Displaying publications 1 - 20 of 1080 in total

Abstract:
Sort:
  1. Águila-Almanza E, Hernández-Cocoletzi H, Rubio-Rosas E, Calleja-González M, Lim HR, Khoo KS, et al.
    Chemosphere, 2022 Feb;288(Pt 2):132550.
    PMID: 34656622 DOI: 10.1016/j.chemosphere.2021.132550
    The final disposal of waste generated by human activities has been turned into a great challenge; until now, little attention has been paid to organic waste, particularly from the restaurant sector. This work describes the process of obtaining calcium carbonate contained in oyster and clam shells re-collected in seafood restaurants. The IR absorption spectra of all the samples revealed the presence of characteristic bands of the carbonate group located at 872, 712 and 1414 cm-1; the peak at 1081 cm-1 of the clamshells confirms the presence of the aragonite phase. The SEM images allow observing a granular morphology whose agglomerates having a size within the range of 0.5-15 μm in brown shells, and a lower dispersion prevails in the grey species and oyster shells that go from 0.3 to 5.9 μm. All of the shells were found to be composed of carbon (C), oxygen (O2) and calcium (Ca) in different concentrations. The calcium carbonate obtained from clamshells has an orthorhombic crystalline structure, while the oyster carbonate has a rhombohedral structure as the calcium carbonate used in the construction industry; the morphology particles also coincide with each other. The material obtained combined with a mixture composed of resin, cellulose, and granules were used to prepare a paste, which was used as a residential finish.
    Matched MeSH terms: Oxygen
  2. Zwain HM, Aziz HA, Dahlan I
    Environ Technol, 2018 Jun;39(12):1557-1565.
    PMID: 28514902 DOI: 10.1080/09593330.2017.1332692
    The performance of modified anaerobic inclining-baffled reactor (MAI-BR) treating recycled paper mill effluent (RPME) was investigated by varying the influent chemical oxygen demand (CODin) concentration from 1000 to 4000 mg/L, and the hydraulic retention time (HRT) from 3 to 1 day, corresponding to an organic loading rate increase from 0.33 to 4 g COD/L day. Throughout 126 days of operation, a maximum removal efficiency of up to 96% of chemical oxygen demand (COD) and 99% of biological oxygen demand, methane (CH4) yield of 0.259 L CH4/g COD, and a stable effluent pH of 6.5 were achieved. Furthermore, the compartmental performance showed that most of the organic substrates were removed in the initial two compartments, resulting in low pH and alkalinity levels and a high concentration of volatile fatty acids. Overall, the results showed that the MAI-BR successfully treated RPME, and the performance was affected by the variation of HRT more than the CODin.
    Matched MeSH terms: Oxygen; Biological Oxygen Demand Analysis
  3. Zwain HM, Aziz HA, Ng WJ, Dahlan I
    Environ Sci Pollut Res Int, 2017 May;24(14):13012-13024.
    PMID: 28378314 DOI: 10.1007/s11356-017-8804-0
    Recycled paper mill effluent (RPME) contains high levels of organic and solid compounds, causing operational problems for anaerobic biological treatment. In this study, a unique modified anaerobic inclining-baffled reactor (MAI-BR) has been developed to treat RPME at various initial chemical oxygen demand (COD) concentrations (1000-4000 mg/L) and hydraulic retention times (HRTs) (3 and 1 day). The COD removal efficiency was decreased from 96 to 83% when the organic loading rate (OLR) was increased from 0.33 to 4 g/L day. Throughout the study, a maximum methane yield of 0.25 L CH4/g COD was obtained, while the pH fluctuated in the range of 5.8 to 7.8. The reactor performance was influenced by the development and distribution of the microbial communities. Based on the next-generation sequencing (NGS) analysis, the microbial community represented a variety of bacterial phyla with significant homology to Euryarchaeota (43.06%), Planctomycetes (24.68%), Proteobacteria (21.58%), Acidobacteria (4.12%), Chloroflexi (3.14%), Firmicutes (1.12%), Bacteroidetes (1.02%), and others (1.28%). The NGS analysis showed that the microbial community was dominated by Methanosaeta concilii and Candidatus Kuenenia stuttgartiensis. This can be supported by the presence of filamentous and spherical microbes of different sizes. Additionally, methanogenic and anaerobic ammonium oxidation (ANAMMOX) microorganisms coexisted in all compartments, and these contributed to the overall degradation of substances in the RPME. Graphical abstract ᅟ.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  4. Zou X, Wei Y, Jiang S, Xu F, Wang H, Zhan P, et al.
