Displaying publications 1 - 20 of 63 in total

Abstract:
Sort:
  1. Ng TK, Hayes KC, DeWitt GF, Jegathesan M, Satgunasingam N, Ong AS, et al.
    J Am Coll Nutr, 1992 Aug;11(4):383-90.
    PMID: 1506599
    To compare the effects of dietary palmitic acid (16:0) vs oleic acid (18:1) on serum lipids, lipoproteins, and plasma eicosanoids, 33 normocholesterolemic subjects (20 males, 13 females; ages 22-41 years) were challenged with a coconut oil-rich diet for 4 weeks. Subsequently they were assigned to either a palm olein-rich or olive oil-rich diet followed by a dietary crossover during two consecutive 6-week periods. Each test oil served as the sole cooking oil and contributed 23% of dietary energy or two-thirds of the total daily fat intake. Dietary myristic acid (14:0) and lauric acid (12:0) from coconut oil significantly raised all the serum lipid and lipoprotein parameters measured. Subsequent one-to-one exchange of 7% energy between 16:0 (palm olein diet) and 18:1 (olive oil diet) resulted in identical serum total cholesterol (192, 193 mg/dl), low-density lipoprotein cholesterol (LDL-C) (130, 131 mg/dl), high-density lipoprotein cholesterol (HDL-C) (41, 42 mg/dl), and triglyceride (TG) (108, 106 mg/dl) concentrations. Effects attributed to gender included higher HDL in females and higher TG in males associated with the tendency for higher LDL and LDL/HDL ratios in men. However, both sexes were equally responsive to changes in dietary fat saturation. The results indicate that in healthy, normocholesterolemic humans, dietary 16:0 can be exchanged for 18:1 within the range of these fatty acids normally present in typical diets without affecting the serum lipoprotein cholesterol concentration or distribution. In addition, replacement of 12:0 + 14:0 by 16:0 + 18:1, but especially 16:0 or some component of palm olein, appeared to have a beneficial impact on an important index of thrombogenesis, i.e., the thromboxane/prostacyclin ratio in plasma.
    Matched MeSH terms: Palmitic Acids/pharmacology*; Palmitic Acid
  2. Sundram K
    Asia Pac J Clin Nutr, 1997 Mar;6(1):12-6.
    PMID: 24394646
    Several human clinical trials have now evaluated palm oil's effects on blood lipids and lipoproteins. These studies suggest that palm oil and palm olein diets do not raise plasma TC and LDL-cholesterol levels to the extent expected from its fatty acid composition. With maximum substitution of palm oil in a Western type diet some coronary heart disease risk factors were beneficially modulated: HDL2-cholesterol was significantly increased while the apolipoprotein B/A1 ratio was beneficially lowered by palm oil. Comparison of palm olein with a variety of monounsaturated edible oils including rapeseed, canola, and olive oils has shown that plasma and LDL-cholesterol were not elevated by palm olein. To focus these findings, specific fatty acid effects have been evaluated. Myristic acid may be the most potent cholesterol raising saturated fatty acid. Palmitic acid effects were largely comparable to the monounsaturated oleic acid in normolipidaemic subjects while trans fatty acids detrimentally increased plasma cholesterol, LDL-cholesterol, lipoprotein Lp(a) and lowered the beneficial HDL-cholesterol. Apart from these fatty acids there is evidence that the tocotrienols in palm oil products may have a hypocholesterolaemic effect. This is mediated by the ability of the tocotrienols to suppress HMG-CoA reductase. These new findings on palm oil merit a scientific reexamination of the classical saturated fat-lipid hypothesis and its role in lipoprotein regulation.
    Matched MeSH terms: Palmitic Acid
  3. Kee CY, Hassan M, Ramachandran KB
    PMID: 10595438
    The objective of this research was to study the kinetics of synthesis of a commercially important ester - Isopropyl Palmitate (IPP) using immobilized lipase (Lipozyme IM). It was studied in a packed bed differential reactor. In order to establish the kinetics of the reaction, parameters such as linear velocity of the fluid through the reactor, particle size, substrate concentration, substrate molar ratio, temperature and water activity were studied. Operational and storage stability of the enzyme were also assessed. The reaction followed Michaelis-Menton kinetics as observed from the relationship of initial rate of the reaction as a function of substrate concentration. It was found that the optimum substrate concentration was 0.15M palmitic acid and isopropyl alcohol in 1:1 stoichiometric ratio. Inhibition by excess of isopropyl alcohol has been identified. The optimum temperature for the esterification reaction was found to be around 50 degrees C. The activation energy of this process was determined to be 43.67 kJ/mol. The optimum water content was 0.50%. The reaction rates were measured in the absence of any significant external diffusional limitations. Since internal diffusional limitations could not be eliminated, the kinetics observed is only apparent.
    Matched MeSH terms: Palmitic Acid/metabolism
  4. Idris CA, Sundram K
    Asia Pac J Clin Nutr, 2002;11 Suppl 7:S408-15.
    PMID: 12492627
