Displaying publications 1 - 20 of 263 in total

Abstract:
Sort:
  1. Syahrom A, Abdul Kadir MR, Harun MN, Öchsner A
    Med Eng Phys, 2015 Jan;37(1):77-86.
    PMID: 25523865 DOI: 10.1016/j.medengphy.2014.11.001
    Artificial bone is a suitable alternative to autografts and allografts, however their use is still limited. Though there were numerous reports on their structural properties, permeability studies of artificial bones were comparably scarce. This study focused on the development of idealised, structured models of artificial cancellous bone and compared their permeability values with bone surface area and porosity. Cancellous bones from fresh bovine femur were extracted and cleaned following an established protocol. The samples were scanned using micro-computed tomography (μCT) and three-dimensional models of the cancellous bones were reconstructed for morphology study. Seven idealised and structured cancellous bone models were then developed and fabricated via rapid prototyping technique. A test-rig was developed and permeability tests were performed on the artificial and real cancellous bones. The results showed a linear correlation between the permeability and the porosity as well as the bone surface area. The plate-like idealised structure showed a similar value of permeability to the real cancellous bones.
    Matched MeSH terms: Permeability*
  2. Syahrom A, Abdul Kadir MR, Abdullah J, Öchsner A
    Med Eng Phys, 2013 Jun;35(6):792-9.
    PMID: 22959618 DOI: 10.1016/j.medengphy.2012.08.011
    In the development of artificial cancellous bones, two major factors need to be considered: the integrity of the overall structure and its permeability. Whilst there have been many studies analysing the mechanical properties of artificial and natural cancellous bones, permeability studies, especially those using numerical simulation, are scarce. In this study, idealised cancellous bones were simulated from the morphological indices of natural cancellous bone. Three different orientations were also simulated to compare the anisotropic nature of the structure. Computational fluid dynamics methods were used to analyse fluid flow through the cancellous structures. A constant mass flow rate was used to determine the intrinsic permeability of the virtual specimens. The results showed similar permeability of the prismatic plate-and-rod model to the natural cancellous bone. The tetrakaidecahedral rod model had the highest permeability under simulated blood flow conditions, but the plate counterpart had the lowest. Analyses on the anisotropy of the virtual specimens showed the highest permeability for the horizontal orientation. Linear relationships were found between permeability and the two physical properties, porosity and bone surface area.
    Matched MeSH terms: Permeability
  3. Yoke Keong Y, Arifah AK, Sukardi S, Roslida AH, Somchit MN, Zuraini A
    Med Princ Pract, 2011;20(2):142-6.
    PMID: 21252569 DOI: 10.1159/000319907
    The present study was conducted to assess the anti-inflammatory effect of a crude aqueous extract of Bixa orellana leaves (AEBO) and to examine the possible involvement of nitric oxide (NO) in its anti-inflammatory mechanism.
    Matched MeSH terms: Capillary Permeability/drug effects
  4. Fong LY, Ng CT, Zakaria ZA, Baharuldin MT, Arifah AK, Hakim MN, et al.
    Phytother Res, 2015 Oct;29(10):1501-8.
    PMID: 26171791 DOI: 10.1002/ptr.5404
    The increase in endothelial permeability often promotes edema formation in various pathological conditions. Tumor necrosis factor-alpha (TNF-α), a pro-atherogenic cytokine, impairs endothelial barrier function and causes endothelial dysfunction in early stage of atherosclerosis. Asiaticoside, one of the triterpenoids derived from Centella asiatica, is known to possess antiinflammatory activity. In order to examine the role of asiaticoside in preserving the endothelial barrier, we assessed its effects on endothelial hyperpermeability and disruption of actin filaments evoked by TNF-α in human aortic endothelial cells (HAEC). TNF-α caused an increase in endothelial permeability to fluorescein isothiocyanate (FITC)-dextran. Asiaticoside pretreatment significantly suppressed TNF-α-induced increased permeability. Asiaticoside also prevented TNF-α-induced actin redistribution by suppressing stress fiber formation. However, the increased F to G actin ratio stimulated by TNF-α was not changed by asiaticoside. Cytochalasin D, an actin depolymerizing agent, was used to correlate the anti-hyperpermeability effect of asiaticoside with actin cytoskeleton. Surprisingly, asiaticoside failed to prevent cytochalasin D-induced increased permeability. These results suggest that asiaticoside protects against the disruption of endothelial barrier and actin rearrangement triggered by TNF-α without a significant change in total actin pool. However, asiaticoside seems to work by other mechanisms to maintain the integrity of endothelial barrier rather than stabilizing the F-actin organization.
