Displaying publications 1 - 20 of 64 in total

Abstract:
Sort:
  1. Fadilah NIM, Rahman MBA, Yusof LM, Mustapha NM, Ahmad H
    Pharmaceutics, 2021 Feb 01;13(2).
    PMID: 33535623 DOI: 10.3390/pharmaceutics13020193
    The standard treatment of open wounds via the direct usage of therapeutic agents is not without limitations with respect to healing. Small peptides can create a favorable milieu for accelerating the healing of wounds. This study presents the potential of a novel fatty acid conjugated tetrapeptide (palmitic acid-glycine-aspartic acid-proline-histidine; Palmitoyl-GDPH) in alleviating wound healing. Tetracycline was employed as a standard control drug following its significance in wound healing including biologically active and antimicrobial effects. The peptide in liquid form was applied on to a 4 cm2 full thickness wound surgically induced at the dorsum of Sprague Dawley (SD) rats. The in vivo wound treatment with Palmitoyl-GDPH for eighteen days, histologically demonstrated an almost perfect healing exhibited by increased re-epithelialization, enhanced collagen deposition, and diminished scar formation compared to the controls. In addition, the well-developed epidermal-dermal junction and ultimate stimulation of hair follicle-growth in the Palmitoyl-GDPH treated group indicated the wound to have healed as functionally viable tissues. In general, the much lower hemogram values in the Palmitoyl-GDPH group indicated that the ongoing healing is en route to an earlier recovery. Additionally, the liver, kidney, and pancreas function biomarkers being within normal limits indicated the relatively non-toxic nature of Palmitoyl-GDPH at the used dosage. These results indisputably supported the great potential of this newly synthesized Palmitoyl-GDPH to be used as an effective therapeutic agent for wound healing (this actually means creating a new wound).
    Matched MeSH terms: Palmitic Acid
  2. Wan Afifudeen CL, Loh SH, Aziz A, Takahashi K, Effendy AWM, Cha TS
    Sci Rep, 2021 01 11;11(1):381.
    PMID: 33431982 DOI: 10.1038/s41598-020-79711-2
    Bioprospecting for biodiesel potential in microalgae primarily involves a few model species of microalgae and rarely on non-model microalgae species. Therefore, the present study determined changes in physiology, oil accumulation, fatty acid composition and biodiesel properties of a non-model microalga Messastrum gracile SE-MC4 in response to 12 continuous days of nitrate-starve (NS) and nitrate-replete (NR) conditions respectively. Under NS, the highest oil content (57.9%) was achieved despite reductions in chlorophyll content, biomass productivity and lipid productivity. However, under both NS and NR, palmitic acid and oleic acid remained as dominant fatty acids thus suggesting high potential of M. gracile for biodiesel feedstock consideration. Biodiesel properties analysis returned high values of cetane number (CN 61.9-64.4) and degree of unsaturation (DU 45.3-57.4) in both treatments. The current findings show the possibility of a non-model microalga to inherit superior ability over model species in oil accumulation for biodiesel development.
    Matched MeSH terms: Palmitic Acid/metabolism*
  3. Mainasara MM, Abu Bakar MF, Md Akim A, Linatoc AC, Abu Bakar FI, Ranneh YKH
    PMID: 33505506 DOI: 10.1155/2021/8826986
    Breast cancer is among the most commonly diagnosed cancer and the leading cause of cancer-related death among women globally. Malaysia is a country that is rich in medicinal plant species. Hence, this research aims to explore the secondary metabolites, antioxidant, and antiproliferative activities of Dioscorea bulbifera leaf collected from Endau Rompin, Johor, Malaysia. Antioxidant activity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays, while the cytotoxicity of D. bulbifera on MDA-MB-231 and MCF-7 breast cancer cell lines was tested using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cell cycle analysis and apoptosis were assessed using flow cytometry analysis. Phytochemical profiling was conducted using gas chromatography-mass spectrometry (GC-MS). Results showed that methanol extract had the highest antioxidant activity in DPPH, FRAP, and ABTS assays, followed by ethyl acetate and hexane extracts. D. bulbifera tested against MDA-MB-231 and MCF-7 cell lines showed a pronounced cytotoxic effect with IC50 values of 8.96 μg/mL, 6.88 μg/mL, and 3.27 μg/mL in MCF-7 and 14.29 μg/mL, 11.86 μg/mL, and 7.23 μg/mL in MDA-MB-231, respectively. Cell cycle analysis also indicated that D. bulbifera prompted apoptosis at various stages, and a significant decrease in viable cells was detected within 24 h and substantially improved after 48 h and 72 h of treatment. Phytochemical profiling of methanol extract revealed the presence of 39 metabolites such as acetic acid, n-hexadecanoic acid, acetin, hexadecanoate, 7-tetradecenal, phytol, octadecanoic acid, cholesterol, palmitic acid, and linolenate. Hence, these findings concluded that D. bulbifera extract has promising anticancer and natural antioxidant agents. However, further study is needed to isolate the bioactive compounds and validate the effectiveness of this extract in the In in vivo model.