    J Agric Food Chem, 2022 Nov 16;70(45):14468-14479.
    PMID: 36322824 DOI: 10.1021/acs.jafc.2c06187
    2-Phenylethanol (2-PE), a common compound found in plants and microorganisms, exhibits broad-spectrum antifungal activity. Using Botrytis cinerea, we demonstrated that 2-PE suppressed mycelium growth in vitro and in strawberry fruit and reduced natural disease without adverse effects to fruit quality. 2-PE caused structural damage to mycelia, as shown by scanning and transmission electron microscopy. From RNA sequencing analysis we found significantly upregulated genes for enzymatic and nonenzymatic reactive oxygen species (ROS) scavenging systems including sulfur metabolism and glutathione metabolism, indicating that ROS stress was induced by 2-PE. This was consistent with results from assays demonstrating an increase ROS and hydrogen peroxide levels, antioxidant enzyme activities, and malondialdehyde content in treated cells. The upregulation of ATP-binding cassette transporter genes, the downregulation of major facilitator superfamily transporters genes, and the downregulation of ergosterol biosynthesis genes indicated a severe disruption of cell membrane structure and function. This was consistent with results from assays demonstrating compromised membrane integrity and lipid peroxidation. To summarize, 2-PE exposure suppressed B. cinerea growth through ROS stress and cell membrane disruption.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  5. Zorofchian Moghadamtousi S, Karimian H, Rouhollahi E, Paydar M, Fadaeinasab M, Abdul Kadir H
    J Ethnopharmacol, 2014 Oct 28;156:277-89.
    PMID: 25195082 DOI: 10.1016/j.jep.2014.08.011
    ETHNOPHARMACOLOGICAL RELEVANCE: Annona muricata known as "the cancer killer" has been widely used in the traditional medicine for the treatment of cancer and tumors. The purpose of this study is to investigate the anticancer properties of ethyl acetate extract of Annona muricata leaves (EEAM) on HT-29 and HCT-116 colon cancer cells and the underlying mechanisms.
    MATERIALS AND METHODS: The effect of EEAM on the cell proliferation of HT-29 and HCT-116 cells was analyzed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) assay. High content screening system (HCS) was applied to investigate the cell membrane permeability, mitochondrial membrane potential (MMP), nuclear condensation and cytochrome c translocation from mitochondria to cytosol. Reactive oxygen species (ROS) formation, lactate dehydrogenase (LDH) release and activation of caspase-3/7, -8 and -9 were measured while treatment. Flow cytometric analysis was used to determine the cell cycle distribution and phosphatidylserine externalization. The protein expression of Bax and Bcl-2 was determined using immunofluorescence analysis. In addition, the potential of EEAM to suppress the migration and invasion of colon cancer cells was also examined.
    RESULTS: EEAM exerted significant cytotoxic effects on HCT-116 and HT-29 cells as determined by MTT and LDH assays. After 24 h treatment, EEAM exhibited the IC₅₀ value of 11.43 ± 1.87 µg/ml and 8.98 ± 1.24 µg/ml against HT-29 and HCT-116 cells, respectively. Flow cytometric analysis demonstrated the cell cycle arrest at G1 phase and phosphatidylserine externalization confirming the induction of apoptosis. EEAM treatment caused excessive accumulation of ROS followed by disruption of MMP, cytochrome c leakage and activation of the initiator and executioner caspases in both colon cancer cells. Immunofluorescence analysis depicted the up-regulation of Bax and down-regulation of Bcl-2 proteins while treated with EEAM. Furthermore, EEAM conspicuously blocked the migration and invasion of HT-29 and HCT-116 cells.
    CONCLUSIONS: These findings provide a scientific basis for the use of A. muricata leaves in the treatment of cancer, although further in vivo studies are still required.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  6. Zhu J, Cai Y, Wakisaka M, Yang Z, Yin Y, Fang W, et al.