    Matched MeSH terms: Cell Membrane Permeability
  5. Rehman K, Tan CM, Zulfakar MH
    Drug Res (Stuttg), 2014 Mar;64(3):159-65.
    PMID: 24026957 DOI: 10.1055/s-0033-1355351
    Topical keratolytic agents such as benzoyl peroxide (BP) and salicylic acid (SA) are one of the common treatments for inflammatory skin diseases. However, the amount of drug delivery through the skin is limited due to the stratum corneum. The purposes of this study were to investigate the ability of fish oil to act as penetration enhancer for topical keratolytic agents and to determine the suitable gelator for formulating stable fish oil oleogels. 2 types of gelling agents, beeswax and sorbitan monostearate (Span 60), were used to formulate oleogels. To investigate the efficacy of fish oil oleogel permeation, commercial hydrogels of benzoyl peroxide (BP) and salicylic acid (SA) were used as control, and comparative analysis was performed using Franz diffusion cell. Stability of oleogels was determined by physical assessments at 20°C and 40°C storage. Benzoyl peroxide (BP) fish oil oleogels containing beeswax were considered as better formulations in terms of drug permeation and cumulative drug release. All the results were found to be statistically significant (p<0.05, ANOVA) and it was concluded that the beeswax-fish oil combination in oleogel can prove to be beneficial in terms of permeation across the skin and stability.
    Matched MeSH terms: Permeability
  6. Rehman K, Aluwi MF, Rullah K, Wai LK, Mohd Amin MC, Zulfakar MH
    Int J Pharm, 2015 Jul 25;490(1-2):131-41.
    PMID: 26003416 DOI: 10.1016/j.ijpharm.2015.05.045
    Imiquimod is a chemotherapeutic agent for many skin-associated diseases, but it has also been associated with inflammatory side effects. The aim of this study was to prevent the inflammatory effect of commercial imiquimod (Aldara(®)) by controlled release of imiquimod through a hydrogel/oleogel colloidal mixture (CA bigel) containing fish oil as an anti-inflammatory agent. Imiquimod permeability from Aldara® cream and bigel through mice skin was evaluated, and the drug content residing in the skin via the tape stripping technique was quantified. The fish oil fatty acid content in skin along with its lipophilic environment was also determined. An inflammation study was conducted using animal models, and Aldara(®) cream was found to potentially cause psoriasis-like inflammation, which could be owing to prolonged application and excessive drug permeation. Controlled release of imiquimod along with fish oil through CA bigel may have caused reduced imiquimod inflammation. NMR studies and computerized molecular modeling were also conducted to observe whether the fish oil and imiquimod formed a complex that was responsible for improving imiquimod transport and reducing its side effects. NMR spectra showed dose-dependent chemical shifts and molecular modeling revealed π-σ interaction between EPA and imiquimod, which could help reduce imiquimod inflammation.
    Matched MeSH terms: Permeability
  7. Tou KAS, Rehman K, Ishak WMW, Zulfakar MH
    Drug Dev Ind Pharm, 2019 Sep;45(9):1451-1458.
