Displaying publications 1 - 20 of 263 in total

Abstract:
Sort:
  1. Zulfakar MH, Chan LM, Rehman K, Wai LK, Heard CM
    AAPS PharmSciTech, 2018 Apr;19(3):1116-1123.
    PMID: 29181705 DOI: 10.1208/s12249-017-0923-x
    Coenzyme Q10 (CoQ10) is a vitamin-like oil-soluble molecule that has anti-oxidant and anti-ageing effects. To determine the most optimal CoQ10 delivery vehicle, CoQ10 was solubilised in both water and fish oil, and formulated into hydrogel, oleogel and bigel. Permeability of CoQ10 from each formulation across porcine ear skin was then evaluated. Furthermore, the effects of the omega-3 fatty eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids from fish oil on skin permeation were investigated by means of nuclear magnetic resonance (NMR) and computerised molecular modelling docking experiments. The highest drug permeation was achieved with the bigel formulation that proved to be the most effective vehicle in delivering CoQ10 across the skin membrane due to a combination of its adhesive, viscous and lipophilic properties. Furthermore, the interactions between CoQ10 and fatty acids revealed by NMR and molecular modelling experiments likely accounted for skin permeability of CoQ10. NMR data showed dose-dependent changes in proton chemical shifts in EPA and DHA. Molecular modelling revealed complex formation and large binding energies between fatty acids and CoQ10. This study advances the knowledge about bigels as drug delivery vehicles and highlights the use of NMR and molecular docking studies for the prediction of the influence of drug-excipient relationships at the molecular level.
    Matched MeSH terms: Permeability
  2. Zhang Y, Zhou L, Zhang C, Show PL, Du A, Fu J, et al.
    Carbohydr Polym, 2020 Nov 01;247:116670.
    PMID: 32829798 DOI: 10.1016/j.carbpol.2020.116670
    With the growing interest in food safety and in environmental protection, it is more attractive to develop novel biodegradable packaging films. In this regard, one new blending film was prepared with curdlan (CD)/polyvinyl alcohol (PVA)/thyme essential oil. Our results demonstrated that the mechanical properties of the blending film were the best when the ratio of the CD and PVA was 4:1. Further, the barrier properties of the film were optimized by incorporating with thyme essential oil. It was proved that not only water vapor permeability was lower, but also the elongation at break was improved, when 2% (w/w) thyme essential oil used. The potential interactions of the film matrix were analyzed by FTIR, XRD and Cryo-scanning electron microscopy. Importantly, both the antioxidant activity and antibacterial activity were improved. Finally, the blending film was employed for the preservation of chilled meat, while the shelf life was extended up to 10 days.
    Matched MeSH terms: Permeability
  3. Zaimi K, Ishak A, Pop I
    PLoS One, 2014;9(11):e111743.
    PMID: 25365118 DOI: 10.1371/journal.pone.0111743
    The steady two-dimensional flow and heat transfer over a stretching/shrinking sheet in a nanofluid is investigated using Buongiorno's nanofluid model. Different from the previously published papers, in the present study we consider the case when the nanofluid particle fraction on the boundary is passively rather than actively controlled, which make the model more physically realistic. The governing partial differential equations are transformed into nonlinear ordinary differential equations by a similarity transformation, before being solved numerically by a shooting method. The effects of some governing parameters on the fluid flow and heat transfer characteristics are graphically presented and discussed. Dual solutions are found to exist in a certain range of the suction and stretching/shrinking parameters. Results also indicate that both the skin friction coefficient and the local Nusselt number increase with increasing values of the suction parameter.
    Matched MeSH terms: Permeability
  4. Yusof Y, Moosavi S, Johan MR, Badruddin IA, Wahab YA, Hamizi NA, et al.
    ACS Omega, 2021 Feb 16;6(6):4184-4191.