    Matched MeSH terms: Palmitic Acid
  4. Darmawan MA, Muhammad BZ, Harahap AFP, Ramadhan MYA, Sahlan M, Haryuni, et al.
    Heliyon, 2020 Dec;6(12):e05742.
    PMID: 33364505 DOI: 10.1016/j.heliyon.2020.e05742
    Tengkawang fat (Shorea stenoptera), from an indigenous plant of the Kalimantan forest, has excellent potential as an alternative source of vegetable fat because it has a high level of fatty acids composition. Activated natural bentonite can be used as a bleaching agent to improve the quality of tengkawang fat. This research aims to reduce the acidity, peroxide number values and identify the physicochemical properties (fatty acid composition, nutrients, and thermal) of tengkawang butter. Initially, tengkawang samples from Nanga Yen and Sintang were pre-treated using the degumming process with 1% phosphoric acid and the neutralization process with a 1 M NaOH 10% w/w solution. The results show that the acidity (mg NaOH/g) of the tengkawang fat samples was reduced from 11.00 to 3.36 when using bentonite activated at 200 °C. The bentonite activated with 0.5 M HCl reduced the acidity to 3.61. The peroxide number (meq O2/kg) of the tengkawang fat samples was reduced from 9.45 to 4.84 and 3.47 by bleaching with thermal-activated and acid-activated bentonites, respectively. Peroxide value correlates with β-carotene content. The smaller of the β-carotene content, the smaller the peroxide value. The acidity, peroxide number, and iodine number values from tengkawang fat after treatment adhere to the SNI 2903: 2016 standard. The main content of fatty acids in tengkawang fat is palmitic acid, stearic acid, and oleic acid. These results show that both products are suitable for the food industry in terms of the acid and peroxide numbers. The application of this research results will assist local people in increasing the economic value of the product from tengkawang plant, which is an indigenous plant from Kalimantan.
    Matched MeSH terms: Palmitic Acid
  5. Venkatramanan M, Sankar Ganesh P, Senthil R, Akshay J, Veera Ravi A, Langeswaran K, et al.
    ACS Omega, 2020 Oct 13;5(40):25605-25616.
    PMID: 33073086 DOI: 10.1021/acsomega.0c02483
    Chromobacterium violaceum (C. violaceum) is a Gram-negative, rod-shaped facultatively anaerobic bacterium implicated with recalcitrant human infections. Here, we evaluated the anti-QS and antibiofilm activities of ethyl acetate extracts of Passiflora edulis (P. edulis) on the likely inactivation of acyl-homoserine lactone (AHL)-regulated molecules in C. violaceum both by in vitro and in silico analyses. Our investigations showed that the sub-MIC levels were 2, 1, and 0.5 mg/mL, and the concentrations showed a marked reduction in violacein pigment production by 75.8, 64.6, and 35.2%. AHL quantification showed 72.5, 52.2, and 35.9% inhibitions, inhibitions of EPS production (72.8, 36.5, and 25.9%), and reductions in biofilm formation (90.7, 69.4, and 51.8%) as compared to a control. Light microscopy and CLSM analysis revealed dramatic reduction in the treated biofilm group as compared to the control. GC-MS analysis showed 20 major peaks whose chemical structures were docked as the CviR ligand. The highest docking score was observed for hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester bonds in the active site of CviR with a binding energy of -8.825 kcal/mol. Together, we found that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester remarkably interacted with CviR to inhibit the QS system. Hence, we concluded that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester of P. edulis could likely be evaluated for treating C. violaceum infections.
    Matched MeSH terms: Palmitic Acid
  6. Qudus B Aroyehun A, Abdul Razak S, Palaniveloo K, Nagappan T, Suraiza Nabila Rahmah N, Wee Jin G, et al.
    Foods, 2020 Sep 18;9(9).