    PMID: 31216907 DOI: 10.1080/03639045.2019.1628042
    Objective: The aim of this study was to develop a coenzyme Q10 nanoemulsion cream, characterize and to determine the influence of omega fatty acids on the delivery of coenzyme Q10 across model skin membrane via ex vivo and in silico techniques. Methods: Coenzyme Q10 nanoemulsion creams were prepared using natural edible oils such as linseed, evening primrose, and olive oil. Their mechanical features and ability to deliver CoQ10 across rat skin were characterized. Computational docking analysis was performed for in silico evaluation of CoQ10 and omega fatty acid interactions. Results: Linseed, evening primrose, and olive oils each produced nano-sized emulsion creams (343.93-409.86 nm) and exhibited excellent rheological features. The computerized docking studies showed favorable interactions between CoQ10 and omega fatty acids that could improve skin permeation. The three edible-oil nanoemulsion creams displayed higher ex vivo skin permeation and drug flux compared to the liquid-paraffin control cream. The linseed oil formulation displayed the highest skin permeation (3.97 ± 0.91 mg/cm2) and drug flux (0.19 ± 0.05 mg/cm2/h). Conclusion: CoQ10 loaded-linseed oil nanoemulsion cream displayed the highest skin permeation. The highest permeation showed by linseed oil nanoemulsion cream may be due to the presence of omega-3, -6, and -9 fatty acids which might serve as permeation enhancers. This indicated that the edible oil nanoemulsion creams have potential as drug vehicles that enhance CoQ10 delivery across skin.
    Matched MeSH terms: Permeability
  8. Moradpour N, Karimova M, Pourafshary P, Zivar D
    ACS Omega, 2020 Jul 28;5(29):18155-18167.
    PMID: 32743190 DOI: 10.1021/acsomega.0c01766
    The results of many previous studies on low salinity/controlled ions water (CIW) flooding suggest that future laboratory and modeling investigations are required to comprehensively understand and interpret the achieved observations. In this work, the aim is co-optimization of the length of the injected slug and soaking time in the CIW flooding process. Furthermore, the possibility of the occurrence of several governing mechanisms is studied. Therefore, the experimental results were utilized to develop a compositional model, using CMG GEM software, in order to obtain the relative permeability curves by history matching. It was concluded that CIW slug injection, concentrated in the potential-determining ion, can increase oil recovery under a multi ion exchange (MIE) mechanism. The wettability of the carbonate rocks was changed from a mixed or oil wet state toward more water wetness. However, there is a CIW slug length, beyond which extending the length does not significantly improve the rock wettability, and consequently, the oil production, which is known as the optimum slug size. This implies that the optimization of the injection process, by minimizing the slug size, can decrease the need for the CIW supply, therefore lowering the process expenditure. Moreover, if the exposure time of the rock and CIW is increased (soaking), a higher level of ion substitution is probable, leading to more oil detachment and production. Rock dissolution/precipitation (leading to a pH change) was found to have a negligible contribution.
    Matched MeSH terms: Permeability
  9. Mohan S, Abdelwahab SI, Kamalidehghan B, Syam S, May KS, Harmal NS, et al.
    Phytomedicine, 2012 Aug 15;19(11):1007-15.
    PMID: 22739412 DOI: 10.1016/j.phymed.2012.05.012
    The plant Artocarpus obtusus is a tropical plant that belongs to the family Moraceae. In the present study a xanthone compound Pyranocycloartobiloxanthone A (PA) was isolated from this plant and the apoptosis mechanism was investigated. PA induced cytotoxicity was observed using MTT assay. High content screening (HCS) was used to observe the nuclear condensation, cell permeability, mitochondrial membrane potential (MMP) and cytochrome c release. Reactive oxygen species formation was investigated on treated cells by using fluorescent analysis. Human apoptosis proteome profiler assays were performed to investigate the mechanism of cell death. In addition mRNA levels of Bax and Bcl2 were also checked using RT-PCR. Caspase 3/7, 8 and 9 were measured for their induction while treatment. The involvement of NF-κB was analyzed using HCS assay. The results showed that PA possesses the characteristics of selectively inducing cell death of tumor cells as no inhibition was observed in non-tumorigenic cells even at 30 μg/ml. Treatment of MCF7 cells with PA induced apoptosis with cell death-transducing signals, that regulate the MMP by down-regulation of Bcl2 and up-regulation of Bax, triggering the cytochrome c release from mitochondria to cytosol. The release of cytochrome c triggered the activation of caspases-9, then activates downstream executioner caspase-3/7 and consequently cleaved specific substrates leading to apoptotic changes. This form of apoptosis was found closely associated with the extrinsic pathway caspase (caspase-8) and inhibition of translocation of NF-κB from cytoplasm to nucleus. The results demonstrated that PA induced apoptosis of MCF7 cells through NF-κB and Bcl2/Bax signaling pathways with the involvement of caspases.