    Sci Total Environ, 2023 Oct 20;896:165200.
    PMID: 37400020 DOI: 10.1016/j.scitotenv.2023.165200
    Microalgae have been recognized as emerging cell factories due to the high value-added bio-products. However, the balance between algal growth and the accumulation of metabolites is always the main contradiction in algal biomass production. Hence, the security and effectiveness of regulating microalgal growth and metabolism simultaneously have drawn substantial attention. Since the correspondence between microalgal growth and reactive oxygen species (ROS) level has been confirmed, improving its growth under oxidative stress and promoting biomass accumulation under non-oxidative stress by exogenous mitigators is feasible. This paper first introduced ROS generation in microalgae and described the effects of different abiotic stresses on the physiological and biochemical status of microalgae from these aspects associated with growth, cell morphology and structure, and antioxidant system. Secondly, the role of exogenous mitigators with different mechanisms in alleviating abiotic stress was concluded. Finally, the possibility of exogenous antioxidants regulating microalgal growth and improving the accumulation of specific products under non-stress conditions was discussed.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  7. Zhou X, Qu Y, Kim BH, Choo PY, Liu J, Du Y, et al.
    Bioresour Technol, 2014 Oct;169:265-70.
    PMID: 25062537 DOI: 10.1016/j.biortech.2014.07.012
    The effects of azide on electron transport of exoelectrogens were investigated using air-cathode MFCs. These MFCs enriched with azide at the concentration higher than 0.5mM generated lower current and coulomb efficiency (CE) than the control reactors, but at the concentration lower than 0.2mM MFCs generated higher current and CE. Power density curves showed overshoot at higher azide concentrations, with power and current density decreasing simultaneously. Electrochemical impedance spectroscopy (EIS) showed that azide at high concentration increased the charge transfer resistance. These analyses might reflect that a part of electrons were consumed by the anode microbial population rather than transferred to the anode. Bacterial population analyses showed azide-enriched anodes were dominated by Deltaproteobacteria compared with the controls. Based on these results it is hypothesized that azide can eliminate the growth of aerobic respiratory bacteria, and at the same time is used as an electron acceptor/sink.
    Matched MeSH terms: Oxygen/analysis
  8. Zhou C, Yu T, Zhu R, Lu J, Ouyang X, Zhang Z, et al.
    Int J Biol Sci, 2023;19(5):1471-1489.
    PMID: 37056925 DOI: 10.7150/ijbs.77979
    Timosaponin AIII (Tim-AIII), a steroid saponin, exhibits strong anticancer activity in a variety of cancers, especially breast cancer and liver cancer. However, the underlying mechanism of the effects of Tim-AIII-mediated anti-lung cancer effects remain obscure. In this study, we showed that Tim-AIII suppressed cell proliferation and migration, induced G2/M phase arrest and ultimately triggered cell death of non-small cell lung cancer (NSCLC) cell lines accompanied by the release of reactive oxygen species (ROS) and iron accumulation, malondialdehyde (MDA) production, and glutathione (GSH) depletion. Interestingly, we found that Tim-AIII-mediated cell death was reversed by ferroptosis inhibitor ferrostatin-1 (Fer-1). Meanwhile, the heat shock protein 90 (HSP90) was predicted and verified as the direct binding target of Tim-AIII by SwissTargetPrediction (STP) and surface plasmon resonance (SPR) assay. Further study showed that Tim-AIII promoted HSP90 expression and Tim-AIII induced cell death was blocked by the HSP90 inhibitor tanespimycin, indicating that HSP90 was the main target of Tim-AIII to further trigger intracellular events. Mechanical analysis revealed that the Tim-AIII-HSP90 complex further targeted and degraded glutathione peroxidase 4 (GPX4), and promoted the ubiquitination of GPX4, as shown by an immunoprecipitation, degradation and in vitro ubiquitination assay. In addition, Tim-AIII inhibited cell proliferation, induced cell death, led to ROS and iron accumulation, MDA production, GSH depletion, as well as GPX4 ubiquitination and degradation, were markedly abrogated when HSP90 was knockdown by HSP90-shRNA transfection. Importantly, Tim-AIII also showed a strong capacity of preventing tumor growth by promoting ferroptosis in a subcutaneous xenograft tumor model, whether C57BL/6J or BALB/c-nu/nu nude mice. Together, HSP90 was identified as a new target of Tim-AIII. Tim-AIII, by binding and forming a complex with HSP90, further targeted and degraded GPX4, ultimately induced ferroptosis in NSCLC. These findings provided solid evidence that Tim-AIII can serve as a potential candidate for NSCLC treatment.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  9. Zhong W, Tang M, Xie Y, Huang X, Liu Y
    Foodborne Pathog Dis, 2023 Jul;20(7):294-302.