    PMID: 32961907 DOI: 10.3390/foods9091313
    Caulerpa racemosa (Forsskal) J. Agardh is a green seaweed used as food and folk medicine since ancient times in the Indo-Pacific region, particularly in southeast Asia. In this study, the proximate nutrient composition, phytochemical, anti-oxidant and anti-diabetic properties of sea grape C. racemosa collected from culture fishponds in Johor, Malaysia were analysed. The contents (dry weight basis) of carbohydrate, crude protein, crude lipids, ash and caloric value obtained were 33.42 ± 1.34%, 20.27 ± 0.14%, 4.20 ± 0.32%, 28.25 ± 0.27% and 2544.67 ± 7.04 cal g-1, respectively. The amino acid score (AAs) and biological protein value (213.43 mg g-1) indicated that C. racemosa presented a better protein quality. The most abundant fatty acids were C16:0 (palmitic acid: 63.27%), followed by C18:1 (oleic acid: 5.80%), and C18:2 ῳ6 (linoleic acid: 5.33%). The analysis of the ash content indicated that essential minerals and trace elements, such as Ca, Fe, and Mn, were present in the seaweed. The total phenolic content (TPC) and total flavonoid content (TFC) observed in the ethyl acetate extract were 17.88 ± 0.78 mg GAE g-1 and 59.43 ± 2.45 mg QE g-1, respectively. The ethyl acetate extract of C. racemosa demonstrated notable anti-diabetic activity in diabetic induced rats. The low (100 mg kg-1) and high (200 mg kg-1) doses of cultivated C. racemosa extract exhibited a significant decrease (p < 0.05) in blood glucose levels while preventing weight loss, reducing plasma AST, ALT levels as a sign of hepatoprotective effect and recording albumin levels similar to positive control in diabetic induced rats. The results support the usefulness of cultivated C. racemosa as a potential functional food.
    Matched MeSH terms: Palmitic Acid
  7. Nehdi IA, Sbihi HM, Tan CP, Al-Resayes SI, Rashid U, Al-Misned FA, et al.
    J Oleo Sci, 2020 May 02;69(5):413-421.
    PMID: 32281562 DOI: 10.5650/jos.ess19298
    Allium ampeloprasum L., commonly known as wild leek, is an edible vegetable that has been cultivated for centuries. However, no detailed studies have been undertaken to valorize A. ampeloprasum seed oil. This study aims to evaluate the physicochemical properties, chemical composition, and antioxidant activity of A. ampeloprasum seed oil. The seed oil content was found to be 18.20%. Gas chromatographymass spectrometry (GC-MS) showed that linoleic acid (71.65%) was the dominant acid, followed by oleic acid (14.11%) and palmitic acid (7.11%). A. ampeloprasum seed oil exhibited an oxidative stability of 5.22 h. Moreover, γ- and δ-tocotrienols were the major tocols present (79.56 and 52.08 mg/100 g oil, respectively). The total flavonoid content (16.64 µg CE /g oil) and total phenolic content (62.96 µg GAE /g oil) of the seed oil were also determined. The antioxidant capacity of the oil, as evaluated using the ABTS assay (136.30 µM TEAC/g oil), was found to be significant. These findings indicate that A. ampeloprasum seeds can be regarded as a new source of edible oil having health benefits and nutritional properties.
    Matched MeSH terms: Palmitic Acid/analysis
  8. Ismail NZ, Md Toha Z, Muhamad M, Nik Mohamed Kamal NNS, Mohamad Zain NN, Arsad H
    Molecules, 2020 Apr 29;25(9).
    PMID: 32365508 DOI: 10.3390/molecules25092067
    Clinacanthus nutans is a well-known herb that has been used as an alternative and therapeutic medicine, however more selective C. nutans extracts are needed. In this study, leaves were extracted with 80% methanol and further fractionated with n-hexane, dichloromethane, chloroform, n-butanol, and aqueous residue. Subsequently, the total phenolic content (TPC), total flavonoid content (TFC), antioxidant scavenging activity, and antiproliferative effects on breast cancer (Michigan Cancer Foundation-7 [MCF7]) and normal breast (Michigan Cancer Foundation-10A [MCF 10A]) cells of the extracts were measured. Additionally, molecular docking simulation of the major compounds from C. nutans extracts was conducted. The aqueous residue had the highest TPC and TFC, whereas the crude extract had the highest scavenging activity. Among the extracts, dichloromethane extract (CN-Dcm) was selected as it had the highest selectivity index (SI) (1.48). Then, the chosen extract (CN-Dcm) was proceed for further analysis. The compounds from CN-Dcm were identified using gas chromatography-mass spectrometry (GC-MS). The major compounds from CN-Dcm were further investigated through molecular docking studies. Palmitic acid and linolenyl alcohol were the compounds found in the CN-Dcm extract that exhibited the highest binding affinities with p53-binding protein Mdm-2. These results highlight the potential of C. nutans as a source of anticancer activities.
