Displaying publications 1 - 20 of 63 in total

Abstract:
Sort:
  1. Zzaman, W., Issara, U., Febrianto, N.F., Yang, T.A.
    International Food Research Journal, 2014;21(3):10191-1023.
    MyJurnal
    The study was conducted to investigate fatty acid composition, rheological properties and crystal formation of rambutan fat and cocoa butter. The results showed that lauric acid, palmitic acid, and stearic fatty acid in rambutan fat were less than cocoa butter, but oleic acid found almost the same. The crystal formation of cocoa butter was not complex at 25oC, while rambutan fat and their mixture shown complicated network of crystal form. The Newton, Bingham and Casson plastic rheological models was used to describe fat flow in this experiment and the result showed that rambutan fat had higher viscosity than cocoa fat. Based on the results the study recommended that mixture proportion up to 30% rambutan seed fat can be used as a cocoa butter substitute whereas higher proportion completely alters original cocoa butter properties. Therefore, there is feasibility of using the rambutan fat to substitute cocoa butter and the mixtures of the two fats in suitable proportion in chocolate manufacturing.
    Matched MeSH terms: Palmitic Acid
  2. Zhang J, Mohamad FH, Wong JH, Mohamad H, Ismail AH, Mohamed Yusoff AA, et al.
    Malays J Med Sci, 2018 Feb;25(1):101-113.
    PMID: 29599640 DOI: 10.21315/mjms2018.25.1.12
    Background: Bamboo shoot has been used as a treatment for epilepsy in traditional Chinese medicine for generations to treat neuronal disorders such as convulsive, dizziness and headaches. 4-hydroxybenzoic acid (4-hba) is a non-flavonoid phenol found abundantly inDendrocalamus aspershoots (bamboo), fruits (strawberries and apples) and flowers. Kv1.4 is a rapidly inactivatingShaker-related member of the voltage-gated potassium channels with two inactivation mechanisms; the fast N-type and slow C-type. It plays vital roles in repolarisation, hyperpolarisation and signaling the restoration of resting membrane potential through the regulation of the movement of K+across the cellular membrane.

    Methods: Chemical compounds fromDendrocalamus asperbamboo shoots were purified and identified as major palmitic acids mixed with other minor fatty acids, palmitic acid, 4-hydroxybenzaldehyde, lauric acid, 4-hydroxybenzoic acid and cholest-4-ene-3-one. The response of synthetic 4-hydroxybenzoic acid was tested on Kv1.4 potassium channel which was injected into viable oocytes that was extracted fromXenopus laevis. The current were detected by the two-microelectrode voltage clamp, holding potential starting from -80 mV with 20 mV step-up until +80 mV. Readings of treatments with 0.1% DMSO, 4-hba concentrations and K channel blockers were taken at +60 mV. The ratio of tail/peak amplitude is the index of the activity of the Kv1.4 channels withn≥ 6 (number of oocytes tested). The decreases of the ratios of five different concentrations (1 μM, 10 μM, 100 μM, 1 mM and 2.5 mM) were compared with 0.1% DMSO as the control.

    Results: All concentration showed statistically significant results withP< 0.05 except for 100 μM. The normalised current of the 4-hba concentrations were compared with potassium channel blockers (TEA and 4-AP) and all groups showed statistically significant results. This study also showed that time taken for each concentration to affect Kv1.4 does not play any significant roles.

    Conclusion: 4-hydroxybenzoic acid was found to be able to enhance the inactivation of Kv1.4 by lowering the membrane potential so that the abnormal neuronal firing can be inhibited. With IC50 slightly higher than 10 μM, increasing concentrations (100 μM, 1 mM and 2.5 mM) had shown to exhibit toxicity effects. The best concentration from this study is 10 μM with Hill slope of 0.1799.

    Matched MeSH terms: Palmitic Acid
  3. Yoochatchaval W, Kumakura S, Tanikawa D, Yamaguchi T, Yunus MF, Chen SS, et al.
    Water Sci Technol, 2011;64(10):2001-8.