    PMID: 37347934 DOI: 10.1089/fpd.2022.0085
    Staphylococcus aureus can cause bacterial food intoxication and seriously affect human health. Tea polyphenols (TP) are a kind of natural, safe, and broad-spectrum bacteriostatic substances, with a wide range of bacteriostatic effects. In the study, we explored the possible bacteriostatic mode of TP. The minimum inhibitory concentration of TP against S. aureus was 64 μg/mL. Protein, DNA, and K+ leak experiments, fluorescence microscopy, and transmission electron microscopy suggested that TP disrupt cell membranes, leading to intracellular component loss. By studying the effect of TP on the toxicity of S. aureus, it was found that the expression levels of two toxin genes, coa and spa, were downregulated by 2.37 and 32.6, respectively. Furthermore, after treatment with TP, a large number of reactive oxygen species (ROS) were propagated and released, leading to oxidative stress in cells. We speculated that the bacteriostatic mechanism of TP may be through the destruction of the cell membrane and ROS-mediated oxidative stress. Meanwhile, the hemolysis activity proved the safety of TP. Our results suggested that TP may be a potential antimicrobial agent for food.
    Matched MeSH terms: Reactive Oxygen Species/metabolism; Reactive Oxygen Species/pharmacology
  10. Zhao Z, Hood RJ, Ong LK, Pietrogrande G, Sanchez Bezanilla S, Warren KE, et al.
    Front Neurol, 2021;12:585189.
    PMID: 33841293 DOI: 10.3389/fneur.2021.585189
    Cognitive impairment is a common and disruptive outcome for stroke survivors, which is recognized to be notoriously difficult to treat. Previously, we have shown that low oxygen post-conditioning (LOPC) improves motor function and limits secondary neuronal loss in the thalamus after experimental stroke. There is also emerging evidence that LOPC may improve cognitive function post-stroke. In the current study we aimed to explore how exposure to LOPC may improve cognition post-stroke. Experimental stroke was induced using photothrombotic occlusion in adult, male C57BL/6 mice. At 72 h post-stroke animals were randomly assigned to either normal atmospheric air or to one of two low oxygen (11% O2) exposure groups (either 8 or 24 h/day for 14 days). Cognition was assessed during the treatment phase using a touchscreen based paired-associate learning assessment. At the end of treatment (17 days post-stroke) mice were euthanized and tissue was collected for subsequent histology and biochemical analysis. LOPC (both 8 and 24 h) enhanced learning and memory in the 2nd week post-stroke when compared with stroke animals exposed to atmospheric air. Additionally we observed LOPC was associated with lower levels of neuronal loss, the restoration of several vascular deficits, as well as a reduction in the severity of the amyloid-beta (Aβ) burden. These findings provide further insight into the pro-cognitive benefits of LOPC.
    Matched MeSH terms: Oxygen
  11. Zhao L, Yang L, Ahmad K
    Hum Exp Toxicol, 2023;42:9603271221146780.
    PMID: 36607234 DOI: 10.1177/09603271221146780
    OBJECTIVES: Kaempferol (KMF), has beneficial effects against hepatic lipid accumulation. In this study, we aimed to investigate molecular mechanism underlying the protective effect of KMF on lipid accumulation.

    METHODS: HepG2 cells were treated with different concentrations of KMF and 0.5 mM palmitate (PA) for 24  h. The mRNA and protein levels of genes involved in lipid metabolism were evaluated using real-time PCR and western blot. The expression of Nrf2 was silenced using siRNA.