    Matched MeSH terms: Palmitic Acid
  9. Anne-Marie K, Yee W, Loh SH, Aziz A, Cha TS
    World J Microbiol Biotechnol, 2020 Jan 07;36(1):17.
    PMID: 31912247 DOI: 10.1007/s11274-019-2790-y
    In this study, the effects of limited and excess nitrate on biomass, lipid production, and fatty acid profile in Messastrum gracile SE-MC4 were determined. The expression of fatty acid desaturase genes, namely stearoyl-ACP desaturase (SAD), omega-6 fatty acid desaturase (ω-6 FAD), omega-3 fatty acid desaturase isoform 1 (ω-3 FADi1), and omega-3 fatty acid desaturase isoform 2 (ω-3 FADi2) was also assessed. It was found that nitrate limitation generally increased the total oil, α-linolenic acid (C18:3n3) and total polyunsaturated fatty acid (PUFA) contents in M. gracile. The reduction of nitrate concentration from 1.76 to 0.11 mM increased the total oil content significantly from 32.5 to 41.85% (dry weight). Palmitic (C16:0) and oleic (C18:1) acids as the predominant fatty acids in this microalgae constituted between 82 and 87% of the total oil content and were relatively consistent throughout all nitrate concentrations tested. The expression of SAD, ω-6 FAD, and ω-3 FADi2 genes increased under nitrate limitation, especially at 0.11 mM nitrate. The ω-3 FADi1 demonstrated a binary up-regulation pattern of expression under both nitrate-deficient (0.11 mM) and -excess (3.55 mM) conditions. Thus, findings from this study suggested that limited or excess nitrate could be used as part of a cultivation strategy to increase oil and PUFA content following media optimisation and more efficient culture methodology. Data obtained from the expression of desaturase genes would provide valuable insights into their roles under excess and limited nitrate conditions in M. gracile, potentially paving the way for future genetic modifications.
    Matched MeSH terms: Palmitic Acid/metabolism
  10. Azhari, N. A. M., Markom, M., Ismail, I., Anuar, N.
    MyJurnal
    Polygonum minus is a plant rich with bioactive components that contribute to food, pharmaceutical, and perfume industries. However, high moisture content in fresh plants will allow
    microbial activity that leads to the degradation of plant quality. This can be prevented by
    drying the fresh plants to preserve the characteristics of their bioactive components. The
    present work was conducted to determine the effect of different drying methods such as
    air-drying, oven-drying (40 and 60°C), and freeze-drying on essential oil (EO) yield and
    chemical compounds of P. minus roots. For comparison purposes, all samples were extracted
    by maceration with n-hexane at room temperature. Then, the samples were analysed and
    identified by using gas chromatography-mass spectrometry (GC-MS). The highest EO yield
    extract was obtained from freeze-drying (4.15 ± 0.5), followed by air-drying (3.79 ± 0.19). EO
    yield from oven-drying at 40 and 60°C was 3.4 ± 0.14 and 0.86 ± 0.04, respectively. Results
    showed that by increasing the drying temperature, the EO yield would decrease and cause a
    loss of major chemical compounds in the P. minus root. Air-drying was found to be the best
    method in preserving the presence of important chemical compound in P. minus roots such as
    β-caryophyllene (1.43%), pentadecane (4.34%), hexadecanoic acid (3.91%) and oleic acid
    (3.97%).
    Matched MeSH terms: Palmitic Acid
  11. Tan CH, Show PL, Ling TC, Nagarajan D, Lee DJ, Chen WH, et al.
    Bioresour Technol, 2019 Aug;285:121331.
