: 10.1038/srep32808
    Metastasis of lung carcinoma to breast and vice versa accounts for one of the vast majority of cancer deaths. Synergistic treatments are proven to be the effective method to inhibit malignant cell proliferation. It is highly advantageous to use the minimum amount of a potent toxic drug, such as paclitaxel (Ptx) in ng/ml together with a natural and safe anticancer drug, curcumin (Cur) to reduce the systemic toxicity. However, both Cur and Ptx suffer from poor bioavailability. Herein, a drug delivery cargo was engineered by functionalizing reduced graphene oxide (G) with an amphiphilic polymer, PF-127 (P) by hydrophobic assembly. The drugs were loaded via pi-pi interactions, resulting in a nano-sized GP-Cur-Ptx of 140 nm. A remarkably high Cur loading of 678 wt.% was achieved, the highest thus far compared to any other Cur nanoformulations. Based on cell proliferation assay, GP-Cur-Ptx is a synergistic treatment (CI 
    Matched MeSH terms: Oxides/chemistry*
  3. Lee SX, Lim HN, Ibrahim I, Jamil A, Pandikumar A, Huang NM
    Biosens Bioelectron, 2017 Mar 15;89(Pt 1):673-680.
    PMID: 26718548 DOI: 10.1016/j.bios.2015.12.030
    In this study, a disposable and simple electrochemical immunosensor was fabricated for the detection of carcinoembryonic antigen. In this method, silver nanoparticles (AgNPs) were mixed with reduced graphene oxide (rGO) to modify the surface of screen-printed carbon electrode (SPE). Initially, AgNPs-rGO modified-SPEs were fabricated by using simple electrochemical deposition method. Then the carcinoembryonic antigen (CEA) was immobilized between the primary antibody and horseradish peroxidase (HRP)-conjugated secondary antibody onto AgNPs-rGO modified-SPEs to fabricate a sandwich-type electrochemical immunosensor. The proposed method could detect the CEA with a linear range of 0.05-0.50µgmL-1 and a detection limit down to 0.035µgmL-1 as compared to its non-sandwich counterpart, which yielded a linear range of 0.05-0.40µgmL-1, with a detection limit of 0.042µgmL-1. The immunosensor showed good performance in the detection of carcinoembryonic antigen, exhibiting a simple, rapid and low-cost. The immunosensor showed a higher sensitivity than an enzymeless sensor.
    Matched MeSH terms: Oxides/chemistry
  4. Lai CW
    ScientificWorldJournal, 2014;2014:843587.
    PMID: 24782669 DOI: 10.1155/2014/843587
    Tungsten trioxide (WO₃) possesses a small band gap energy of 2.4-2.8 eV and is responsive to both ultraviolet and visible light irradiation including strong absorption of the solar spectrum and stable physicochemical properties. Thus, controlled growth of one-dimensional (1D) WO₃ nanotubular structures with desired length, diameter, and wall thickness has gained significant interest. In the present study, 1D WO₃ nanotubes were successfully synthesized via electrochemical anodization of tungsten (W) foil in an electrolyte composed of 1 M of sodium sulphate (Na₂SO₄) and ammonium fluoride (NH₄F). The influence of NH₄F content on the formation mechanism of anodic WO₃ nanotubular structure was investigated in detail. An optimization of fluoride ions played a critical role in controlling the chemical dissolution reaction in the interface of W/WO₃. Based on the results obtained, a minimum of 0.7 wt% of NH₄F content was required for completing transformation from W foil to WO₃ nanotubular structure with an average diameter of 85 nm and length of 250 nm within 15 min of anodization time. In this case, high aspect ratio of WO₃ nanotubular structure is preferred because larger active surface area will be provided for better photocatalytic and photoelectrochemical (PEC) reactions.
    Matched MeSH terms: Oxides/chemistry*
  5. Nath RK, Zain MF, Kadhum AA
    ScientificWorldJournal, 2013;2013:686497.