    RESULTS: Data indicated that KMF (20 μM) reversed PA-induced increased triglyceride (TG) levels and total lipid content. These effects were accompanied by down-regulation of the mRNA and protein levels of lipogenic genes (FAS, ACC and SREBP1), and up-regulation of genes related to fatty acid oxidation (CPT-1, HADHα and PPARα). Kaempferol significantly decreased the levels of the oxidative stress markers (ROS and MDA) and enhanced the activities of antioxidant enzymes SOD and GPx in PA-challenged cells. Luciferase analysis showed that KMF increased the transactivation of Nrf2 in hepatocytes. The results also revealed that KMF-mediated activation of Nrf2 target genes was suppressed by Nrf2 siRNA. Furthermore, Nrf2 siRNA abolished the KMF-induced reduction in ROS and MDA levels in PA treated cells. In addition, the inhibitory effect of KMF on TG levels and the mRNA and protein levels of FAS, ACC and SREPB-1 were significantly abolished by Nrf2 inhibition. Nrf2 inhibition also suppressed the KMF-induced activation of genes involved in β oxidation (CPT-1 and PPAR-α).

    CONCLUSION: The results suggest that KMF protects HepG2 cells from PA-induced lipid accumulation via activation of the Nrf2 signaling pathway.

    Matched MeSH terms: Reactive Oxygen Species/metabolism
  12. Zhang X, Tan Z, Jia K, Zhang W, Dang M
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):2171-2178.
    PMID: 31159596 DOI: 10.1080/21691401.2019.1620249
    Nanomedicine is a rapidly emerging field and is reported to be a promising tool for treating various diseases. Green synthesized nanoparticles are documented to possess a potent anticancer effect. Rabdosia rubescens is a Chinese plant which is also one of the components of PC-SPES and used to treat prostate cancer. In the present study, we synthesized the gold nanoparticles from R. rubescens (RR-AuNP) and analyzed its anticancer activity against the lung carcinoma A549 cell lines. Since lung cancer is reported to be with increased morbidity and decreased survival rate. The biosynthesized RR-AuNP were confirmed using UV-Visible spectrophotometer, size and shape of RR-AuNP were assessed by DLS, TEM and EDX. The biomolecules present in RR-AuNP and its topographical structure were detected using FTIR, SAED and AFM analysis. MTT assay was performed to detect the IC50 dose of RR-AuNP and its apoptotic effect was assessed by detecting the caspases activation, ROS generation. The anticancer effect of RR-AuNP was confirmed by DAPI staining, TUNEL assay and its molecular mechanism were confirmed by assessing the apoptotic signalling molecules protein expression. Our results illustrate that RR-AuNP showed a strong absorption peak at 550 nm and the RRAuNP were polydispersed nanospheres with size of 130 nm. RR-AuNP IC50 dose against A549 lung carcinoma cell line was detected to be at 25 µg/ml. The results of DAPI staining, TUNEL and immunoblotting analysis confirms both the 25 µg/ml and 50 µg/ml of RR-AuNP possess potent anticancer and apoptotic effect, suggesting that RR-AuNP that it may be a persuasive molecule to treat lung cancer.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  13. Zhang W, Lv Z, Zhang Y, Gopinath SCB, Yuan Y, Huang D, et al.
    Oxid Med Cell Longev, 2022;2022:6006601.
    PMID: 36211824 DOI: 10.1155/2022/6006601
    OBJECTIVE: The off-target effects and severe side effects of PPARα and LXRα agonists greatly limit their application in atherosclerosis (AS). Therefore, this study intended to use mesoporous silica nanoparticles as carriers to generate MnO nanoparticles in situ with T1WI-MRI in mesoporous pores and simultaneously load PPARα and LXRα agonists. Afterward, cRGD-chelated platelet membranes can be used for coating to construct a new nanotheranostic agent.