    PMID: 22105121 DOI: 10.2166/wst.2011.782
    The biodegradation characteristics of palm oil mill effluent (POME) and the related microbial community were studied in both actual sequential anaerobic ponds in Malaysia and enrichment cultures. The significant degradation of the POME was observed in the second pond, in which the temperature was 35-37 °C. In this pond, biodegradation of major long chain fatty acids (LCFA), such as palmitic acid (C16:0) and oleic acid (C18:1), was also confirmed. The enrichment culture experiment was conducted with different feeding substrates, i.e. POME, C16:0 and C18:1, at 35 °C. Good recovery of methane indicated biodegradation of feeds in the POME and C16:0 enrichments. The methane production rate of the C18:1 enrichment was slower than other substrates and inhibition of methanogenesis was frequently observed. Denaturing gradient gel electrophoresis (DGGE) analyses indicated the existence of LCFA-degrading bacteria, such as the genus Syntrophus and Syntorophomonas, in all enrichment cultures operated at 35 °C. Anaerobic degradation of the POME under mesophilic conditions was stably processed as compared with thermophilic conditions.
    Matched MeSH terms: Palmitic Acid/analysis
  4. Yassin AA, Mohamed IO, Ibrahim MN, Yusoff MS
    Appl Biochem Biotechnol, 2003 Jul;110(1):45-52.
    PMID: 12909731
    Immobilized PS-C 'Amano' II lipase was used to catalyze the interesterification of palm olein (POo) with 30, 50, and 70% stearic acid in n-hexane at 60 degrees C. The catalytic performance of the immobilized lipase was evaluated by determining the composition change of fatty acyl groups and triacylglycerol (TAG) by gas liquid chromatography and high-performance liquid chromatography, respectively. The interesterification process resulted in the formation of new TAGs, mainly tripalmitin and dipalmitostearin, both of which were absent in the original oil. These changes in TAG composition resulted in an increase in slip melting point, from the original 25.5 degrees C to 36.3, 37.0, and 40.0 degrees C in the modified POo with 30, 50, and 70% stearic acid, respectively. All the reactions attained steady state in about 6 h. This type of work will find great applications in food industries, such as confectionery.
    Matched MeSH terms: Palmitic Acid/chemistry
  5. Yanty NA, Marikkar JM, Nusantoro BP, Long K, Ghazali HM
    J Oleo Sci, 2014;63(9):885-92.
    PMID: 25174674
    A study was carried out to determine the physicochemical characteristics of the oil derived from papaya seeds of the Hong Kong/Sekaki variety. Proximate analysis showed that seeds of the Hong Kong/Sekaki variety contained considerable amount of oil (27.0%). The iodine value, saponification value, unsaponifiable matter and free fatty acid contents of freshly extracted papaya seed oil were 76.9 g I2/100g oil, 193.5 mg KOH/g oil, 1.52% and 0.91%, respectively. The oil had a Lovibond color index of 15.2Y + 5.2B. Papaya seed oil contained ten detectable fatty acids, of which 78.33% were unsaturated. Oleic (73.5%) acid was the dominant fatty acids followed by palmitic acid (15.8%). Based on the high performance liquid chromatography (HPLC) analysis, seven species of triacylglycerols (TAGs) were detected. The predominant TAGs of papaya seed oil were OOO (40.4%), POO (29.1%) and SOO (9.9%) where O, P, and S denote oleic, palmitic and stearic acids, respectively. Thermal analysis by differential scanning calorimetry (DSC) showed that papaya seed oil had its major melting and crystallization transitions at 12.4°C and -48.2°C, respectively. Analysis of the sample by Z-nose (electronic nose) instrument showed that the sample had a high level of volatile compounds.
    Matched MeSH terms: Palmitic Acid/isolation & purification
  6. Wan Afifudeen CL, Loh SH, Aziz A, Takahashi K, Effendy AWM, Cha TS
    Sci Rep, 2021 01 11;11(1):381.
    PMID: 33431982 DOI: 10.1038/s41598-020-79711-2
    Bioprospecting for biodiesel potential in microalgae primarily involves a few model species of microalgae and rarely on non-model microalgae species. Therefore, the present study determined changes in physiology, oil accumulation, fatty acid composition and biodiesel properties of a non-model microalga Messastrum gracile SE-MC4 in response to 12 continuous days of nitrate-starve (NS) and nitrate-replete (NR) conditions respectively. Under NS, the highest oil content (57.9%) was achieved despite reductions in chlorophyll content, biomass productivity and lipid productivity. However, under both NS and NR, palmitic acid and oleic acid remained as dominant fatty acids thus suggesting high potential of M. gracile for biodiesel feedstock consideration. Biodiesel properties analysis returned high values of cetane number (CN 61.9-64.4) and degree of unsaturation (DU 45.3-57.4) in both treatments. The current findings show the possibility of a non-model microalga to inherit superior ability over model species in oil accumulation for biodiesel development.