    PMID: 24376384 DOI: 10.1155/2013/686497
    The addition of a photocatalyst to ordinary building materials such as concrete creates environmentally friendly materials by which air pollution or pollution of the surface can be diminished. The use of LiNbO3 photocatalyst in concrete material would be more beneficial since it can produce artificial photosynthesis in concrete. In these research photoassisted solid-gas phases reduction of carbon dioxide (artificial photosynthesis) was performed using a photocatalyst, LiNbO3, coated on concrete surface under illumination of UV-visible or sunlight and showed that LiNbO3 achieved high conversion of CO2 into products despite the low levels of band-gap light available. The high reaction efficiency of LiNbO3 is explained by its strong remnant polarization (70 µC/cm(2)), allowing a longer lifetime of photoinduced carriers as well as an alternative reaction pathway. Due to the ease of usage and good photocatalytic efficiency, the research work done showed its potential application in pollution prevention.
    Matched MeSH terms: Oxides/chemistry*
  6. Pyle JA, Warwick NJ, Harris NR, Abas MR, Archibald AT, Ashfold MJ, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3210-24.
    PMID: 22006963 DOI: 10.1098/rstb.2011.0060
    We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NO(x) emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.
    Matched MeSH terms: Nitrogen Oxides/chemistry
  7. Fowler D, Nemitz E, Misztal P, Di Marco C, Skiba U, Ryder J, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3196-209.
    PMID: 22006962 DOI: 10.1098/rstb.2011.0055
    This paper reports measurements of land-atmosphere fluxes of sensible and latent heat, momentum, CO(2), volatile organic compounds (VOCs), NO, NO(2), N(2)O and O(3) over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO(2) flux to the two canopies differs by approximately a factor of 2, 1200 mg C m(-2) h(-1) for the oil palm and 700 mg C m(-2) h(-1) for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O(3) to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces.
    Matched MeSH terms: Nitrogen Oxides/chemistry
  8. MacKenzie AR, Langford B, Pugh TA, Robinson N, Misztal PK, Heard DE, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3177-95.
    PMID: 22006961 DOI: 10.1098/rstb.2011.0053
    We report measurements of atmospheric composition over a tropical rainforest and over a nearby oil palm plantation in Sabah, Borneo. The primary vegetation in each of the two landscapes emits very different amounts and kinds of volatile organic compounds (VOCs), resulting in distinctive VOC fingerprints in the atmospheric boundary layer for both landscapes. VOCs over the Borneo rainforest are dominated by isoprene and its oxidation products, with a significant additional contribution from monoterpenes. Rather than consuming the main atmospheric oxidant, OH, these high concentrations of VOCs appear to maintain OH, as has been observed previously over Amazonia. The boundary-layer characteristics and mixing ratios of VOCs observed over the Borneo rainforest are different to those measured previously over Amazonia. Compared with the Bornean rainforest, air over the oil palm plantation contains much more isoprene, monoterpenes are relatively less important, and the flower scent, estragole, is prominent. Concentrations of nitrogen oxides are greater above the agro-industrial oil palm landscape than over the rainforest, and this leads to changes in some secondary pollutant mixing ratios (but not, currently, differences in ozone). Secondary organic aerosol over both landscapes shows a significant contribution from isoprene. Primary biological aerosol dominates the super-micrometre aerosol over the rainforest and is likely to be sensitive to land-use change, since the fungal source of the bioaerosol is closely linked to above-ground biodiversity.
    Matched MeSH terms: Nitrogen Oxides/chemistry
  9. Amin Yavari S, Chai YC, Böttger AJ, Wauthle R, Schrooten J, Weinans H, et al.
    PMID: 25842117 DOI: 10.1016/j.msec.2015.02.050
    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium.