    PMID: 33644542 DOI: 10.1021/acsomega.0c04864
    This study presents the electromagnetic (EM) characterization of a multiwalled carbon nanotubes (MWCNT)-silver nanoparticles (AgNP)-reinforced poly(vinyl alcohol) (PVA) hybrid nanocomposite fabricated via the solution mixing technique. Primarily, the structure and morphological properties of the PVA/MWCNT-AgNP hybrid nanocomposite are confirmed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The complex permittivity (ε*) and permeability (μ*), as well as the electromagnetic scattering parameters are measured using a PNA network analyzer equipped with X-band waveguide. The results showed an enhanced permittivity (ε' ≈ 25) value of the hybrid nanocomposite in the frequency range of 8-12 GHz. However, the permeability decreased to almost zero (μ' ≈ 0.4) since the inclusion of AgNP with an average particle size of 40 nm is not susceptible to magnetization and causes higher magnetic losses (tan δμ) than dielectric losses (tan δε). Remarkably, the hybrid nanocomposite reduced transmission of electromagnetic (EM) wave by nearly 60% in comparison to PVA/MWCNT. This is attributed to the enhanced absorption and reflection at the nanotubes, and metal-dielectric interfaces have induced multiple internal reflections owing to the porous structure of the nanocomposite. The prospect of the PVA/MWCNT-AgNP hybrid nanocomposite is favorable as a thin absorbing material for EM shielding applications.
    Matched MeSH terms: Permeability
  5. Yusof SR, Avdeef A, Abbott NJ
    Eur J Pharm Sci, 2014 Dec 18;65:98-111.
    PMID: 25239510 DOI: 10.1016/j.ejps.2014.09.009
    In vitro blood-brain barrier (BBB) models from primary brain endothelial cells can closely resemble the in vivo BBB, offering valuable models to assay BBB functions and to screen potential central nervous system drugs. We have recently developed an in vitro BBB model using primary porcine brain endothelial cells. The model shows expression of tight junction proteins and high transendothelial electrical resistance, evidence for a restrictive paracellular pathway. Validation studies using small drug-like compounds demonstrated functional uptake and efflux transporters, showing the suitability of the model to assay drug permeability. However, one limitation of in vitro model permeability measurement is the presence of the aqueous boundary layer (ABL) resulting from inefficient stirring during the permeability assay. The ABL can be a rate-limiting step in permeation, particularly for lipophilic compounds, causing underestimation of the permeability. If the ABL effect is ignored, the permeability measured in vitro will not reflect the permeability in vivo. To address the issue, we explored the combination of in vitro permeability measurement using our porcine model with the pKa(FLUX) method in pCEL-X software to correct for the ABL effect and allow a detailed analysis of in vitro (transendothelial) permeability data, Papp. Published Papp using porcine models generated by our group and other groups are also analyzed. From the Papp, intrinsic transcellular permeability (P0) is derived by simultaneous refinement using a weighted nonlinear regression, taking into account permeability through the ABL, paracellular permeability and filter restrictions on permeation. The in vitro P0 derived for 22 compounds (35 measurements) showed good correlation with P0 derived from in situ brain perfusion data (r(2)=0.61). The analysis also gave evidence for carrier-mediated uptake of naloxone, propranolol and vinblastine. The combination of the in vitro porcine model and the software analysis provides a useful tool to better predict BBB permeability in vivo and gain better mechanistic information about BBB permeation.
    Matched MeSH terms: Capillary Permeability/physiology*
  6. Yusof SR, Abbott NJ, Avdeef A
    Eur J Pharm Sci, 2017 Aug 30;106:274-286.