    Matched MeSH terms: Palmitic Acid/metabolism*
  7. Voon PT, Ng TK, Lee VK, Nesaretnam K
    Am J Clin Nutr, 2011 Dec;94(6):1451-7.
    PMID: 22030224 DOI: 10.3945/ajcn.111.020107
    BACKGROUND: Dietary fat type is known to modulate the plasma lipid profile, but its effects on plasma homocysteine and inflammatory markers are unclear.

    OBJECTIVE: We investigated the effects of high-protein Malaysian diets prepared with palm olein, coconut oil (CO), or virgin olive oil on plasma homocysteine and selected markers of inflammation and cardiovascular disease (CVD) in healthy adults.

    DESIGN: A randomized-crossover intervention with 3 dietary sequences of 5 wk each was conducted in 45 healthy subjects. The 3 test fats, namely palmitic acid (16:0)-rich palm olein (PO), lauric and myristic acid (12:0 + 14:0)-rich CO, and oleic acid (18:1)-rich virgin olive oil (OO), were incorporated at two-thirds of 30% fat calories into high-protein Malaysian diets.

    RESULTS: No significant differences were observed in the effects of the 3 diets on plasma total homocysteine (tHcy) and the inflammatory markers TNF-α, IL-1β, IL-6, and IL-8, high-sensitivity C-reactive protein, and interferon-γ. Diets prepared with PO and OO had comparable nonhypercholesterolemic effects; the postprandial total cholesterol for both diets and all fasting lipid indexes for the OO diet were significantly lower (P < 0.05) than for the CO diet. Unlike the PO and OO diets, the CO diet was shown to decrease postprandial lipoprotein(a).

    CONCLUSION: Diets that were rich in saturated fatty acids prepared with either PO or CO, and an OO diet that was high in oleic acid, did not alter postprandial or fasting plasma concentrations of tHcy and selected inflammatory markers. This trial was registered at clinicaltrials.gov as NCT00941837.

    Matched MeSH terms: Palmitic Acid/pharmacology
  8. Venkatramanan M, Sankar Ganesh P, Senthil R, Akshay J, Veera Ravi A, Langeswaran K, et al.
    ACS Omega, 2020 Oct 13;5(40):25605-25616.
    PMID: 33073086 DOI: 10.1021/acsomega.0c02483
    Chromobacterium violaceum (C. violaceum) is a Gram-negative, rod-shaped facultatively anaerobic bacterium implicated with recalcitrant human infections. Here, we evaluated the anti-QS and antibiofilm activities of ethyl acetate extracts of Passiflora edulis (P. edulis) on the likely inactivation of acyl-homoserine lactone (AHL)-regulated molecules in C. violaceum both by in vitro and in silico analyses. Our investigations showed that the sub-MIC levels were 2, 1, and 0.5 mg/mL, and the concentrations showed a marked reduction in violacein pigment production by 75.8, 64.6, and 35.2%. AHL quantification showed 72.5, 52.2, and 35.9% inhibitions, inhibitions of EPS production (72.8, 36.5, and 25.9%), and reductions in biofilm formation (90.7, 69.4, and 51.8%) as compared to a control. Light microscopy and CLSM analysis revealed dramatic reduction in the treated biofilm group as compared to the control. GC-MS analysis showed 20 major peaks whose chemical structures were docked as the CviR ligand. The highest docking score was observed for hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester bonds in the active site of CviR with a binding energy of -8.825 kcal/mol. Together, we found that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester remarkably interacted with CviR to inhibit the QS system. Hence, we concluded that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester of P. edulis could likely be evaluated for treating C. violaceum infections.