    Nine cynomolgus monkeys were rotated randomly through four dietary treatments with each treatment lasting 6 weeks. A wash-out period of 4 weeks was maintained between each dietary rotation. The animals were fed diets containing 32% energy fat derived from palm olein (POL), lauric-myristic-rich oil blend (LM), American Heart Association (AHA) rich oil blend and hydrogenated soybean oil blend (trans). Diets were fed with (phase 1) or without (phase 2) the addition of dietary cholesterol (0.1%). In phase 1, when animals were fed without dietary cholesterol, plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) was significantly raised and high-density lipoprotein cholesterol (HDL-C) was significantly depressed by the trans diets relative to all other dietary treatments. The resulting LDL-C/HDL-C ratio was also significantly increased. The LM diet increased TC significantly relative to the AHA diet while LDL-C was significantly increased compared to both POL and AHA. Apolipoprotein (apo) B was not affected significantly by these dietary treatments. Apo A1 was significantly increased by POL relative to all other dietary treatments. The trans diet reduced apo A1 and the resulting apo B/A1 ratio was increased significantly by trans relative to all other dietary treatments. Addition of 0.1% dietary cholesterol to these diets almost doubled the plasma TC and LDL-C in all dietary treatments. However, HDL-C was only marginally higher with the addition of dietary cholesterol. The LM + C (cholesterol added) diet resulted in the highest TC and LDL-C that was significant compared to all other dietary treatments. Trans + C increased TC compared to POL + C and AHA + C diets while increases in the LDL-C did not attain significance. The addition of dietary cholesterol did not affect HDL-C between treatments whereas plasma triglycerides were significantly increased by the trans + C diet relative to all other treatments. Both the trans + C and LM + C diets increased apo B and decreased apo A1 relative to the POL + C and AHA + C diets. The resulting apo B/A1 ratio was similarly altered. These results affirm that the lauric + myristic acid combination, along with trans fatty acids, increased lipoprotein-associated coronary heart disease risk factors compared to either POL or AHA.
    Matched MeSH terms: Palmitic Acid/administration & dosage; Palmitic Acid/pharmacology*
  5. Yassin AA, Mohamed IO, Ibrahim MN, Yusoff MS
    Appl Biochem Biotechnol, 2003 Jul;110(1):45-52.
    PMID: 12909731
    Immobilized PS-C 'Amano' II lipase was used to catalyze the interesterification of palm olein (POo) with 30, 50, and 70% stearic acid in n-hexane at 60 degrees C. The catalytic performance of the immobilized lipase was evaluated by determining the composition change of fatty acyl groups and triacylglycerol (TAG) by gas liquid chromatography and high-performance liquid chromatography, respectively. The interesterification process resulted in the formation of new TAGs, mainly tripalmitin and dipalmitostearin, both of which were absent in the original oil. These changes in TAG composition resulted in an increase in slip melting point, from the original 25.5 degrees C to 36.3, 37.0, and 40.0 degrees C in the modified POo with 30, 50, and 70% stearic acid, respectively. All the reactions attained steady state in about 6 h. This type of work will find great applications in food industries, such as confectionery.
    Matched MeSH terms: Palmitic Acid/chemistry
  6. Sundram K, French MA, Clandinin MT
    Eur J Nutr, 2003 Aug;42(4):188-94.
    PMID: 12923649
    Partial hydrogenation of oil results in fats containing unusual isomeric fatty acids characterized by cis and trans configurations. Hydrogenated fats containing trans fatty acids increase plasma total cholesterol (TC) and LDL-cholesterol while depressing HDL-cholesterol levels. Identifying the content of trans fatty acids by food labeling is overshadowed by a reluctance of health authorities to label saturates and trans fatty acids separately. Thus, it is pertinent to compare the effects of trans to saturated fatty acids using stable isotope methodology to establish if the mechanism of increase in TC and LDL-cholesterol is due to the increase in the rate of endogenous synthesis of cholesterol. Ten healthy normocholesterolemic female subjects consumed each of two diets containing approximately 30% of energy as fat for a fourweek period. One diet was high in palmitic acid (10.6% of energy) from palm olein and the other diet exchanged 5.6% of energy as partially hydrogenated fat for palmitic acid. This fat blend resulted in monounsaturated fatty acids decreasing by 4.9 % and polyunsaturated fats increasing by 2.7%. The hydrogenated fat diet treatment provided 3.1% of energy as elaidic acid. For each dietary treatment, the fractional synthesis rates for cholesterol were measured using deuterium-labeling procedures and blood samples were obtained for blood lipid and lipoprotein measurements. Subjects exhibited a higher total cholesterol and LDL-cholesterol level when consuming the diet containing trans fatty acids while also depressing the HDL-cholesterol level. Consuming the partially hydrogenated fat diet treatment increased the fractional synthesis rate of free cholesterol. Consumption of hydrogenated fats containing trans fatty acids in comparison to a mixtur e of palmitic and oleic acids increase plasma cholesterol levels apparently by increasing endogenous synthesis of cholesterol.
    Matched MeSH terms: Palmitic Acid/administration & dosage*; Palmitic Acid/pharmacology
  7. Loo JL, Lai OM, Long K, Ghazali HM
    World J Microbiol Biotechnol, 2007 Dec;23(12):1771-8.
    PMID: 27517833 DOI: 10.1007/s11274-007-9427-2
    Mycelium-bound lipase (MBL) was prepared using a strain of Geotrichum candidum isolated from local soil. At the time of maximum lipase activity (54 h), the mycelia to which the lipase was bound were harvested by filtration and centrifugation. Dry MBL was prepared by lyophilizing the mycelia obtained. The yield of MBL was 3.66 g/l with a protein content of 44.11 mg/g. The lipase activity and specific lipase activity were 22.59 and 510 U/g protein, respectively. The moisture content of the MBL was 3.85%. The activity of free (extracellular) lipase in the culture supernatant (after removal of mycelia) was less than 0.2 U/ml. The MBL showed selectivity for oleic acid over palmitic acid during hydrolysis of palm olein, indicating that the lipase from G. candidum displayed high substrate selectivity for unsaturated fatty acid containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols.