    PMID: 28614733 DOI: 10.1016/j.ejps.2017.06.016
    Most studies of blood-brain barrier (BBB) permeability and transport are conducted at a single pH, but more detailed information can be revealed by using multiple pH values. A pH-dependent biophysical model was applied to the mechanistic analysis of published pH-dependent BBB luminal uptake data from three opioid derivatives in rat: pentazocine (Suzuki et al., 2002a, 2002b), naloxone (Suzuki et al., 2010a), and oxycodone (Okura et al., 2008). Two types of data were processed: in situ brain perfusion (ISBP) and brain uptake index (BUI). The published perfusion data were converted to apparent luminal permeability values, Papp, and analyzed by the pCEL-X program (Yusof et al., 2014), using the pH-dependent Crone-Renkin equation (pH-CRE) to determine the impact of cerebrovascular flow on the Michaelis-Menten transport parameters (Avdeef and Sun, 2011). For oxycodone, the ISBP data had been measured at pH7.4 and 8.4. The present analysis indicates a 7-fold lower value of the cerebrovascular flow velocity, Fpf, than that expected in the original study. From the pyrilamine-inhibited data, the flow-corrected passive intrinsic permeability value was determined to be P0=398×10-6cm·s-1. The uptake data indicate that the neutral form of oxycodone is affected by a transporter at pH8.4. The extent of the cation uptake was less certain from the available data. For pentazocine, the brain uptake by the BUI method had been measured at pH5.5, 6.5, and 7.4, in a concentration range 0.1-40mM. Under similar conditions, ISBP data were also available. The pH-CRE determined values of Fpf from both methods were nearly the same, and were smaller than the expected value in the original publication. The transport of the cationic pentazocine was not fully saturated at pH5.5 at 40mM. The transport of the neutral species at pH7.4 appeared to reach saturation at 40mM pentazocine concentration, but not at 12mM. In the case of naloxone, a pH-dependent Michaelis-Menten equation (pH-MME) analysis of the data indicated a smooth sigmoidal transition from a higher capacity uptake process affecting cationic naloxone (pH5.0-7.0) to a lower capacity uptake process affecting the neutral drug (pH8.0-8.5), with cross-over point near pH7.4. Evidently, measurements at multiple pH values can reveal important information about both cerebrovascular flow and BBB transport kinetics.
    Matched MeSH terms: Permeability
  7. Yusof SR, Mohd Uzid M, Teh EH, Hanapi NA, Mohideen M, Mohamad Arshad AS, et al.
    Addict Biol, 2019 09;24(5):935-945.
    PMID: 30088322 DOI: 10.1111/adb.12661
    Mitragyna speciosa is reported to be beneficial for the management of chronic pain and opioid withdrawal in the evolving opioid epidemic. Data on the blood-brain barrier (BBB) transport of mitragynine and 7-hydroxymitragynine, the active compounds of the plant, are still lacking and inconclusive. Here, we present for the first time the rate and the extent of mitragynine and 7-hydroxymitragynine transport across the BBB, with an investigation of their post-BBB intra-brain distribution. We utilized an in vitro BBB model to study the rate of BBB permeation of the compounds and their interaction with efflux transporter P-glycoprotein (P-gp). Mitragynine showed higher apical-to-basolateral (A-B, i.e. blood-to-brain side) permeability than 7-hydroxymitragynine. 7-Hydroxymitragynine showed a tendency to efflux, with efflux ratio (B-A/A-B) of 1.39. Both were found to inhibit the P-gp and are also subject to efflux by the P-gp. Assessment of the extent of BBB transport in vivo in rats from unbound brain to plasma concentration ratios (Kp,uu,brain ) revealed extensive efflux of both compounds, with less than 10 percent of unbound mitragynine and 7-hydroxymitragynine in plasma crossing the BBB. By contrast, the extent of intra-brain distribution was significantly different, with mitragynine having 18-fold higher brain tissue uptake in brain slice assay compared with 7-hydroxymitragynine. Mitragynine showed a moderate capacity to accumulate inside brain parenchymal cells, while 7-hydroxymitragynine showed restricted cellular barrier transport. The presented findings from this systematic investigation of brain pharmacokinetics of mitragynine and 7-hydroxymitragynine are essential for design and interpretation of in vivo experiments aiming to establish exposure-response relationship.