    Matched MeSH terms: Palmitic Acid
  9. Tevan, R., Jayakumar, Saravanan, Mohd Hasbi Ab. Rahim, Maniam, Gaaty Pragas, Govindan, Natanamurugaraj
    MyJurnal
    The world is facing a problem regarding the use of petroleum fuels that has led to a search for a suitable alternative fuel source. Researchers have come up with the idea of producing biofuel to overcome this problem. In this study, microalgae were explored as a high potential feedstock to produce biofuel. In order to produce a large quantity of biofuel with low cost at a short time, the manipulation of nutrients is a factor in microalgae cultivation. In this study, Iron (II) Chloride (FeCl2) was added to the nutrients to initiate a stressful condition during growth which contributes to the produce of lipid. Isolated microalgae species were identified as Scenedesmus sp. During mass cultivation, the microalgae cultures were scaled up to 2 L of culture. Three flasks of microalgae culture were labelled with S1, S2, and S3. Flask S1 acts as a control without the addition of FeCl2, while another two flasks acted as experimental flasks. Flask S2 was supplemented with 0.5 mg FeCl2 while Flask S3 was supplemented with 1.0 mg of FeCl2. With the addition of Iron (II) Chloride, microalgae entered a stationary phase at day 9 and day 10 as compared to the control flask which enters the stationary phase at day 7. This also affects the dry weight. Flask 3 produces 0.8658 g of microalgae powder compared to Flask 1 and 2 which produced 0.4649 g and 0.5357 g respectively. Lipid analysis was done by using GCMS and GCFID. Flask 3 produced various types of fatty acids which can be used for biodiesel production compared to other cultivates. In Flask 1, docosanoic acid which is a saturated fatty acid was detected. While in Flask 2 (S2), with the addition of 0.5 mg of FeCl2, docosapentaenoic acid was produced. In the last flask which involved the addition of 1.0 mg of FeCl2, more fatty acid was detected. In GC-FID data, 6 types of fatty acids were detected. Linolein acid, linolenic acid, stearidonic acid, docosapentaenoic acid, docosahexaenoic acid and docosanoic acid were produced at different retention times. Most of the fatty acids produced are polyunsaturated fatty acid (PUFA). In transesterification, the fatty acid reacts with methanol and acid catalyst. The reaction produces fatty acid methyl ester. In Flask 1, the control flask, without the addition of FeCl2, no fatty acid methyl esters (FAME) was produced. However, in Flask 2 and 3 which were added 0.5 mg FeCl2 and 1.0 mg FeCl2, n-hexadecanoic acid methyl ester which is also known as palmitic acid was produced. Palmitic fatty acid can be used for biodiesel production.
    Matched MeSH terms: Palmitic Acid
  10. Teh SS, Hock Ong AS, Mah SH
    J Oleo Sci, 2017;66(11):1183-1191.
    PMID: 29093377 DOI: 10.5650/jos.ess17078
    The environmental impacts of palm oil mill effluent (POME) have been a concern due to the water pollution and greenhouse gases emissions. Thus, this study was conducted to recover the value-added products from POME source before being discharged. The samples, before (X) and after (Y) the pre-recovery system in the clarification tank were sampled and analysed and proximate analysis indicated that both samples are energy rich source of food due to high contents of fats and carbohydrates. GCMS analysis showed that the oil extracts contain predominantly palmitic, oleic, linoleic and stearic acids. Regiospecific analysis of oil extracts by quantitative 13C-NMR spectroscopy demonstrated that both oil extracts contain similar degree of saturation of fatty acids at sn-2 and sn-1,3 positions. The samples are rich in various phytonutrients, pro-vitamin A, vitamin E, squalene and phytosterols, thus contributing to exceptionally high total flavonoid contents and moderate antioxidant activities. Overall, samples X and Y are good alternative food sources, besides reducing the environmental impact of POME.
    Matched MeSH terms: Palmitic Acid/analysis; Palmitic Acid/isolation & purification
  11. Tan WN, Lim JQ, Afiqah F, Nik Mohamed Kamal NNS, Abdul Aziz FA, Tong WY, et al.
    Nat Prod Res, 2018 Apr;32(7):854-858.