    Matched MeSH terms: Palmitic Acid
  8. Taha EM, Omar O, Yusoff WM, Hamid AA
    Annals of microbiology, 2010 Dec;60(4):615-622.
    PMID: 21125005
    Lipid biosynthesis and fatty acids composition of oleaginous zygomycetes, namely Cunninghamella bainieri 2A1, cultured in media with excess or limited nitrogen were quantitatively determined at different times of culture growth. Accumulation of lipids occurred even when the activity of NAD(+)-ICDH (β-Nicotinamide adenine dinucleotide-isocitrate dehydrogenase) was still detectable in both media. In C. bainieri 2A1, under nitrogen limitation, the ratio of lipids was around 35%, whereas in nitrogen excess medium (feeding media supplemented with ammonium tartarate), the lipid ratio decreased. The amount of this decrease depended on the level of ammonium tartarate in the media. The main findings in this paper were that C. bainieri 2A1 has the ability to accumulate lipid although nitrogen concentration detected inside the media and that NAD-ICDH was active in all culture periods. These results proved that the strain C. bainieri 2A1 has an alternative behavior in lipid biosynthesis that differs from yeast. According to the old hypotheses, yeasts could not accumulate lipid more than 10% when nitrogen was detected inside the media. Nitrogen-limited and excess media both contained the same fatty acids (palmitic acid, stearic acid, olic acid, linoleic acid and γ-linolenic acid), but at different concentrations. The C:N ratio was also studied and showed no effects on total lipid accumulation, but a significant effect on γ-linolenic acid concentration.
    Matched MeSH terms: Palmitic Acid
  9. Alireza, S., Tan, C.P., Hamed, M., Che Man, Y.B.
    MyJurnal
    The main objective of the present study was to investigate the effects of the frying media and storage time on the fatty acid composition (FAC) and iodine value (IV) of deep-fat fried potato chips. The frying experiment was conducted at 180ºC for five consecutive days. Six frying media were considered as the main treatments: refined, bleached, deodorized (RBD) palm olein (A), canola oil (C), RBD palm olein/sesame oil (AB, 1:1 w/w), RBD palm olein/canola oil (AC, 1:1, w/w), sesame oil/canola oil (BC, 1:1, w/w), and RBD palm olein/sesame oil/canola oil (ABC, 1:1:1, w/w/w). The initial degrees of unsaturation of the consumed oils, A, C, AB, AC, BC, and ABC, were 58.6, 94.0, 68.0, 72.2, 87.7, and 75.8 (g/100 g), respectively. The fatty acid analysis showed that there was a decrease in both the linolenic acid (C18:3) and linoleic acid (C18:2) contents, whereas the palmitic acid (C16:0) increased with a prolonged frying time. The chemical analysis showed that there was a significant (p < 0.05) difference in terms of the IV for each frying oil during the five consecutive days of frying (day 0 to 5). Oil C had the least stability in terms of deep-fat frying due to a high level of unsaturated fatty acids. Conversely, oil AC had the best stability due to the smallest reduction of the C18:2/C16:0 ratio and the IV.
    Matched MeSH terms: Palmitic Acid
  10. Suseno, S.H., Tajul, A.Y., Nadiah, W.A., Hamidah, Asti, Ali, S.
    MyJurnal
    Proximate content, fatty acid and mineral compositions were determined for the ten species of deepsea fish from Southern Java Ocean and Western Sumatra Ocean, Indonesia. The proximate composition was found to be 23.0-24.8 % protein, 1.9-4.1% fat , 0-1.75 % carbohydrate, 1.7-2.4 % ash and 70.1-72.1% water, whereas the fatty acid compositions consisted of 0.86 - 49.63 % saturated fatty acids (SFA), 0.29 - 50.09 % monounsaturated fatty acid (MUFA) and 2.85 % - 46.32 % polyunsaturated fatty acids (PUFAs). Among them, those occurring in the highest proportions were myristic acid (C14:0, 0.12-7.59%), palmitic acid (C16:0, 0.02–20.5%), stearic acid (C18:0, 0.42–49.19), oleic acid (C18:1, 0.29–50.09 %), linoleic acid (C18:2, 0.23– 44.91%), eicosapentaenoic acid (EPA, C20:5n3, 0.41– 4.61%) docosahexaenoic acid (DHA, C22:6n3, 0.28– 3.44%). The rest of the microelements, Cd, Hg, and Pb were all present in amounts below toxic levels.
    Matched MeSH terms: Palmitic Acid
  11. Makahleh A, Saad B
    Anal Chim Acta, 2011 May 23;694(1-2):90-4.
    PMID: 21565307 DOI: 10.1016/j.aca.2011.03.033
    A single line flow injection analysis (FIA) method that incorporated a preconcentrator column packed with C(18) particles and capacitively coupled contactless conductivity detector (C(4)D) was developed for the determination of free fatty acid (FFA) in vegetable oils. The carrier stream was methanol/1.5 mM sodium acetate (pH 8) 80:20 (v/v) at a flow rate of 1.0 mL min(-1). Calibration curve was well correlated (r(2)=0.9995) within the range of 1-200 mg L(-1) FFA (expressed as palmitic acid). Sampling rate of 40-60 h(-1) was achieved. Good agreement was found between the standard non-aqueous titrimetry method and the proposed method when applied to the determination of FFA in palm (crude, olein, and refined, bleached and deodorised) and other vegetable (soybean, rice bran, walnut, corn and olive) oils. The proposed method offers distinct advantages over the official method, especially in terms of simplicity, high sampling rate, economy of solvents and sample, offering considerable promise as a low cost automated system that needs minimum human intervention over long periods of time.
    Matched MeSH terms: Palmitic Acid
  12. Karupaiah T, Tan CH, Chinna K, Sundram K
    J Am Coll Nutr, 2011 Dec;30(6):511-21.
    PMID: 22331686
    OBJECTIVE: Saturated fats increase total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C) and are linked to coronary artery disease risk. The effect of variance in chain length of saturated fatty acids (SFA) on coronary artery disease in human postprandial lipemia is not well elucidated.