    Matched MeSH terms: Oxides/chemistry
  10. Ashraf MA, Peng WX, Fakhri A, Hosseini M, Kamyab H, Chelliapan S
    J. Photochem. Photobiol. B, Biol., 2019 Sep;198:111579.
    PMID: 31401316 DOI: 10.1016/j.jphotobiol.2019.111579
    The sol-gel/ultrasonically rout produced the novel MnS2-SiO2 nano-hetero-photocatalysts with the various ratio of MnS2. Prepared nano-catalyst were investigated in the photo-degradation of methylene blue under UV light illumination. Structural and optical attributes of as-prepared nano-catalysts were evaluated by X-ray diffraction and photoelectron spectroscopy. The morphological were studied by scanning electron microscopy-EDS, and dynamic light scattering. The diffuse reflectance spectroscopy was applied to examine the band gap energy. The Eg values of SiO2, MnS2-SiO2-0, MnS2-SiO2-1, and MnS2-SiO2-2 nanocomposites are 6.51, 3.85, 3.17, and 2.67 eV, respectively. The particle size of the SiO2 and MnS2-SiO2-1 nanocomposites were 100.0, and 65.0 nm, respectively. The crystallite size values of MnS2-SiO2-1 were 52.21 nm, and 2.9 eV, respectively. MnS2-SiO2 nano-photocatalyst was recognized as the optimum sample by degrading 96.1% of methylene blue from water. Moreover, the influence of pH of the solution, and contact time as decisive factors on the photo-degradation activity were investigated in this project. The optimum data for pH and time were found 9 and 60 min, respectively. The photo-degradation capacity of MnS2-SiO2-2 is improved (96.1%) due to the low band gap was found from UV-vis DRS. The antimicrobial data of MnS2-SiO2 were studied and demonstrated that the MnS2-SiO2 has fungicidal and bactericidal attributes.
    Matched MeSH terms: Oxides/chemistry*
  11. Rashidi Nodeh H, Wan Ibrahim WA, Kamboh MA, Sanagi MM
    Chemosphere, 2017 Jan;166:21-30.
    PMID: 27681257 DOI: 10.1016/j.chemosphere.2016.09.054
    A new graphene-based tetraethoxysilane-methyltrimethoxysilane sol-gel hybrid magnetic nanocomposite (Fe3O4@G-TEOS-MTMOS) was synthesised, characterized and successfully applied in magnetic solid-phase extraction (MSPE) for simultaneous analysis of polar and non-polar organophosphorus pesticides from several water samples. The Fe3O4@G-TEOS-MTMOS nanocomposite was characterized using Fourier transform-infrared spectroscopy, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy and X-ray diffraction. Separation, determination and quantification were achieved using gas chromatography coupled with micro electron capture detector. Adsorption capacity of the sorbent was calculated using Langmuir equation. MSPE was linear in the range 100-1000 pg mL(-1) for phosphamidon and dimethoate, and 10-100 pg mL(-1) for chlorpyrifos and diazinon, with limit of detection (S/N = 3) of 19.8, 23.7, 1.4 and 2.9 pg mL(-1) for phosphamidon, dimethoate, diazinon and chlorpyrifos, respectively. The LODs obtained is well below the maximum residual level (100 pg mL(-1)) as set by European Union for pesticides in drinking water. Acceptable precision (%RSD) was achieved for intra-day (1.3-8.7%, n = 3) and inter-day (7.6-17.8%, n = 15) analyses. Fe3O4@G-TEOS-MTMOS showed high adsorption capacity (54.4-76.3 mg g(-1)) for the selected OPPs. No pesticide residues were detected in the water samples analysed. Excellent extraction recoveries (83-105%) were obtained for the spiked OPPs from tap, river, lake and sea water samples. The newly synthesised Fe3O4@G-TEOS-MTMOS showed high potential as adsorbent for OPPs analysis.
    Matched MeSH terms: Oxides/chemistry
  12. Abd Muain MF, Cheo KH, Omar MN, Amir Hamzah AS, Lim HN, Salleh AB, et al.
    Bioelectrochemistry, 2018 Aug;122:199-205.