    Matched MeSH terms: Permeability
  8. Yusof NZ, Azizul Hasan ZA, Abd Maurad Z, Idris Z
    Cutan Ocul Toxicol, 2018 Jun;37(2):103-111.
    PMID: 28693384 DOI: 10.1080/15569527.2017.1352595
    AIM: To evaluate eye irritation potential of palm-based methyl ester sulphonates (MES) of different chain lengths; C12, C14, C16, C16:18.

    METHODS: The Bovine Corneal Opacity and Permeability test method (BCOP), OECD Test Guideline 437, was used as an initial step to study the inducing effect of palm-based MES on irreversible eye damage. The second assessment involved the use of reconstructed human corneal-like epithelium test method, OECD Test Guideline 492 using SkinEthic™ Human Corneal Epithelium to study the potential effect of palm-based MES on eye irritancy. The palm-based MES were prepared in 10% solution (w/v) in deionized water and tested as a liquid and surfactant test substances whereby both test conducted according to the liquid/surfactant treatment protocol.

    RESULTS: The preliminary BCOP results showed that palm-based MES; C12, C14, C16, C16:18 were not classified as severe eye irritants test substances with in vitro irritancy score between 3 and the threshold level of 55. The second evaluation using SkinEthic™ HCE model showed that palm-based MES; C12, C14, C16, C16:18 and three commercial samples were potentially irritants to the eyes with mean tissue viability ≤ 60% and classified as Category 2 according to United Nations Globally Harmonized System of Classification and Labelling of Chemicals. However, there are some limitations of the proposed ocular irritation classification of palm-based MES due to insolubility of long chain MES in 10% solution (w/v) in deionized water.

    CONCLUSION: Therefore, future studies to clarify the eye irritation potential of the palm-based MES will be needed, and could include; methods to improve the test substance solubility, use of test protocol for solids, and/or inclusion of a benchmark anionic surfactant, such as sodium dodecyl sulphate within the study design.

    Matched MeSH terms: Permeability
  9. You X, Liu S, Dai C, Zhong G, Duan Y, Guo Y, et al.
    Environ Sci Pollut Res Int, 2020 Nov;27(33):41623-41638.
    PMID: 32691313 DOI: 10.1007/s11356-020-10149-9
    Ethylenediaminetetraacetic acid (EDTA) can serve as a washing agent in the remediation of low-permeability layers contaminated by heavy metals (HMs). Therefore, batch adsorption experiments, where pure quartz (SM1) and mineral mixtures (SM2) were used as typical soil minerals (SMs) in low-permeability layers, were implemented to explore the effects of different EDTA concentrations, pH, and exogenous chemicals on the HM-SM-EDTA adsorption system. As the EDTA concentration increased, it gradually cut down the maximum Cd adsorption capacities of SM1 and SM2 from approximately 135 to 55 mg/kg and 2660 to 1453 mg/kg; and the maximum Pb adsorption capacities of SM1 and SM2 were reduced from 660 to 306 mg/kg and 19,677 to 19,262 mg/kg, respectively. When the initial mole ratio (MR = moles of HM ions/sum of moles of HM ions and EDTA) was closer to 0.5, the effect of EDTA was more effective. Additionally, EDTA worked well at pH below 7.0 and 4.0 for Cd and Pb, respectively. Low-molecular-weight organic acids (LMWOAs) affected the system mainly by bridging, complexation, adsorption site competition, and reductive dissolution. Cu2+, Fe2+ ions could significantly increase the Cd and Pb adsorption onto SM2. Notably, there were characteristic changes in mineral particles, including attachment of EDTA and microparticles, agglomeration, connection, and smoother surfaces, making the specific surface area (SSA) decrease from 16.73 to 12.59 m2/g. All findings indicated that EDTA could effectively and economically reduce the HM adsorption capacity of SMs at the reasonable MR value, contact time, and pH; EDTA reduced the HM adsorption capacity of SMs not only by complexation with HM ions but also by decreasing SSA and blocking active sites. Hence, the acquired insight from the presented study can help to promote the remediation of contaminated low-permeability layers in groundwater.