    Matched MeSH terms: Cell Membrane Permeability
  10. Aziz NF, Ramalingam A, Latip J, Zainalabidin S
    Life Sci, 2021 Mar 15;269:119080.
    PMID: 33465387 DOI: 10.1016/j.lfs.2021.119080
    S-Allylcysteine (SAC) is an extensively studied natural product which has been proven to confer cardioprotection. This potentiates SAC into many clinical relevance possibilities, hence, the use of it ought to be optimally elucidated. To further confirm this, an ischemia/reperfusion model has been used to determine SAC at 10 mM and 50 mM on cardiac function, cardiac marker, and mitochondrial permeability. Using Langendorff setup, 24 adult male Wistar rats' hearts were isolated to be perfused with Kreb-Henseleit buffer throughout the ischemia/reperfusion method. After 20 min of stabilization, global ischemia was induced by turning off the perfusion for 35 min followed by 60 min of reperfusion with either Kreb-Henseleit buffer or SAC with the dose of 10 mM or 50 mM. The cardiac function was assessed and coronary effluent was collected at different timepoints throughout the experiment for lactate dehydrogenase (LDH) measurement. The harvested hearts were then used to measure glutathione while isolated mitochondria for mPTP analysis. SAC-reperfused hearts were shown to prevent the aggravation of cardiac function after I/R induction. It also dose-dependently upregulated glutathione reductase and glutathione level and these were also accompanied by significant reduction of LDH leakage and preserved mitochondrial permeability. Altogether, SAC dose-dependently was able to recover the post-ischemic cardiac function deterioration alongside with improvement of glutathione metabolism and mitochondrial preservation. These findings highly suggest that SAC when sufficiently supplied to the heart would be able to prevent the deleterious complications after the ischemic insult.
    Matched MeSH terms: Cell Membrane Permeability/drug effects*
  11. Tan LF, Elaine E, Pui LP, Nyam KL, Yusof YA
    Acta Sci Pol Technol Aliment, 2021 1 16;20(1):55-66.
    PMID: 33449520 DOI: 10.17306/J.AFS.0771
    BACKGROUND: Biodegradable food packaging has improved in quality with recent research incorporating natural extracts for functionality purposes. This research aims to develop chitosan film with Chrysanthemum morifolium essential oil to improve the shelf life of fresh raw chicken and beef.

    METHODS: 1.5% (w/v) chitosan films with Chrysanthemum morifolium essential oil (0% to 6% (v/v)) were produced through homogenization, the casting of a film solution in a petri dish and convection drying. The edible film was evaluated in terms of its physical (color, thickness, water vapor permeability), mechanical (puncture strength, tensile strength, elongation at break) and chemical properties (antioxidant assay, Fourier Transform Infrared Spectroscopy (FTIR)).

    RESULTS: With an increasing concentration of Chrysanthemum morifolium in the chitosan film, the test values of physical properties such as tensile strength, puncture force, and elongation at break declined significantly. However, the thickness, water permeability, and color profile (L*, a*, b*) values of the chitosan film increased. Similarly, the scavenging effect of antioxidant assay increased (from 4.97% to 18.63%) with a rise in Chrysanthemum morifolium concentration. 2%, 3%, and 4% of Chrysanthemum morifolium in the chitosan film showed a significant inhibition zone ranging from 2.67 mm to 3.82 mm against Staphylococcus aureus, a spoilage bacterium that is commonly found in chicken and beef products. The storage and pH tests showed that 4% of Chrysanthemum morifolium in the film maintained pH level (safe to consume), and the shelf life was extended from 3 days to 5 days of meat storage.

    CONCLUSIONS: This study demonstrated that the incorporation of 4% (v/v) Chrysanthemum morifolium extract into 1.5% (w/v) chitosan film extends the storage duration of raw meat products noticeably by reducing Staphylococcus aureus activity. Therefore, it increases the quality of the edible film as an environmentally friendly food packaging material so that it can act as a substitute for the use of plastic bags. Future studies will be conducted on improving the tensile strength of the edible film to increase the feasibility of using it in the food industry. In addition, the microstructure and surface morphology of the edible film can be further determined.