    PMID: 29660648 DOI: 10.1016/j.bioelechem.2018.04.004
    Hepatitis B virus core antigen (HBcAg) is the major structural protein of hepatitis B virus (HBV). The presence of anti-HBcAg antibody in a blood serum indicates that a person has been exposed to HBV. This study demonstrated that the immobilization of HBcAg onto the gold nanoparticles-decorated reduced graphene oxide (rGO-en-AuNPs) nanocomposite could be used as an antigen-functionalized surface to sense the presence of anti-HBcAg. The modified rGO-en-AuNPs/HBcAg was then allowed to undergo impedimetric detection of anti-HBcAg with anti-estradiol antibody and bovine serum albumin as the interferences. Upon successful detection of anti-HBcAg in spiked buffer samples, impedimetric detection of the antibody was then further carried out in spiked human serum samples. The electrochemical response showed a linear relationship between electron transfer resistance and the concentration of anti-HBcAg ranging from 3.91ngmL-1 to 125.00ngmL-1 with lowest limit of detection (LOD) of 3.80ngmL-1 at 3σm-1. This established method exhibits potential as a fast and convenient way to detect anti-HBcAg.
    Matched MeSH terms: Oxides/chemistry
  13. Siriviriyanun A, Tsai YJ, Voon SH, Kiew SF, Imae T, Kiew LV, et al.
    Mater Sci Eng C Mater Biol Appl, 2018 Aug 01;89:307-315.
    PMID: 29752102 DOI: 10.1016/j.msec.2018.04.020
    In this study, nanohybrid materials consisting of graphene oxide (GO), β‑cyclodextrin (CD) and poly(amido amine) dendrimer (DEN) were successfully prepared by covalent bonding. GO-CD and GO-CD-DEN were found to be potential nanocarriers for anticancer drugs including chemotherapeutics (doxorubicin (DOX), camptothecin (CPT)) and photosensitizer (protoporphyrin IX (PpIX)). GO-CD possessed 1.2 times higher DOX-loading capacity than GO due to inclusion of additional DOX to the CD. The drug loading on GO-CD-DEN increased in the order: DOX 
    Matched MeSH terms: Oxides/chemistry
  14. Barahuie F, Saifullah B, Dorniani D, Fakurazi S, Karthivashan G, Hussein MZ, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 May 01;74:177-185.
    PMID: 28254283 DOI: 10.1016/j.msec.2016.11.114
    We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form.
    Matched MeSH terms: Oxides/chemistry
  15. Usman MS, Hussein MZ, Kura AU, Fakurazi S, Masarudin MJ, Ahmad Saad FF
    Molecules, 2018 Feb 24;23(2).
    PMID: 29495251 DOI: 10.3390/molecules23020500
    We have synthesized a graphene oxide (GO)-based theranostic nanodelivery system (GOTS) for magnetic resonance imaging (MRI) using naturally occurring protocatechuic acid (PA) as an anticancer agent and gadolinium (III) nitrate hexahydrate (Gd) as the starting material for a contrast agent,. Gold nanoparticles (AuNPs) were subsequently used as second diagnostic agent. The GO nanosheets were first prepared from graphite via the improved Hummer's protocol. The conjugation of the GO and the PA was done via hydrogen bonding and π-π stacking interactions, followed by surface adsorption of the AuNPs through electrostatic interactions. GAGPA is the name given to the nanocomposite obtained from Gd and PA conjugation. However, after coating with AuNPs, the name was modified to GAGPAu. The physicochemical properties of the GAGPA and GAGPAu nanohybrids were studied using various characterization techniques. The results from the analyses confirmed the formation of the GOTS. The powder X-ray diffraction (PXRD) results showed the diffractive patterns for pure GO nanolayers, which changed after subsequent conjugation of the Gd and PA. The AuNPs patterns were also recorded after surface adsorption. Cytotoxicity and magnetic resonance imaging (MRI) contrast tests were also carried out on the developed GOTS. The GAGPAu was significantly cytotoxic to the human liver hepatocellular carcinoma cell line (HepG2) but nontoxic to the standard fibroblast cell line (3T3). The GAGPAu also appeared to possess higher T1 contrast compared to the pure Gd and water reference. The GOTS has good prospects of serving as future theranostic platform for cancer chemotherapy and diagnosis.
    Matched MeSH terms: Oxides/chemistry*
  16. Usman MS, Hussein MZ, Fakurazi S, Masarudin MJ, Ahmad Saad FF
    PLoS One, 2018;13(7):e0200760.