    PMID: 28782393 DOI: 10.1080/14786419.2017.1361951
    Garcinia atroviridis Griff. ex T. Anders. is used as a medication agent in folkloric medicine. The present study was to examine the chemical composition of the stem bark and leaf of G. atroviridis as well as their cytotoxic effects against MCF-7 cells. The constituents obtained by hydrodistillation were identified using GC-MS. The stem bark oil (EO-SB) composed mainly the palmitoleic acid (51.9%) and palmitic acid (21.9%), while the leaf oil (EO-L) was dominated by (E)-β-farnesene (58.5%) and β-caryophyllene (16.9%). Treatment of MCF-7 cells using EO-L (100 μg/mL) caused more than 50% cell death while EO-SB did not induce cytotoxic effect. EO-L has stimulated the growth of BEAS-2B normal cells, but not in MCF-7 cancerous cells. The IC50 of EO-L in MCF-7 and BEAS-2B cells were 71 and 95 μg/mL, respectively. A combination treatment of EO-L and tamoxifen induced more cell death than the treatment with drug alone at lower doses.
    Matched MeSH terms: Palmitic Acid
  12. Tan CH, Show PL, Ling TC, Nagarajan D, Lee DJ, Chen WH, et al.
    Bioresour Technol, 2019 Aug;285:121331.
    PMID: 30999192 DOI: 10.1016/j.biortech.2019.121331
    Third generation biofuels, also known as microalgal biofuels, are promising alternatives to fossil fuels. One attractive option is microalgal biodiesel as a replacement for diesel fuel. Chlamydomonas sp. Tai-03 was previously optimized for maximal lipid production for biodiesel generation, achieving biomass growth and productivity of 3.48 ± 0.04 g/L and 0.43 ± 0.01 g/L/d, with lipid content and productivity of 28.6 ± 1.41% and 124.1 ± 7.57 mg/L/d. In this study, further optimization using 5% CO2 concentration and semi-batch operation with 25% medium replacement ratio, enhanced the biomass growth and productivity to 4.15 ± 0.12 g/L and 1.23 ± 0.02 g/L/d, with lipid content and productivity of 19.4 ± 2.0% and 239.6 ± 24.8 mg/L/d. The major fatty acid methyl esters (FAMEs) were palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2). These short-chain FAMEs combined with high growth make Chlamydomonas sp. Tai-03 a suitable candidate for biodiesel synthesis.
    Matched MeSH terms: Palmitic Acid
  13. Tahan Latibari S, Mehrali M, Mehrali M, Mahlia TM, Metselaar HS
    ScientificWorldJournal, 2014;2014:379582.
    PMID: 25054179 DOI: 10.1155/2014/379582
    This study describes the hydrothermal synthesis of a novel carbon/palmitic acid (PA) microencapsulated phase change material (MEPCM). The field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) images confirm that spherical capsules of uniform size were formed with a mean diameter of 6.42 μm. The melting and freezing temperature were found to be slightly lower than those of pure PA with little undercooling. The composite retained 75% of the latent heat of pure PA. Thermal stability of the MEPCM was found to be better than that of pure PA. The thermal conductivity of MEPCM was increased by as much as 41% at 30°C. Due to its good thermal properties and chemical and mechanical stability, the carbon/PA MEPCM displays a good potential for thermal energy storage systems.
    Matched MeSH terms: Palmitic Acid/chemistry
  14. Taha EM, Omar O, Yusoff WM, Hamid AA
    Annals of microbiology, 2010 Dec;60(4):615-622.
    PMID: 21125005
    Lipid biosynthesis and fatty acids composition of oleaginous zygomycetes, namely Cunninghamella bainieri 2A1, cultured in media with excess or limited nitrogen were quantitatively determined at different times of culture growth. Accumulation of lipids occurred even when the activity of NAD(+)-ICDH (β-Nicotinamide adenine dinucleotide-isocitrate dehydrogenase) was still detectable in both media. In C. bainieri 2A1, under nitrogen limitation, the ratio of lipids was around 35%, whereas in nitrogen excess medium (feeding media supplemented with ammonium tartarate), the lipid ratio decreased. The amount of this decrease depended on the level of ammonium tartarate in the media. The main findings in this paper were that C. bainieri 2A1 has the ability to accumulate lipid although nitrogen concentration detected inside the media and that NAD-ICDH was active in all culture periods. These results proved that the strain C. bainieri 2A1 has an alternative behavior in lipid biosynthesis that differs from yeast. According to the old hypotheses, yeasts could not accumulate lipid more than 10% when nitrogen was detected inside the media. Nitrogen-limited and excess media both contained the same fatty acids (palmitic acid, stearic acid, olic acid, linoleic acid and γ-linolenic acid), but at different concentrations. The C:N ratio was also studied and showed no effects on total lipid accumulation, but a significant effect on γ-linolenic acid concentration.