    METHODS: cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles were synthesized by a chemical method. Dynamic light scattering (DLS) was utilized to detect the size distribution and polydispersity index (PDI) of the nanoparticles. The safety of the nanoparticles was detected by CCK8 in vitro and HE staining and kidney function in vivo. Cell apoptosis was detected by flow cytometry detection and TUNEL staining. Oxidative stress responses (ROS, SOD, MDA, and NOX levels) were tested via a DCFH-DA assay and commercial kits. Immunofluorescence and phagocytosis experiments were used to detect the targeting of nanoparticles. Magnetic resonance imaging (MRI) was used to detect the imaging performance of cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles. Using western blotting, the expression changes in LXRα and ABCA1 were identified.

    RESULTS: cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles were successfully established, with a particle size of approximately 150 nm and PDI less than 0.3, and showed high safety both in vitro and in vivo. cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles showed good targeting properties and better MRI imaging performance in AS. cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles showed better antioxidative capacities, MRI imaging performance, and diagnostic and therapeutic effects on AS by regulating the expression of LXRα and ABCA1.

    CONCLUSION: In the present study, cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles with high safety and the capacity to target vulnerable plaques of AS were successfully established. They showed better performance on MRI images and treatment effects on AS by promoting cholesterol efflux through the regulation of ABCA1. These findings might address the problems of off-target effects and side effects of nanoparticle-mediated drug delivery, which will enhance the efficiency of AS treatment and provide new ideas for the clinical treatment of AS.

    Matched MeSH terms: Reactive Oxygen Species
  14. Zhang S, Liu Q, Chang M, Pan Y, Yahaya BH, Liu Y, et al.
    Cell Death Dis, 2023 May 24;14(5):340.
    PMID: 37225709 DOI: 10.1038/s41419-023-05859-0
    Chemotherapy was conventionally applied to kill cancer cells, but regrettably, they also induce damage to normal cells with high-proliferative capacity resulting in cardiotoxicity, nephrotoxicity, peripheral nerve toxicity, and ovarian toxicity. Of these, chemotherapy-induced ovarian damages mainly include but are not limited to decreased ovarian reserve, infertility, and ovarian atrophy. Therefore, exploring the underlying mechanism of chemotherapeutic drug-induced ovarian damage will pave the way to develop fertility-protective adjuvants for female patients during conventional cancer treatment. Herein, we firstly confirmed the abnormal gonadal hormone levels in patients who received chemotherapy and further found that conventional chemotherapeutic drugs (cyclophosphamide, CTX; paclitaxel, Tax; doxorubicin, Dox and cisplatin, Cis) treatment significantly decreased both the ovarian volume of mice and the number of primordial and antral follicles and accompanied with the ovarian fibrosis and reduced ovarian reserve in animal models. Subsequently, Tax, Dox, and Cis treatment can induce the apoptosis of ovarian granulosa cells (GCs), likely resulting from excessive reactive oxygen species (ROS) production-induced oxidative damage and impaired cellular anti-oxidative capacity. Thirdly, the following experiments demonstrated that Cis treatment could induce mitochondrial dysfunction through overproducing superoxide in GCs and trigger lipid peroxidation leading to ferroptosis, first reported in chemotherapy-induced ovarian damage. In addition, N-acetylcysteine (NAC) treatment could alleviate the Cis-induced toxicity in GCs by downregulating cellular ROS levels and enhancing the anti-oxidative capacity (promoting the expression of glutathione peroxidase, GPX4; nuclear factor erythroid 2-related factor 2, Nrf2 and heme oxygenase-1, HO-1). Our study confirmed the chemotherapy-induced chaotic hormonal state and ovarian damage in preclinical and clinical examination and indicated that chemotherapeutic drugs initiated ferroptosis in ovarian cells through excessive ROS-induced lipid peroxidation and mitochondrial dysfunction, leading to ovarian cell death. Consequently, developing fertility protectants from the chemotherapy-induced oxidative stress and ferroptosis perspective will ameliorate ovarian damage and further improve the life quality of cancer patients.
    Matched MeSH terms: Reactive Oxygen Species
  15. Zhang P, Wang P, Yan L, Liu L
    Int J Nanomedicine, 2018;13:7047-7059.