    PMID: 30999192 DOI: 10.1016/j.biortech.2019.121331
    Third generation biofuels, also known as microalgal biofuels, are promising alternatives to fossil fuels. One attractive option is microalgal biodiesel as a replacement for diesel fuel. Chlamydomonas sp. Tai-03 was previously optimized for maximal lipid production for biodiesel generation, achieving biomass growth and productivity of 3.48 ± 0.04 g/L and 0.43 ± 0.01 g/L/d, with lipid content and productivity of 28.6 ± 1.41% and 124.1 ± 7.57 mg/L/d. In this study, further optimization using 5% CO2 concentration and semi-batch operation with 25% medium replacement ratio, enhanced the biomass growth and productivity to 4.15 ± 0.12 g/L and 1.23 ± 0.02 g/L/d, with lipid content and productivity of 19.4 ± 2.0% and 239.6 ± 24.8 mg/L/d. The major fatty acid methyl esters (FAMEs) were palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2). These short-chain FAMEs combined with high growth make Chlamydomonas sp. Tai-03 a suitable candidate for biodiesel synthesis.
    Matched MeSH terms: Palmitic Acid
  12. Ichimizu S, Watanabe H, Maeda H, Hamasaki K, Ikegami K, Chuang VTG, et al.
    J Control Release, 2019 06 28;304:156-163.
    PMID: 31082432 DOI: 10.1016/j.jconrel.2019.05.015
    We recently developed a cell-penetrating drug carrier composed of albumin (HSA) combined with palmitoyl-cyclic-(D-Arg)12. While it is possible that the palmitoyl-cyclic-(D-Arg)12/HSA enters the cell mainly via macropinocytosis, the mechanism responsible for the induction of macropinocytosis and endosomal escape remain unknown. We report herein that palmitoyl-cyclic-(D-Arg)12/HSA might interact with heparan sulfate proteoglycan and the chemokine receptor CXCR4 followed by multiple activations of the PKC/PI3K/JNK/mTOR signaling pathways to induce macropinocytosis. This result was further confirmed by a co-treatment with 70 kDa dextran, a macropinocytosis marker. Using liposomes that mimic endosomes, the leakage of 5,6-carboxyfluorescein from liposome was observed in the presence of palmitoyl-cyclic-(D-Arg)12/HSA only in the case of the anionic late endosome-like liposomes but not the neutral early endosome-like liposomes. Heparin largely inhibited this leakage, suggesting the importance of electrostatic interactions between palmitoyl-cyclic-(D-Arg)12/HSA and the late-endosomal membrane. Immunofluorescence staining and Western blotting data indicated that the intact HSA could be transferred from endosomes to the cytosol. These collective data suggest that the palmitoyl-cyclic-(D-Arg)12/HSA is internalized via macropinocytosis and intact HSA is released from the late endosomes to the cytoplasm before the endosomes fuse with lysosomes. Palmitoyl-cyclic-(D-Arg)12/HSA not only functions as an intracellular drug delivery carrier but also as an inducer of macropinocytosis.
    Matched MeSH terms: Palmitic Acid/chemistry
  13. Lee ZS, Chin SY, Cheng CK
    Heliyon, 2019 Jun;5(6):e01792.
    PMID: 31245637 DOI: 10.1016/j.heliyon.2019.e01792
    This study evaluates the effects of subcritical hydrothermal treatment on palm oil mill effluent (POME) and its concomitant formations of solid hydrochar, liquid product and gaseous product. The reactions were carried out at temperatures ranged 493 K-533 K for 2 h. The highest reduction of chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were 58.8% and 62.5%, respectively, at 533 K. In addition, the removal of total suspended solids (TSS) achieved up to 99%, with the pH of POME reaching 6 from the initial pH 4. The gas chromatography coupled with mass spectroscopy (GC-MS) analysis showed that the fresh POME contained n-Hexadecanoic acid as the dominant component, which gradually reduced in the liquid product in the reaction with increased temperature, in addition to the attenuation of carboxyl compounds and elevation of phenolic components. The gaseous products contained CO2, CO, H2, and C3 - C6 hydrocarbons. Traces of CH4 were only found at 533 K. CO2 is the dominant species, where the highest of 3.99 vol% per 500 mL working volume of POME recorded at 533 K. The solid hydrochars showed negligible morphological changes across the reaction temperature. The O/C atomic ratio of the hydrochar range from 0.157 to 0.379, while the H/C atomic ratio was in the range from 0.930 to 1.506. With the increase of treatment temperature, the higher heating value (HHV) of the hydrochar improved from 24.624 to 27.513 MJ kg-1. The characteristics of hydrochar make it a fuel source with immense potential. POME decomposed into water-soluble compounds, followed by deoxygenation (dehydration and decarboxylation) in producing hydrochar with lower oxygen content and higher aromatic compounds in the liquid product. Little gaseous hydrocarbons were produced due to subcritical hydrothermal gasification at low temperature.