    Matched MeSH terms: Palmitic Acid
  15. Swamy MK, Sinniah UR, Akhtar MS
    PMID: 26783409 DOI: 10.1155/2015/506413
    We investigated the effect of different solvents (ethyl acetate, methanol, acetone, and chloroform) on the extraction of phytoconstituents from Lantana camara leaves and their antioxidant and antibacterial activities. Further, GC-MS analysis was carried out to identify the bioactive chemical constituents occurring in the active extract. The results revealed the presence of various phytocompounds in the extracts. The methanol solvent recovered higher extractable compounds (14.4% of yield) and contained the highest phenolic (92.8 mg GAE/g) and flavonoid (26.5 mg RE/g) content. DPPH radical scavenging assay showed the IC50 value of 165, 200, 245, and 440 μg/mL for methanol, ethyl acetate, acetone, and chloroform extracts, respectively. The hydroxyl scavenging activity test showed the IC50 value of 110, 240, 300, and 510 μg/mL for methanol, ethyl acetate, acetone, and chloroform extracts, respectively. Gram negative bacterial pathogens (E. coli and K. pneumoniae) were more susceptible to all extracts compared to Gram positive bacteria (M. luteus, B. subtilis, and S. aureus). Methanol extract had the highest inhibition activity against all the tested microbes. Moreover, methanolic extract of L. camara contained 32 bioactive components as revealed by GC-MS study. The identified major compounds included hexadecanoic acid (5.197%), phytol (4.528%), caryophyllene oxide (4.605%), and 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z)- (3.751%).
    Matched MeSH terms: Palmitic Acid
  16. Suseno, S.H., Tajul, A.Y., Nadiah, W.A., Hamidah, Asti, Ali, S.
    MyJurnal
    Proximate content, fatty acid and mineral compositions were determined for the ten species of deepsea fish from Southern Java Ocean and Western Sumatra Ocean, Indonesia. The proximate composition was found to be 23.0-24.8 % protein, 1.9-4.1% fat , 0-1.75 % carbohydrate, 1.7-2.4 % ash and 70.1-72.1% water, whereas the fatty acid compositions consisted of 0.86 - 49.63 % saturated fatty acids (SFA), 0.29 - 50.09 % monounsaturated fatty acid (MUFA) and 2.85 % - 46.32 % polyunsaturated fatty acids (PUFAs). Among them, those occurring in the highest proportions were myristic acid (C14:0, 0.12-7.59%), palmitic acid (C16:0, 0.02–20.5%), stearic acid (C18:0, 0.42–49.19), oleic acid (C18:1, 0.29–50.09 %), linoleic acid (C18:2, 0.23– 44.91%), eicosapentaenoic acid (EPA, C20:5n3, 0.41– 4.61%) docosahexaenoic acid (DHA, C22:6n3, 0.28– 3.44%). The rest of the microelements, Cd, Hg, and Pb were all present in amounts below toxic levels.
    Matched MeSH terms: Palmitic Acid
  17. Sundram K, French MA, Clandinin MT
    Eur J Nutr, 2003 Aug;42(4):188-94.
    PMID: 12923649
    Partial hydrogenation of oil results in fats containing unusual isomeric fatty acids characterized by cis and trans configurations. Hydrogenated fats containing trans fatty acids increase plasma total cholesterol (TC) and LDL-cholesterol while depressing HDL-cholesterol levels. Identifying the content of trans fatty acids by food labeling is overshadowed by a reluctance of health authorities to label saturates and trans fatty acids separately. Thus, it is pertinent to compare the effects of trans to saturated fatty acids using stable isotope methodology to establish if the mechanism of increase in TC and LDL-cholesterol is due to the increase in the rate of endogenous synthesis of cholesterol. Ten healthy normocholesterolemic female subjects consumed each of two diets containing approximately 30% of energy as fat for a fourweek period. One diet was high in palmitic acid (10.6% of energy) from palm olein and the other diet exchanged 5.6% of energy as partially hydrogenated fat for palmitic acid. This fat blend resulted in monounsaturated fatty acids decreasing by 4.9 % and polyunsaturated fats increasing by 2.7%. The hydrogenated fat diet treatment provided 3.1% of energy as elaidic acid. For each dietary treatment, the fractional synthesis rates for cholesterol were measured using deuterium-labeling procedures and blood samples were obtained for blood lipid and lipoprotein measurements. Subjects exhibited a higher total cholesterol and LDL-cholesterol level when consuming the diet containing trans fatty acids while also depressing the HDL-cholesterol level. Consuming the partially hydrogenated fat diet treatment increased the fractional synthesis rate of free cholesterol. Consumption of hydrogenated fats containing trans fatty acids in comparison to a mixtur e of palmitic and oleic acids increase plasma cholesterol levels apparently by increasing endogenous synthesis of cholesterol.