    Matched MeSH terms: Permeability
  10. Yong YK, Sulaiman N, Hakim MN, Lian GE, Zakaria ZA, Othman F, et al.
    Biomed Res Int, 2013;2013:463145.
    PMID: 24224164 DOI: 10.1155/2013/463145
    The aim of the present study was to evaluate the anti-inflammatory activities of aqueous extract of Bixa orellana (AEBO) leaves and its possible mechanisms in animal models. The anti-inflammatory activity of the extract was evaluated using serotonin-induced rat paw edema, increased peritoneal vascular permeability, and leukocyte infiltrations in an air-pouch model. Nitric oxide (NO), indicated by the sum of nitrites and nitrates, and vascular growth endothelial growth factor (VEGF) were measured in paw tissues of rats to determine their involvement in the regulation of increased permeability. Pretreatments with AEBO (50 and 150 mg kg⁻¹) prior to serotonin inductions resulted in maximum inhibitions of 56.2% of paw volume, 45.7% of Evans blue dye leakage in the peritoneal vascular permeability model, and 83.9% of leukocyte infiltration in the air-pouch model. 57.2% maximum inhibition of NO and 27% of VEGF formations in rats' paws were observed with AEBO at the dose of 150 mg kg⁻¹. Pharmacological screening of the extract showed significant (P < 0.05) anti-inflammatory activity, indicated by the suppressions of increased vascular permeability and leukocyte infiltration. The inhibitions of these inflammatory events are probably mediated via inhibition of NO and VEGF formation and release.
    Matched MeSH terms: Capillary Permeability/drug effects*
  11. Yong YK, Zakaria ZA, Kadir AA, Somchit MN, Ee Cheng Lian G, Ahmad Z
    PMID: 23410184 DOI: 10.1186/1472-6882-13-32
    Bixa orellana L. has been traditionally used in Central and South America to treat a number of ailments, including internal inflammation, and in other tropical countries like Malaysia as treatment for gastric ulcers and stomach discomfort. The current study aimed to determine the major chemical constituents of the aqueous extract of B. orellana (AEBO) and to evaluate the antihistamine activity of AEBO during acute inflammation induced in rats.
    Matched MeSH terms: Capillary Permeability/drug effects*
  12. Yong YK, Chiong HS, Somchit MN, Ahmad Z
    PMID: 26468073 DOI: 10.1186/s12906-015-0901-3
    Histamine is established as a potent inflammatory mediator and it is known to increased endothelial permeability by promoting gap formation between endothelial cells. Previous studies have shown that aqueous extract of Bixa orellana leaves (AEBO) exhibits antihistamine activity in vivo, yet the mechanism of its action on endothelial barrier function remains unclear. Therefore, the current study aimed to determine the protective effect of AEBO against histamine-induced hyperpermeability in vitro.
    Matched MeSH terms: Capillary Permeability/drug effects*
  13. Yoke Keong Y, Arifah AK, Sukardi S, Roslida AH, Somchit MN, Zuraini A
    Med Princ Pract, 2011;20(2):142-6.
    PMID: 21252569 DOI: 10.1159/000319907
    The present study was conducted to assess the anti-inflammatory effect of a crude aqueous extract of Bixa orellana leaves (AEBO) and to examine the possible involvement of nitric oxide (NO) in its anti-inflammatory mechanism.
    Matched MeSH terms: Capillary Permeability/drug effects
  14. Ying Wang, Yonghui Chen, Zhenhua Hu, Qiang Feng, Desen Kong
    Sains Malaysiana, 2017;46:2231-2239.