    PMID: 30044841 DOI: 10.1371/journal.pone.0200760
    We have synthesized a bimodal theranostic nanodelivery system (BIT) that is based on graphene oxide (GO) and composed of a natural chemotherapeutic agent, chlorogenic acid (CA) used as the anticancer agent, while gadolinium (Gd) and gold nanoparticles (AuNPs) were used as contrast agents for magnetic resonance imaging (MRI) modality. The CA and Gd guest agents were simultaneously loaded on the GO nanolayers using chemical interactions, such as hydrogen bonding and π-π non-covalent interactions to form GOGCA nanocomposite. Subsequently, the AuNPs were doped on the surface of the GOGCA by means of electrostatic interactions, which resulted in the BIT. The physico-chemical studies of the BIT affirmed its successful development. The X-ray diffractograms (XRD) collected of the various stages of BIT synthesis showed the successive development of the hybrid system, while 90% of the chlorogenic acid was released in phosphate buffer solution (PBS) at pH 4.8. This was further reaffirmed by the in vitro evaluations, which showed stunted HepG2 cancer cells growth against the above 90% cell growth in the control cells. A reverse case was recorded for the 3T3 normal cells. Further, the acquired T1-weighted image of the BIT doped samples obtained from the MRI indicated contrast enhancement in comparison with the plain Gd and water references. The abovementioned results portray our BIT as a promising future chemotherapeutic for anticancer treatment with diagnostic modalities.
    Matched MeSH terms: Oxides/chemistry
  17. Saifullah B, Maitra A, Chrzastek A, Naeemullah B, Fakurazi S, Bhakta S, et al.
    Molecules, 2017 Oct 12;22(10).
    PMID: 29023384 DOI: 10.3390/molecules22101697
    Tuberculosis (TB) is a dreadful bacterial disease, infecting millions of human and cattle every year worldwide. More than 50 years after its discovery, ethambutol continues to be an effective part of the World Health Organization's recommended frontline chemotherapy against TB. However, the lengthy treatment regimens consisting of a cocktail of antibiotics affect patient compliance. There is an urgent need to improve the current therapy so as to reduce treatment duration and dosing frequency. In this study, we have designed a novel anti-TB multifunctional formulation by fabricating graphene oxide with iron oxide magnetite nanoparticles serving as a nano-carrier on to which ethambutol was successfully loaded. The designed nanoformulation was characterised using various analytical techniques. The release of ethambutol from anti-TB multifunctional nanoparticles formulation was found to be sustained over a significantly longer period of time in phosphate buffer saline solution at two physiological pH (7.4 and 4.8). Furthermore, the nano-formulation showed potent anti-tubercular activity while remaining non-toxic to the eukaryotic cells tested. The results of this in vitro evaluation of the newly designed nano-formulation endorse its further development in vivo.
    Matched MeSH terms: Oxides/chemistry*
  18. Al-Hada NM, Mohamed Kamari H, Abdullah CAC, Saion E, Shaari AH, Talib ZA, et al.
    Int J Nanomedicine, 2017;12:8309-8323.
    PMID: 29200844 DOI: 10.2147/IJN.S150405
    In the present study, binary oxide (cadmium oxide [CdO])x (zinc oxide [ZnO])1-x nanoparticles (NPs) at different concentrations of precursor in calcination temperature were prepared using thermal treatment technique. Cadmium and zinc nitrates (source of cadmium and zinc) with polyvinylpyrrolidone (capping agent) have been used to prepare (CdO)x (ZnO)1-x NPs samples. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. XRD patterns analysis revealed that NPs were formed after calcination, which showed a cubic and hexagonal crystalline structure of (CdO)x (ZnO)1-x NPs. The phase analysis using EDX spectroscopy and FTIR spectroscopy confirmed the presence of Cd and Zn as the original compounds of prepared (CdO)x (ZnO)1-x NP samples. The average particle size of the samples increased from 14 to 33 nm as the concentration of precursor increased from x=0.20 to x=0.80, as observed by TEM results. The surface composition and valance state of the prepared product NPs were determined by X-ray photoelectron spectroscopy (XPS) analyses. Diffuse UV-visible reflectance spectra were used to determine the optical band gap through the Kubelka-Munk equation; the energy band gap was found to decrease for CdO from 2.92 to 2.82 eV and for ZnO from 3.22 to 3.11 eV with increasing x value. Additionally, photoluminescence (PL) spectra revealed that the intensity in PL increased with an increase in particle size. In addition, the antibacterial activity of binary oxide NP was carried out in vitro against Escherichia coli ATCC 25922 Gram (-ve), Salmonella choleraesuis ATCC 10708, and Bacillus subtilis UPMC 1175 Gram (+ve). This study indicated that the zone of inhibition of 21 mm has good antibacterial activity toward the Gram-positive B. subtilis UPMC 1175.