    Matched MeSH terms: Permeability
  12. Hanapi NA, Mohamad Arshad AS, Abdullah JM, Tengku Muhammad TS, Yusof SR
    J Pharm Sci, 2021 02;110(2):698-706.
    PMID: 32949562 DOI: 10.1016/j.xphs.2020.09.015
    Neurotherapeutic potentials of Centella asiatica and its reputation to boost memory, prevent cognitive deficits and improve brain functions are widely acknowledged. The plant's bioactive compounds, i.e. asiaticoside, madecassoside and asiatic acid were reported to have central nervous system (CNS) actions, particularly in protecting the brain against neurodegenerative disorders. Hence, it is important for these compounds to cross the blood-brain barrier (BBB) to be clinically effective therapeutics. This study aimed to explore the capability of asiaticoside, madecassoside and asiatic acid to cross the BBB using in vitro BBB model from primary porcine brain endothelial cells (PBECs). Our findings showed that asiaticoside, madecassoside and asiatic acid are highly BBB permeable with apparent permeability (Papp) of 70.61 ± 6.60, 53.31 ± 12.55 and 50.94 ± 10.91 × 10-6 cm/s respectively. No evidence of cytotoxicity and tight junction disruption of the PBECs were observed in the presence of these compounds. Asiatic acid showed cytoprotective effect towards the PBECs against oxidative stress. This study reported for the first time that Centella asiatica compounds demonstrated high capability to cross the BBB, comparable to central nervous system drugs, and therefore warrant further development as therapeutics for the treatment of neurodegenerative diseases.
    Matched MeSH terms: Permeability
  13. Sekaran H, Gan CY, A Latiff A, Harvey TM, Mohd Nazri L, Hanapi NA, et al.
    Brain Res Bull, 2019 10;152:63-73.
    PMID: 31301381 DOI: 10.1016/j.brainresbull.2019.07.010
    Cerebral hypoperfusion involved a reduction in cerebral blood flow, leading to neuronal dysfunction, microglial activation and white matter degeneration. The effects on the blood-brain barrier (BBB) however, have not been well-documented. Here, two-vessel occlusion model was adopted to mimic the condition of cerebral hypoperfusion in Sprague-Dawley rats. The BBB permeability to high and low molecular weight exogenous tracers i.e. Evans blue dye and sodium fluorescein respectively, showed marked extravasation of the Evans blue dye in the frontal cortex, posterior cortex and thalamus-midbrain at day 1 following induction of cerebral hypoperfusion. Transmission electron microscopy revealed brain endothelial cell and astrocyte damages including increased pinocytotic vesicles and formation of membrane invaginations in the endothelial cells, and swelling of the astrocytes' end-feet. Investigation on brain microvessel protein expressions using two-dimensional (2D) gel electrophoresis coupled with LC-MS/MS showed that proteins involved in mitochondrial energy metabolism, transcription regulation, cytoskeleton maintenance and signaling pathways were differently expressed. The expression of aconitate hydratase, heterogeneous nuclear ribonucleoprotein, enoyl Co-A hydratase and beta-synuclein were downregulated, while the opposite observed for calreticulin and enhancer of rudimentary homolog. These findings provide insights into the BBB molecular responses to cerebral hypoperfusion, which may assist development of future therapeutic strategies.
    Matched MeSH terms: Permeability
  14. Agatonovic-Kustrin S, Beresford R, Yusof AP
    J Pharm Biomed Anal, 2001 Sep;26(2):241-54.
    PMID: 11470201
    A quantitative structure-permeability relationship was developed using Artificial Neural Network (ANN) modeling to study penetration across a polydimethylsiloxane membrane. A set of 254 compounds and their experimentally derived maximum steady state flux values used in this study was gathered from the literature. A total of 42 molecular descriptors were calculated for each compound. A genetic algorithm was used to select important molecular descriptors and supervised ANN was used to correlate selected descriptors with the experimentally derived maximum steady-state flux through the polydimethylsiloxane membrane (log J). Calculated molecular descriptors were used as the ANN's inputs and log J as the output. Developed model indicates that molecular shape and size, inter-molecular interactions, hydrogen-bonding capacity of drugs, and conformational stability could be used to predict drug absorption through skin. A 12-descriptor nonlinear computational neural network model has been developed for the estimation of log J values for a data set of 254 drugs. Described model does not require experimental parameters and could potentially provide useful prediction of membrane penetration of new drugs and reduce the need for actual compound synthesis and flux measurements.