    Ground improvement using artificial crust composite foundation, consisting of stabilization of soft clay and composite foundation, is an effective technique for the treatment of deep soft soil layers under infrastructure embankments. In this study, the load responses and settlement performance of this improvement technique were investigated using two centrifuge model tests to compare the variations of the vertical deformation, pore water pressure, axial force of the piles and tensile stress at the bottom of the artificial crust in the crust composite foundation with those in pile-supported embankment. The results of centrifuge model tests showed that the load responses and settlement performance of artificial crust composite foundation was different from the pile-supported embankment, which displayed mainly that the final middle settlement of crust composite foundation can be reduced by about 15% compared with those of pile-supported embankment with the same length of pile and construction cost. The deformation of the crust with the characteristics of the plate was found based on the change of the tensile stress. Additionally, the excess pore water pressure in the crust composite foundation was lower owing to the stress diffusion effect of the crust during the loading period and the dissipation rate of excess pore water pressure was slower due to lower permeability of the crust at the same loading period. Eventually, the axial force of the middle piles was reduced. At the same time, the boundary stress was functioned with the crust, the axial force of the side piles was improved. The comparison of measured and calculated results was carried out using the stress reduction ratio, the result shows that the bearing capacity of the subsoil in the crust composite was improved.
    Matched MeSH terms: Permeability
  15. Yeo SK, Liong MT
    J Sci Food Agric, 2013 Jan;93(2):396-409.
    PMID: 22806322 DOI: 10.1002/jsfa.5775
    The aim of this study was to evaluate the effect of electroporation (2.5-7.5 kV cm⁻¹ for 3.0-4.0 ms) on the growth of lactobacilli and bifidobacteria, membrane properties and bioconversion of isoflavones in mannitol-soymilk.
    Matched MeSH terms: Cell Membrane Permeability
  16. Yeo SK, Liong MT
    Int J Food Sci Nutr, 2012 Aug;63(5):566-79.
    PMID: 22133079 DOI: 10.3109/09637486.2011.639349
    The aim of this study was to evaluate the effects of ultraviolet (UV) radiation (ultraviolet A (UVA), ultraviolet B (UVB) and ultraviolet C (UVC) at 30-90 J/m²) on the membrane properties of lactobacilli and bifidobacteria, and their bioconversion of isoflavones in prebiotic-soymilk. UV treatment caused membrane permeabilization and alteration at the acyl chain, polar head and interface region of membrane bilayers via lipid peroxidation. Such alteration subsequently led to decreased (p < 0.05) viability of lactobacilli and bifidobacteria immediately after the treatment. However, the effect was transient where cells treated with UV, particularly UVA, grew better in prebiotic-soymilk than the control upon fermentation at 37°C for 24 h (p < 0.05). In addition, UV treatment also increased (p < 0.05) the intracellular and extracellular β-glucosidase activity of lactobacilli and bifidobacteria. This was accompanied by an increased (p < 0.05) bioconversion of glucosides to bioactive aglycones in prebiotic-soymilk. Our present study illustrated that treatment of lactobacilli and bifidobacteria with UV could develop a fermented prebiotic-soymilk with enhanced bioactivity.
    Matched MeSH terms: Permeability
  17. Yeo SK, Liong MT
    J Agric Food Chem, 2011 Feb 9;59(3):885-97.
    PMID: 21235273 DOI: 10.1021/jf103974d
    The objective of the present study was to evaluate the effects of ultrasound on the growth of probiotics and bioconversion of isoflavones in prebiotic-soymilk. Previous studies have shown that ultrasound elevated microbial enzymatic activity and growth by altering cellular membranes. The growth of probiotics was significantly decreased (P < 0.05) immediately after ultrasound treatment, attributed to membrane permeabilization, cell lysis, and membrane lipid peroxidation upon ultrasound treatment. The ultrasound treatment also caused alteration at the acyl chain, polar head, and interface region of the probiotic membrane phospholipid bilayers. The cells treated with ultrasound showed recovery from injury with subsequent increase in growth upon fermentation in soymilk (P < 0.05). Ultrasound treatment at 100 W for 2 and 3 min also enhanced (P < 0.05) the intracellular and extracellular β-glucosidase activity of probiotics, leading to increased (P < 0.05) bioconversion of glucosides to aglycones in the prebiotic-soymilk. Our present study illustrated that ultrasound treatment could produce bioactive synbiotic-soymilk with increased concentrations of bioactive aglycones.