    Matched MeSH terms: Palmitic Acid
  14. Murugesu S, Khatib A, Ahmed QU, Ibrahim Z, Uzir BF, Benchoula K, et al.
    Toxicol Rep, 2019;6:1148-1154.
    PMID: 31993329 DOI: 10.1016/j.toxrep.2019.10.020
    Clinacanthus nutans, an herbal shrub belonging to the Acanthaceae family, is traditionally used as a functional food to treat various ailments in Malaysia and Indonesia. Although the polar fraction of this plant shows non-toxic effect, the toxicity of the non-polar extract is not reported so far. The present study aimed to assess the toxic effect and determine the lethal concentration of this non-polar fraction using zebrafish embryos. The n-hexane fraction was partitioned from the crude extract of C. nutans obtained using 80% methanolic solution. After spawning of the adult male and female zebrafish, the eggs were collected, transferred into a 96-well plate and incubated with the n-hexane fraction at concentrations of 15.63 μg/ml, 31.25 μg/ml, 62.5 μg/ml, 125 μg/ml, 250 μg/ml and 500 μg/ml in 2% DMSO. The survival and sublethal endpoint were assessed, the mortality and hatchability rates were calculated based on microscopic observation, while the heartbeat rate was measured using DanioScope software. The median lethal concentration (LC50) of the C. nutans n-hexane fraction, which was determined using probit analysis, was calculated to be 75.49 μg/mL, which is harmful. Moreover, gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of palmitic acid, phytol, hexadecanoic acid, 1-monopalmitin, stigmast-5-ene, pentadecanoic acid, heptadecanoic acid, 1-linolenoylglycerol and stigmasterol in the n-hexane fraction.
    Matched MeSH terms: Palmitic Acid
  15. Tan WN, Lim JQ, Afiqah F, Nik Mohamed Kamal NNS, Abdul Aziz FA, Tong WY, et al.
    Nat Prod Res, 2018 Apr;32(7):854-858.
    PMID: 28782393 DOI: 10.1080/14786419.2017.1361951
    Garcinia atroviridis Griff. ex T. Anders. is used as a medication agent in folkloric medicine. The present study was to examine the chemical composition of the stem bark and leaf of G. atroviridis as well as their cytotoxic effects against MCF-7 cells. The constituents obtained by hydrodistillation were identified using GC-MS. The stem bark oil (EO-SB) composed mainly the palmitoleic acid (51.9%) and palmitic acid (21.9%), while the leaf oil (EO-L) was dominated by (E)-β-farnesene (58.5%) and β-caryophyllene (16.9%). Treatment of MCF-7 cells using EO-L (100 μg/mL) caused more than 50% cell death while EO-SB did not induce cytotoxic effect. EO-L has stimulated the growth of BEAS-2B normal cells, but not in MCF-7 cancerous cells. The IC50 of EO-L in MCF-7 and BEAS-2B cells were 71 and 95 μg/mL, respectively. A combination treatment of EO-L and tamoxifen induced more cell death than the treatment with drug alone at lower doses.
    Matched MeSH terms: Palmitic Acid
  16. Zhang J, Mohamad FH, Wong JH, Mohamad H, Ismail AH, Mohamed Yusoff AA, et al.
    Malays J Med Sci, 2018 Feb;25(1):101-113.
    PMID: 29599640 DOI: 10.21315/mjms2018.25.1.12
    Background: Bamboo shoot has been used as a treatment for epilepsy in traditional Chinese medicine for generations to treat neuronal disorders such as convulsive, dizziness and headaches. 4-hydroxybenzoic acid (4-hba) is a non-flavonoid phenol found abundantly inDendrocalamus aspershoots (bamboo), fruits (strawberries and apples) and flowers. Kv1.4 is a rapidly inactivatingShaker-related member of the voltage-gated potassium channels with two inactivation mechanisms; the fast N-type and slow C-type. It plays vital roles in repolarisation, hyperpolarisation and signaling the restoration of resting membrane potential through the regulation of the movement of K+across the cellular membrane.

    Methods: Chemical compounds fromDendrocalamus asperbamboo shoots were purified and identified as major palmitic acids mixed with other minor fatty acids, palmitic acid, 4-hydroxybenzaldehyde, lauric acid, 4-hydroxybenzoic acid and cholest-4-ene-3-one. The response of synthetic 4-hydroxybenzoic acid was tested on Kv1.4 potassium channel which was injected into viable oocytes that was extracted fromXenopus laevis. The current were detected by the two-microelectrode voltage clamp, holding potential starting from -80 mV with 20 mV step-up until +80 mV. Readings of treatments with 0.1% DMSO, 4-hba concentrations and K channel blockers were taken at +60 mV. The ratio of tail/peak amplitude is the index of the activity of the Kv1.4 channels withn≥ 6 (number of oocytes tested). The decreases of the ratios of five different concentrations (1 μM, 10 μM, 100 μM, 1 mM and 2.5 mM) were compared with 0.1% DMSO as the control.