    METHODS: A total of 20 healthy volunteers were challenged with 3 test meals, similar in fat content (~31% en) but varying in saturated SFA content and polyunsaturated/saturated fatty acid ratios (P/S). The 3 meals were lauric + myristic acid-rich (LM), P/S 0.19; palmitic acid-rich (POL), P/S 0.31; and stearic acid-rich (STE), P/S 0.22. Blood was sampled at fasted baseline and 2, 4, 5, 6, and 8 hours. Plasma lipids (triacylglycerol [TAG]) and lipoproteins (TC, LDL-C, high density lipoprotein-cholesterol [HDL-C]) were evaluated.

    RESULTS: Varying SFA in the test meal significantly impacted postprandial TAG response (p < 0.05). Plasma TAG peaked at 5 hours for STE, 4 hours for POL, and 2 hours for LM test meals. Area-under-the-curve (AUC) for plasma TAG was increased significantly after STE treatment (STE > LM by 32.2%, p = 0.003; STE > POL by 27.9%, p = 0.023) but was not significantly different between POL and LM (POL > LM by 6.0%, p > 0.05). At 2 hours, plasma HDL-C increased significantly after the LM and POL test meals compared with STE (p < 0.05). In comparison to the STE test meal, HDL-C AUC was elevated 14.0% (p = 0.005) and 7.6% (p = 0.023) by the LM and POL test meals, respectively. The TC response was also increased significantly by LM compared with both POL and STE test meals (p < 0.05).