    PMID: 30464458 DOI: 10.2147/IJN.S180138
    BACKGROUND: Nasopharyngeal cancer (NPC) is one of the subtypes of head and neck cancers. It occurs rarely, and its prevalence depends mainly on geographical location. Modern-day research is focused on coupling nanotechnology and traditional medicine for combating cancers. Gold nanoparticles (AuNPs) were synthesized from Solanum xanthocarpum (Sx) leaf extract using reduction method.

    METHODS: Characterization of the synthesized AuNPs was done by different techniques such as ultraviolet-visible spectrum absorption, X-ray diffraction, dynamic light scattering, Fourier transform infrared spectroscopy, transmission electron microscopy, and energy-dispersive X-ray analysis.

    RESULTS: All the results showed the successful green synthesis of AuNPs from Sx, which induced apoptosis of C666-1 cell line (NPC cell line). There was a decline in both cell viability and colony formation in C666-1 cells upon treatment with Sx-AuNPs. The cell death was proved to be caused by autophagy and mitochondrial-dependent apoptotic pathway.

    CONCLUSION: Thus, due to their anticancer potential, these nanoparticles coupled with Sx can be used for in vivo applications and clinical research in future.

    Matched MeSH terms: Reactive Oxygen Species/metabolism
  16. Zhang J, Ming C, Zhang W, Okechukwu PN, Morak-Młodawska B, Pluta K, et al.
    Drug Des Devel Ther, 2017;11:3045-3063.
    PMID: 29123378 DOI: 10.2147/DDDT.S144415
    The asymptomatic properties and high treatment resistance of ovarian cancer result in poor treatment outcomes and high mortality rates. Although the fundamental chemotherapy provides promising anticancer activities, it is associated with severe side effects. The derivative of phenothiazine, namely, 10H-3,6-diazaphenothiazine (PTZ), was synthesized and reported with ideal anticancer effects in a previous paper. In this study, detailed anticancer properties of PTZ was examined on A2780 ovarian cancer cells by investigating the cytotoxicity profiles, mechanism of apoptosis, and cell invasion. Research outcomes revealed PTZ-induced dose-dependent inhibition on A2780 cancer cells (IC50 =0.62 µM), with significant less cytotoxicity toward HEK293 normal kidney cells and H9C2 normal heart cells. Generation of reactive oxygen species (ROS) and polarization of mitochondrial membrane potential (ΔΨm) suggests PTZ-induced cell death through oxidative damage. The RT2 Profiler PCR Array on apoptosis pathway demonstrated PTZ-induced apoptosis via intrinsic (mitochondria-dependent) and extrinsic (cell death receptor-dependent) pathway. Inhibition of NF-κB and subsequent inhibition of (BIRC6-XIAP) complex activities reduced the invasion rate of A2780 cancer cells penetrating through the Matrigel™ Invasion Chamber. Lastly, the cell cycle analysis hypothesizes that the compound is cytostatic and significantly arrests cell proliferation at G2/M phase. Hence, the exploration of the underlying anticancer mechanism of PTZ suggested its usage as promising chemotherapeutic agent.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  17. Zhang J, Zhao J, Zuo X, You W, Ru X, Xu F, et al.
    Food Chem, 2024 Jun 15;443:138545.
    PMID: 38306904 DOI: 10.1016/j.foodchem.2024.138545
    The effects of exogenous glutamate treatment on the quality attributes, γ-aminobutyric acid (GABA) shunt, phenylpropanoid pathway, and antioxidant capacity of fresh-cut carrots were investigated. Results showed that glutamate treatment suppressed the increases in lightness and whiteness values, inhibited the degradation of total carotenoids and maintained better flavor and taste in fresh-cut carrots. Moreover, glutamate treatment rapidly promoted the activities of glutamate decarboxylase and GABA transaminase, thus improving the GABA content. It also significantly enhanced the activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, and 4-coumarate coenzyme A ligase and promoted the accumulation of total phenolics as well as the main individual phenolic compounds, including chlorogenic and caffeic acid. In addition, glutamate application activated the reactive oxygen system-related enzyme including peroxidase, superoxide dismutase, ascorbate peroxidase, and catalase activities to maintain higher antioxidant capacity in fresh-cut carrots. These results demonstrated that exogenous glutamate treatment maintained better nutritional quality and alleviated color deterioration by accelerating the accumulation of GABA and phenolics and enhancing the antioxidant capacity in fresh-cut carrots.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  18. Zhang D, Gao C, Li R, Zhang L, Tian J
    Arch Pharm Res, 2017 May;40(5):579-591.