    Results: All concentration showed statistically significant results withP< 0.05 except for 100 μM. The normalised current of the 4-hba concentrations were compared with potassium channel blockers (TEA and 4-AP) and all groups showed statistically significant results. This study also showed that time taken for each concentration to affect Kv1.4 does not play any significant roles.

    Conclusion: 4-hydroxybenzoic acid was found to be able to enhance the inactivation of Kv1.4 by lowering the membrane potential so that the abnormal neuronal firing can be inhibited. With IC50 slightly higher than 10 μM, increasing concentrations (100 μM, 1 mM and 2.5 mM) had shown to exhibit toxicity effects. The best concentration from this study is 10 μM with Hill slope of 0.1799.

    Matched MeSH terms: Palmitic Acid
  17. Garba L, Mohamad Yussoff MA, Abd Halim KB, Ishak SNH, Mohamad Ali MS, Oslan SN, et al.
    PeerJ, 2018;6:e4347.
    PMID: 29576935 DOI: 10.7717/peerj.4347
    Membrane-bound fatty acid desaturases perform oxygenated desaturation reactions to insert double bonds within fatty acyl chains in regioselective and stereoselective manners. The Δ9-fatty acid desaturase strictly creates the first double bond between C9 and 10 positions of most saturated substrates. As the three-dimensional structures of the bacterial membrane fatty acid desaturases are not available, relevant information about the enzymes are derived from their amino acid sequences, site-directed mutagenesis and domain swapping in similar membrane-bound desaturases. The cold-tolerantPseudomonassp. AMS8 was found to produce high amount of monounsaturated fatty acids at low temperature. Subsequently, an active Δ9-fatty acid desaturase was isolated and functionally expressed inEscherichia coli. In this paper we report homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerantPseudomonassp. AMS8 for the first time to the best of our knowledge. Three dimensional structure of the enzyme was built using MODELLER version 9.18 using a suitable template. The protein model contained the three conserved-histidine residues typical for all membrane-bound desaturase catalytic activity. The structure was subjected to energy minimization and checked for correctness using Ramachandran plots and ERRAT, which showed a good quality model of 91.6 and 65.0%, respectively. The protein model was used to preform MD simulation and docking of palmitic acid using CHARMM36 force field in GROMACS Version 5 and Autodock tool Version 4.2, respectively. The docking simulation with the lowest binding energy, -6.8 kcal/mol had a number of residues in close contact with the docked palmitic acid namely, Ile26, Tyr95, Val179, Gly180, Pro64, Glu203, His34, His206, His71, Arg182, Thr85, Lys98 and His177. Interestingly, among the binding residues are His34, His71 and His206 from the first, second, and third conserved histidine motif, respectively, which constitute the active site of the enzyme. The results obtained are in compliance with thein vivoactivity of the Δ9-fatty acid desaturase on the membrane phospholipids.
    Matched MeSH terms: Palmitic Acid
  18. Ng YW, Say YH
    PeerJ, 2018;6:e4696.
    PMID: 29713567 DOI: 10.7717/peerj.4696
    Background: Obesity-related central nervous system (CNS) pathologies like neuroinflammation and reactive gliosis are associated with high-fat diet (HFD) related elevation of saturated fatty acids like palmitic acid (PA) in neurons and astrocytes of the brain.

    Methods: Human neuroblastoma cells SH-SY5Y (as a neuronal model) and human glioblastoma cells T98G (as an astrocytic model), were treated with 100-500 µM PA, oleic acid (OA) or lauric acid (LA) for 24 h or 48 h, and their cell viability was assessed by 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of stable overexpression of γ-synuclein (γ-syn), a neuronal protein recently recognized as a novel regulator of lipid handling in adipocytes, and transient overexpression of Parkinson's disease (PD) α-synuclein [α-syn; wild-type (wt) and its pathogenic mutants A53T, A30P and E46K] in SH-SY5Y and T98G cells, were also evaluated. The effects of co-treatment of PA with paraquat (PQ), a Parkinsonian pesticide, and leptin, a hormone involved in the brain-adipose axis, were also assessed. Cell death mode and cell cycle were analyzed by Annexin V/PI flow cytometry. Reactive oxygen species (ROS) level was determined using 2',7'-dichlorofluorescien diacetate (DCFH-DA) assay and lipid peroxidation level was determined using thiobarbituric acid reactive substances (TBARS) assay.