    CONCLUSIONS: Chain length of saturates clearly mediated postmeal plasma TAG and HDL-C changes.

    Matched MeSH terms: Palmitic Acid/administration & dosage
  13. Voon PT, Ng TK, Lee VK, Nesaretnam K
    Am J Clin Nutr, 2011 Dec;94(6):1451-7.
    PMID: 22030224 DOI: 10.3945/ajcn.111.020107
    BACKGROUND: Dietary fat type is known to modulate the plasma lipid profile, but its effects on plasma homocysteine and inflammatory markers are unclear.

    OBJECTIVE: We investigated the effects of high-protein Malaysian diets prepared with palm olein, coconut oil (CO), or virgin olive oil on plasma homocysteine and selected markers of inflammation and cardiovascular disease (CVD) in healthy adults.

    DESIGN: A randomized-crossover intervention with 3 dietary sequences of 5 wk each was conducted in 45 healthy subjects. The 3 test fats, namely palmitic acid (16:0)-rich palm olein (PO), lauric and myristic acid (12:0 + 14:0)-rich CO, and oleic acid (18:1)-rich virgin olive oil (OO), were incorporated at two-thirds of 30% fat calories into high-protein Malaysian diets.

    RESULTS: No significant differences were observed in the effects of the 3 diets on plasma total homocysteine (tHcy) and the inflammatory markers TNF-α, IL-1β, IL-6, and IL-8, high-sensitivity C-reactive protein, and interferon-γ. Diets prepared with PO and OO had comparable nonhypercholesterolemic effects; the postprandial total cholesterol for both diets and all fasting lipid indexes for the OO diet were significantly lower (P < 0.05) than for the CO diet. Unlike the PO and OO diets, the CO diet was shown to decrease postprandial lipoprotein(a).

    CONCLUSION: Diets that were rich in saturated fatty acids prepared with either PO or CO, and an OO diet that was high in oleic acid, did not alter postprandial or fasting plasma concentrations of tHcy and selected inflammatory markers. This trial was registered at clinicaltrials.gov as NCT00941837.