    Matched MeSH terms: Cell Membrane Permeability
  18. Yaradoddi JS, Banapurmath NR, Ganachari SV, Soudagar MEM, Mubarak NM, Hallad S, et al.
    Sci Rep, 2020 12 15;10(1):21960.
    PMID: 33319818 DOI: 10.1038/s41598-020-78912-z
    The main goal of the present work was to develop a value-added product of biodegradable material for sustainable packaging. The use of agriculture waste-derived carboxymethyl cellulose (CMC) mainly is to reduce the cost involved in the development of the film, at present commercially available CMS is costly. The main focus of the research is to translate the agricultural waste-derived CMC to useful biodegradable polymer suitable for packaging material. During this process CMC was extracted from the agricultural waste mainly sugar cane bagasse and the blends were prepared using CMC (waste derived), gelatin, agar and varied concentrations of glycerol; 1.5% (sample A), 2% (sample B), and 2.5% (sample C) was added. Thus, the film derived from the sample C (gelatin + CMC + agar) with 2.0% glycerol as a plasticizer exhibited excellent properties than other samples A and B. The physiochemical properties of each developed biodegradable plastics (sample A, B, C) were characterized using Fourier Transform Infra-Red (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA). The swelling test, solubility in different solvents, oil permeability coefficient, water permeability (WP), mechanical strength of the produced material was claimed to be a good material for packaging and meanwhile its biodegradability (soil burial method) indicated their environmental compatibility nature and commercial properties. The reflected work is a novel approach, and which is vital in the conversion of organic waste to value-added product development. There is also another way to utilize commercial CMC in preparation of polymeric blends for the packaging material, which can save considerable time involved in the recovery of CMC from sugarcane bagasse.
    Matched MeSH terms: Permeability
  19. Yap PS, Krishnan T, Yiap BC, Hu CP, Chan KG, Lim SH
    J Appl Microbiol, 2014 May;116(5):1119-28.
    PMID: 24779580 DOI: 10.1111/jam.12444
    The aim of this study was to investigate the mode of action of the lavender essential oil (LV) on antimicrobial activity against multi-drug-resistant Escherichia coli J53 R1 when used singly and in combination with piperacillin.
    Matched MeSH terms: Cell Membrane Permeability/drug effects
  20. Yap PS, Cheng WH, Chang SK, Lim SE, Lai KS
    Cells, 2022 Sep 26;11(19).
    PMID: 36230959 DOI: 10.3390/cells11192995
    There has been a resurgence in the clinical use of polymyxin antibiotics such as colistin due to the limited treatment options for infections caused by carbapenem-resistant Enterobacterales (CRE). However, this last-resort antibiotic is currently confronted with challenges which include the emergence of chromosomal and plasmid-borne colistin resistance. Colistin resistance in Klebsiella pneumoniae is commonly caused by the mutations in the chromosomal gene mgrB. MgrB spans the inner membrane and negatively regulates PhoP phosphorylation, which is essential for bacterial outer membrane lipid biosynthesis. The present review intends to draw attention to the role of mgrB chromosomal mutations in membrane permeability in K. pneumoniae that confer colistin resistance. With growing concern regarding the global emergence of colistin resistance, deciphering physical changes of the resistant membrane mediated by mgrB inactivation may provide new insights for the discovery of novel antimicrobials that are highly effective at membrane penetration, in addition to finding out how this can help in alleviating the resistance situation.
    Matched MeSH terms: Permeability
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links