    Results: MTT assay revealed dose- and time-dependent PA cytotoxicity on SH-SY5Y and T98G cells, but not OA and LA. The cytotoxicity was significantly lower in SH-SY5Y-γ-syn cells, while transient overexpression of wt α-syn or its PD mutants (A30P and E46K, but not A53T) modestly (but still significantly) rescued the cytotoxicity of PA in SH-SY5Y and T98G cells. Co-treatment of increasing concentrations of PQ exacerbated PA's neurotoxicity. Pre-treatment of leptin, an anti-apoptotic adipokine, did not successfully rescue SH-SY5Y cells from PA-induced cytotoxicity-suggesting a mechanism of PA-induced leptin resistance. Annexin V/PI flow cytometry analysis revealed PA-induced increase in percentages of cells in annexin V-positive/PI-negative quadrant (early apoptosis) and subG0-G1 fraction, accompanied by a decrease in G2-M phase cells. The PA-induced ROS production and lipid peroxidation was at greater extent in T98G as compared to that in SH-SY5Y.

    Discussion: In conclusion, PA induces apoptosis by increasing oxidative stress in neurons and astrocytes. Taken together, the results suggest that HFD may cause neuronal and astrocytic damage, which indirectly proposes that CNS pathologies involving neuroinflammation and reactive gliosis could be prevented via the diet regimen.

    Matched MeSH terms: Palmitic Acid
  19. Muniandy K, Gothai S, Tan WS, Kumar SS, Mohd Esa N, Chandramohan G, et al.
    PMID: 29670658 DOI: 10.1155/2018/3142073
    Impaired wound healing is one of the serious problems among the diabetic patients. Currently, available treatments are limited due to side effects and cost effectiveness. In line with that, we attempted to use a natural source to study its potential towards the wound healing process. Therefore, Alternanthera sessilis (A. sessilis), an edible and medicinal plant, was chosen as the target sample for the study. During this investigation, the wound closure properties using stem extract of A. sessilis were analyzed. Accordingly, we analyzed the extract on free radical scavenging capacity and the cell migration of two most prominent cell types on the skin, human dermal fibroblast (NHDF), keratinocytes (HaCaT), and diabetic human dermal fibroblast (HDF-D) to mimic the wound healing in diabetic patients. The bioactive compounds were identified using gas chromatography-mass spectrometry (GC-MS). We discovered that the analysis exhibited a remarkable antioxidant, proliferative, and migratory rate in NHDF, HaCaT, and HDF-D in dose-dependent manner, which supports wound healing process, due to the presence of wound healing associated phytocompounds such as Hexadecanoic acid. This study suggested that the stem extract of A. sessilis might be a potential therapeutic agent for skin wound healing, supporting its traditional medicinal uses.
    Matched MeSH terms: Palmitic Acid
  20. Azir M, Abbasiliasi S, Tengku Ibrahim TA, Manaf YNA, Sazili AQ, Mustafa S
    Foods, 2017 Nov 09;6(11).
    PMID: 29120362 DOI: 10.3390/foods6110098
    The present study investigates the detection of lard in cocoa butter through changes in fatty acids composition, triacylglycerols profile, and thermal characteristics. Cocoa butter was mixed with 1% to 30% (v/v) of lard and analyzed using a gas chromatography flame ionization detector, high performance liquid chromatography, and differential scanning calorimetry. The results revealed that the mixing of lard in cocoa butter showed an increased amount of oleic acid in the cocoa butter while there was a decrease in the amount of palmitic acid and stearic acids. The amount of POS, SOS, and POP also decreased with the addition of lard. A heating thermogram from the DSC analysis showed that as the concentration of lard increased from 3% to 30%, two minor peaks at -26 °C and 34.5 °C started to appear and a minor peak at 34.5 °C gradually overlapped with the neighbouring major peak. A cooling thermogram of the above adulterated cocoa butter showed a minor peak shift to a lower temperature of -36 °C to -41.5 °C. Values from this study could be used as a basis for the identification of lard from other fats in the food authentication process.
    Matched MeSH terms: Palmitic Acid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links