    Matched MeSH terms: Palmitic Acid/pharmacology
  14. Yoochatchaval W, Kumakura S, Tanikawa D, Yamaguchi T, Yunus MF, Chen SS, et al.
    Water Sci Technol, 2011;64(10):2001-8.
    PMID: 22105121 DOI: 10.2166/wst.2011.782
    The biodegradation characteristics of palm oil mill effluent (POME) and the related microbial community were studied in both actual sequential anaerobic ponds in Malaysia and enrichment cultures. The significant degradation of the POME was observed in the second pond, in which the temperature was 35-37 °C. In this pond, biodegradation of major long chain fatty acids (LCFA), such as palmitic acid (C16:0) and oleic acid (C18:1), was also confirmed. The enrichment culture experiment was conducted with different feeding substrates, i.e. POME, C16:0 and C18:1, at 35 °C. Good recovery of methane indicated biodegradation of feeds in the POME and C16:0 enrichments. The methane production rate of the C18:1 enrichment was slower than other substrates and inhibition of methanogenesis was frequently observed. Denaturing gradient gel electrophoresis (DGGE) analyses indicated the existence of LCFA-degrading bacteria, such as the genus Syntrophus and Syntorophomonas, in all enrichment cultures operated at 35 °C. Anaerobic degradation of the POME under mesophilic conditions was stably processed as compared with thermophilic conditions.
    Matched MeSH terms: Palmitic Acid/analysis
  15. Sadrolhosseini AR, Moksin MM, Nang HL, Norozi M, Yunus WM, Zakaria A
    Int J Mol Sci, 2011;12(4):2100-11.
    PMID: 21731429 DOI: 10.3390/ijms12042100
    In this study, optical and thermal properties of normal grade and winter grade palm oil biodiesel were investigated. Surface Plasmon Resonance and Photopyroelectric technique were used to evaluate the samples. The dispersion curve and thermal diffusivity were obtained. Consequently, the variation of refractive index, as a function of wavelength in normal grade biodiesel is faster than winter grade palm oil biodiesel, and the thermal diffusivity of winter grade biodiesel is higher than the thermal diffusivity of normal grade biodiesel. This is attributed to the higher palmitic acid C(16:0) content in normal grade than in winter grade palm oil biodiesel.
    Matched MeSH terms: Palmitic Acid/chemistry
  16. Noor Wini Mazlan, Ikram M. Said
    Sains Malaysiana, 2011;40(9):1037-1041.
    The seeds of C. cleomifolia (locally known as kacang hantu) collected along Simpang Pulai - Berinchang Road, Cameron Highlands, was defatted with hexane and the resulting oil was analysed for their physico-chemical properties. The percentage yield of the oil was calculated as 5.3%. The acid value (1.2%), iodine value (85), peroxide value (0.6), saponification value (192.0) and unsaponifiable matter (2.3%) were determined to assess the quality of the oil. The physico-chemical characterisation showed that C. cleomifolia seeds oil is unsaturated semi-drying oil, with high saponifi cation and acidic values. The fatty acid composition of C. cleomifolia seed oil was determined by Gas Chromatography and Gas Chromatography-Mass Spectrometry (ToF). The seed oil of C. cleomifolia contained linoleic acid (57.59%) and palmitic acid (5.07%), the most abundant unsaturated and saturated fatty acids, respectively. The polyunsaturated triacylglycerol (TAG) in C. cleomifolia seed oil determined by reverse phase High performance Liquid Chromatography; contained as PLL (18.04%) followed by POL + SLL (11.92%), OOL (7.04%) and PLLn (6.31%). The melting and cooling point of the oil were 16.22°C and -33.54°C, respectively
    Matched MeSH terms: Palmitic Acid
  17. Megat Rusydi, M.R., Noraliza, C.W., Azrina, A., Zulkhairi, A.
    MyJurnal
    Proximate content and fatty acid composition of germinated and non-germinated legumes (kidney, mung, soy bean and peanut) and rice varieties (red, black, Barrio, brown and milled) were evaluated. In germinated samples, moisture content increased significantly while carbohydrate, protein and fat were decreased significantly. Total dietary fibre was increased in germinated samples except germinated kidney and mung bean. Germination also increased saturated fatty acids (SFA) in legumes, black, red and brown rice. Monounsaturated fatty acids (MUFA) decreased in all samples except germinated kidney, soy and Barrio rice. Polyunsaturated fatty acids (PUFA) increased in some germinated samples (mung bean, peanut, red, brown, Barrio and white rice) but decreased in other legume and rice samples. Generally, palmitic acid increased while stearic, oleic and linoleic acids decreased after germination. Overall, the proximate content and fatty acids of legume and rice varieties changed after germination and may be used as alternate resources for individuals with lifestyle diseases.
    Matched MeSH terms: Palmitic Acid
  18. Mohan S, Bustamam A, Ibrahim S, Al-Zubairi AS, Aspollah M, Abdullah R, et al.
    PMID: 21785623 DOI: 10.1093/ecam/neq010
    The plant Typhonium flagelliforme, commonly known as "rodent tuber" in Malaysia, is often used as a health supplement and traditional remedy for alternative cancer therapies, including leukemia. This study aimed to evaluate in vitro anti-leukemic activity of dichloromethane extract/fraction number 7 (DCM/F7) from T. flagelliforme tuber on human T4 lymphoblastoid (CEMss) cell line. The DCM extract of tuber has been fractionated by column chromatography. The obtained fractions were evaluated for its cytotoxicity toward CEMss cells as well as human primary blood lymphocytes (PBLs). Assessment of apoptosis produced by the most active fraction was evaluated by various microscopic techniques and further confirmation of apoptosis was done by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Phytochemical screening was done by gas chromatography-mass spectrometry (GC-MS). The results shows that 7 out of 12 fractions showed significant cytotoxicity against the selected cell line CEMss, in which fractions DCM/F7, DCM/F11 and DCM/F12 showed exceptional activity with 3, 5 and 6.2 μg ml(-1), respectively. Further studies in the non-cancerous PBL exhibited significant selectivity of DCM/F7 compared to other fractions. Cytological observations showed chromatin condensation, cell shrinkage, abnormalities of cristae, membrane blebbing, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by double-staining of acridine orange (AO)/propidium iodide (PI), SEM and TEM. In addition, DCM/F7 has increased the cellular DNA breaks on treated cells. GC-MS revealed that DCM/F7 contains linoleic acid, hexadecanoic acid and 9-hexadecanoic acid. The present results indicate that T. flagelliforme possess a valuable anti-leukemic effect and was able to produce distinctive morphological features of cell death that corresponds to apoptosis.
    Matched MeSH terms: Palmitic Acid
  19. Amid BT, Mirhosseini H, Kostadinović S
    Chem Cent J, 2012 Oct 14;6(1):117.
    PMID: 23062269 DOI: 10.1186/1752-153X-6-117
    BACKGROUND: The biological functions of natural biopolymers from plant sources depend on their chemical composition and molecular structure. In addition, the extraction and further processing conditions significantly influence the chemical and molecular structure of the plant biopolymer. The main objective of the present study was to characterize the chemical and molecular structure of a natural biopolymer from Durio zibethinus seed. A size-exclusion chromatography coupled to multi angle laser light-scattering (SEC-MALS) was applied to analyze the molecular weight (Mw), number average molecular weight (Mn), and polydispersity index (Mw/Mn).