    Matched MeSH terms: Oxides/chemistry*
  19. Saifullah B, Chrzastek A, Maitra A, Naeemullah B, Fakurazi S, Bhakta S, et al.
    Molecules, 2017 Oct 12;22(10).
    PMID: 29023399 DOI: 10.3390/molecules22101560
    Tuberculosis (TB) is a bacterial disease responsible for millions of infections and preventable deaths each year. Its treatment is complicated by patients' noncompliance due to dosing frequency, lengthy treatment, and adverse side effects associated with current chemotherapy. However, no modifications to the half-a-century old standard chemotherapy have been made based on a nanoformulation strategy to improve pharmacokinetic efficacy. In this study, we have designed a new nanodelivery formulation, using graphene oxide as the nanocarrier, loaded with the anti-TB antibiotic, ethambutol. The designed formulation was characterized using a number of molecular analytical techniques. It was found that sustained release of the drug resulted in better bioavailability. In addition, the designed formulation demonstrated high biocompatibility with mouse fibroblast cells. The anti-TB activity of the nanodelivery formulation was determined using whole-cell resazurin microtiter plate assay, modified-spot culture growth inhibition assay, and biofilm inhibition assay. The nanodelivery formulation showed good anti-mycobacterial activity. The anti-mycobacterial activity of Ethambutol was unaffected by the drug loading and release process. The results of this study demonstrated the potential of this new nanodelivery formulation strategy to be considered for modifying existing chemotherapy to yield more efficacious antibiotic treatment against TB.
    Matched MeSH terms: Oxides/chemistry*
  20. Govindasamy GA, Mydin RBSMN, Sreekantan S, Harun NH
    Sci Rep, 2021 01 08;11(1):99.
    PMID: 33420110 DOI: 10.1038/s41598-020-79547-w
    Calotropis gigantea (C. gigantea) extract with an ecofriendly nanotechnology approach could provide promising antimicrobial activity against skin pathogens. This study investigates the antimicrobial capability of green synthesized binary ZnO-CuO nanocomposites from C. gigantea against non-MDR (Staphylococcus aureus and Escherichia coli) and MDR (Klebsiella pneumoniae, Pseudomonas aeruginosa and methicillin-resistant S. aureus) skin pathogens. Scanning electron microscopy and transmission electron microscopy revealed the size and shape of B3Z1C sample. Results of X-ray powder diffraction, energy-dispersive spectroscopy, FTIR and UV-Vis spectroscopy analyses confirmed the presence of mixed nanoparticles (i.e., zinc oxide, copper oxide, carbon and calcium) and the stabilising phytochemical agents of plant (i.e., phenol and carbonyl). Antimicrobial results showed that carbon and calcium decorated binary ZnO-CuO nanocomposites with compositions of 75 wt% of ZnO and 25 wt% CuO (B3Z1C) was a strong bactericidal agent with the MBC/MIC ratio of ≤ 4 and ≤ 2 for non-MDR and MDR pathogens, respectively. A significant non-MDR zone of inhibitions were observed for BZC by Kirby-Bauer disc-diffusion test. Further time-kill observation revealed significant fourfold reduction in non-MDR pathogen viable count after 12 h study period. Further molecular studies are needed to explain the biocidal mechanism underlying B3Z1C potential.
    Matched MeSH terms: Oxides/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links