    PMID: 28211011 DOI: 10.1007/s12272-017-0899-9
    2α,3α,24-Thrihydroxyurs-12-en-28-oicacid (TEOA), a pentacyclic triterpenoid, isolated from the roots of Actinidia eriantha, exhibits significant cytotoxicity against SW620, BGC-823, HepG-2, A549 and PC-3 cancer cells. In this study, we investigated the underlying molecular mechanism of the anticancer activity of TEOA in SW620 cells. We demonstrated that TEOA induced apoptosis through cleavage of caspase-9 and PARP in SW620 cells. In addition, evidence of TEOA-mediated autophagy included the induction of autophagolysosomes and activation of autophagic markers LC-3B and p62. Further analysis illustrated that TEOA promoted the phosphorylation of PERK and elF2α, followed by up-regulation of the downstream protein CHOP, suggesting the involvement of PERK/eIF2α/CHOP pathway and ER stress in TEOA-induced autophagy in SW620 cells. Meanwhile, TEOA-mediated PINK1, Parkin, ubiquitin and p62 activation revealed that TEOA induced specific autophagy-mitophagy in SW620 cells. Additionally, an antioxidant NAC attenuated the TEOA-induced mitophagy, indicating that TEOA triggers mitophagy via a ROS-dependent pathway. Collectively, our findings revealed a novel cellular mechanism of TEOA in the colon cancer cell line SW620, thus providing a molecular basis for developing TEOA into an anti-tumor candidate.
    Matched MeSH terms: Reactive Oxygen Species/metabolism*
  19. Zhang C, Chen WH, Ho SH, Zhang Y, Lim S
    Bioresour Technol, 2023 Oct;386:129531.
    PMID: 37473787 DOI: 10.1016/j.biortech.2023.129531
    This study performs the comparative advantage analysis of oxidative torrefaction of corn stalks to investigate the advantages of oxidative torrefaction for biochar fuel property upgrading. The obtained results indicate that oxidative torrefaction is more efficient in realizing mass loss and energy density improvement, as well as elemental carbon accumulation and surface functional groups removal, and thus leads to a better fuel property. The maximum values of relative mass loss, higher heating value, enhancement factor, and energy yield are 3.00, 1.10, 1.03, and 0.87, respectively. The relative elemental carbon, hydrogen, and oxygen content ranges are 1.30-3.10, 1.50-3.30, and 2.00-6.80, respectively. In addition, an excellent linear distribution is obtained between the comprehensive pyrolysis index and torrefaction severity index, with elemental carbon and oxygen component variation stemming from pyrolysis performance correlating to the elemental component and valance.
    Matched MeSH terms: Oxygen
  20. Zetty Shafiqa Othman, Nurul Huda Abd Karim, Saiful Irwan Zubairi, Nur Hasyareeda Hassan, Mamoru Koketsu
    Sains Malaysiana, 2018;47:1473-1482.
    [BMIM]OTf and alcohol-based DES combination with a selected organic solvent (acetone and acetonitrile) have
    been proven to efficiently extracting rotenone (isoflavonoid biopesticide) compound compared to individual organic
    solvents. Their efficiency builds up interest to study the solvent-solute interaction that occurs between both selected
    solvent systems with rotenone. The interaction study was analyzed using FTIR, 1D-NMR and 2D- NMR (NOESY, HMBC).
    Correlation portrayed by NOESY and HMBC of [BMIM]OTf - standard rotenone mixture predicted probable hydrogen
    bonding between the oxygen of rotenone with acidic proton C2-H of [BMIM]OTf. While for the alcohol-based DESrotenone
    mixture, the correlation shows probable interaction to occur between methyl and methoxy group rotenone
    with the hydroxyl group of 1,4-butanediol. In conclusion, potential hydrogen bonding that occurs between solvent
    and solute aid towards the solvent efficiency in extracting rotenone compound while emphasizing on the low cost and
    green mediated solvent systems.
    Matched MeSH terms: Oxygen
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links