    Matched MeSH terms: Palmitic Acid/administration & dosage*; Palmitic Acid/pharmacology
  18. Sundram K
    Asia Pac J Clin Nutr, 1997 Mar;6(1):12-6.
    PMID: 24394646
    Several human clinical trials have now evaluated palm oil's effects on blood lipids and lipoproteins. These studies suggest that palm oil and palm olein diets do not raise plasma TC and LDL-cholesterol levels to the extent expected from its fatty acid composition. With maximum substitution of palm oil in a Western type diet some coronary heart disease risk factors were beneficially modulated: HDL2-cholesterol was significantly increased while the apolipoprotein B/A1 ratio was beneficially lowered by palm oil. Comparison of palm olein with a variety of monounsaturated edible oils including rapeseed, canola, and olive oils has shown that plasma and LDL-cholesterol were not elevated by palm olein. To focus these findings, specific fatty acid effects have been evaluated. Myristic acid may be the most potent cholesterol raising saturated fatty acid. Palmitic acid effects were largely comparable to the monounsaturated oleic acid in normolipidaemic subjects while trans fatty acids detrimentally increased plasma cholesterol, LDL-cholesterol, lipoprotein Lp(a) and lowered the beneficial HDL-cholesterol. Apart from these fatty acids there is evidence that the tocotrienols in palm oil products may have a hypocholesterolaemic effect. This is mediated by the ability of the tocotrienols to suppress HMG-CoA reductase. These new findings on palm oil merit a scientific reexamination of the classical saturated fat-lipid hypothesis and its role in lipoprotein regulation.
    Matched MeSH terms: Palmitic Acid
  19. Solati Z, Baharin BS
    J Food Sci Technol, 2015 Jun;52(6):3475-84.
    PMID: 26028729 DOI: 10.1007/s13197-014-1409-4
    Effect of supercritical CO2 extracted Nigella sativa L. seed extract (NE) on frying performance of sunflower oil and refined, bleached and deodorized (RBD) palm olein was investigated at concentrations of 1.2 % and 1.0 % respectively. Two frying systems containing 0 % N. sativa L. extract (Control) and 0.02 % butylated hydroxytoluene (BHT) were used for comparison. Physicochemical properties such as fatty acid composition (FAC), Peroxide Value (PV), Anisidine Value (AV), Totox Value (TV), Total Polar Content (TPC), C18:2/C16:0 ratio and viscosity of frying oils were determined during five consecutive days of frying. Results have shown that N. sativa L. extract was able to improve the oxidative stability of both frying oils during the frying process compared to control. The stabilizing effect of antioxidants were in the order of BHT > NE. RBD palm olein was found to be more stable than sunflower oil based on the ratio of linoleic acid (C18:2) to palmitic acid (C16:0) and fatty acid composition.
    Matched MeSH terms: Palmitic Acid
  20. Sadrolhosseini AR, Moksin MM, Nang HL, Norozi M, Yunus WM, Zakaria A
    Int J Mol Sci, 2011;12(4):2100-11.
    PMID: 21731429 DOI: 10.3390/ijms12042100
    In this study, optical and thermal properties of normal grade and winter grade palm oil biodiesel were investigated. Surface Plasmon Resonance and Photopyroelectric technique were used to evaluate the samples. The dispersion curve and thermal diffusivity were obtained. Consequently, the variation of refractive index, as a function of wavelength in normal grade biodiesel is faster than winter grade palm oil biodiesel, and the thermal diffusivity of winter grade biodiesel is higher than the thermal diffusivity of normal grade biodiesel. This is attributed to the higher palmitic acid C(16:0) content in normal grade than in winter grade palm oil biodiesel.
    Matched MeSH terms: Palmitic Acid/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links