    RESULTS: The most abundant monosaccharide in the carbohydrate composition of durian seed gum were galactose (48.6-59.9%), glucose (37.1-45.1%), arabinose (0.58-3.41%), and xylose (0.3-3.21%). The predominant fatty acid of the lipid fraction from the durian seed gum were palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:2). The most abundant amino acids of durian seed gum were: leucine (30.9-37.3%), lysine (6.04-8.36%), aspartic acid (6.10-7.19%), glycine (6.07-7.42%), alanine (5.24-6.14%), glutamic acid (5.57-7.09%), valine (4.5-5.50%), proline (3.87-4.81%), serine (4.39-5.18%), threonine (3.44-6.50%), isoleucine (3.30-4.07%), and phenylalanine (3.11-9.04%).

    CONCLUSION: The presence of essential amino acids in the chemical structure of durian seed gum reinforces its nutritional value.

    Matched MeSH terms: Palmitic Acid
  20. Altaf R, Asmawi MZ, Dewa A, Sadikun A, Umar MI
    Pharmacogn Rev, 2013 Jan;7(13):73-80.
    PMID: 23922460 DOI: 10.4103/0973-7847.112853
    Phaleria macrocarpa, commonly known as Mahkota dewa is a medicinal plant that is indigenous to Indonesia and Malaysia. Extracts of P. macrocarpa have been used since years in traditional medicine that are evaluated scientifically as well. The extracts are reported for a number of valuable medicinal properties such as anti-cancer, anti-diabetic, anti-hyperlipidemic, anti-inflammatory, anti-bacterial, anti-fungal, anti-oxidant and vasorelaxant effect. The constituents isolated from different parts of P. macrocarpa include Phalerin, gallic acid, Icaricide C, magniferin, mahkoside A, dodecanoic acid, palmitic acid, des-acetylflavicordin-A, flavicordin-A, flavicordin-D, flavicordin-A glucoside, ethyl stearate, lignans, alkaloids andsaponins. The present review is an up-to-date summary of occurrence, botanical description, ethnopharmacology, bioactivity and toxicological studies related to P. macrocarpa.
    Matched MeSH terms: Palmitic Acid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links