    Matched MeSH terms: Permeability
  15. Othman SH, Othman NFL, Shapi'i RA, Ariffin SH, Yunos KFM
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513664 DOI: 10.3390/polym13030390
    This work aims to develop corn starch/chitosan nanoparticles/thymol (CS/CNP/Thy) bio-nanocomposite films as potential food packaging materials that can enhance the shelf life of food. CS/CNP/Thy bio-nanocomposite films were prepared by the addition of different concentrations of thymol (0, 1.5, 3.0, 4.5 w/w%) using a solvent casting method. The resulting films were characterized in terms of optical, mechanical, and water vapor permeability (WVP) properties. The addition of thymol was found to reduce the tensile strength (TS), elongation at break (EAB), and Young's modulus (YM) of the films. Generally, the increment in the concentration of thymol did not significantly affect the TS, EAB, and YM values. The addition of 1.5 w/w% thymol increased the WVP of the films but the WVP reduced with the increase in thymol concentrations. CS/CNP/Thy-3% bio-nanocomposite films demonstrated the potential to lengthen the shelf life of cherry tomatoes packed with the films, whereby the cherry tomatoes exhibited no significant changes in firmness and the lowest weight loss. In addition, no mold growth was observed on the sliced cherry tomatoes that were in direct contact with the films during 7 days of storage, proving the promising application of the films as active food packaging materials.
    Matched MeSH terms: Permeability
  16. Rajandram R, Ong TA, Razack AH, MacIver B, Zeidel M, Yu W
    Am J Physiol Renal Physiol, 2016 05 01;310(9):F885-94.
    PMID: 26911853 DOI: 10.1152/ajprenal.00483.2015
    Ketamine is a popular choice for young drug abusers. Ketamine abuse causes lower urinary tract symptoms, with the underlying pathophysiology poorly understood. Disruption of urothelial barrier function has been hypothesized to be a major mechanism for ketamine cystitis, yet the direct evidence of impaired urothelial barrier function is still lacking. To address this question, 8-wk-old female C57BL/6J mice were injected intraperitoneally with 30 mg·kg(-1)·day(-1) ketamine for 12 wk to induce ketamine cystitis. A spontaneous voiding spot assay showed that ketamine-treated mice had increased primary voiding spot numbers and smaller primary voiding spot sizes than control mice (P < 0.05), indicating a contracted bladder and bladder overactivity. Consistently, significantly increased voiding frequency was observed in ketamine-treated mice on cystometrograms. These functional experiments indicate that ketamine induces voiding dysfunction in mice. Surprisingly, urothelial permeability in ketamine-treated mice was not changed when measured using an Ussing chamber system with isotopic urea and water. Mouse urothelial structure was also not altered, and intact umbrella cell structure was observed by both transmission and scanning electron microscopy. Furthermore, immunostaining and confocal microscopy confirmed the presence of a well-defined distribution of zonula occuldens-1 in tight junctions and uroplakin in umbrella cells. In conclusion, these data indicate that ketamine injection induces voiding dysfunction in mice but does not necessarily disrupt mouse bladder barrier function. Disruption of urothelial barrier function may not be the major mechanism in ketamine cystitis.
    Matched MeSH terms: Permeability
  17. Hassan F, El-Hiti GA, Abd-Allateef M, Yousif E
    Saudi Med J, 2017 Apr;38(4):359-365.
    PMID: 28397941 DOI: 10.15537/smj.2017.4.17061
    OBJECTIVES: To investigate the cytotoxic effect of anastrozole on breast (MCF7), liver hepatocellular (HepG2), and prostate (PC3) cancer cells. Methods: This is a prospective study. Anastrozole's mechanism of apoptosis in living cells was also determined by high content screening (HCS) assay. Methylthiazol tetrazolium (MTT) assay was carried out at the Centre of Biotechnology Research's, Al-Nahrain University, Baghdad, Iraq between July 2015 and October 2015. The HCS assay was performed at the Centre for Natural Product Research  and Drug Discovery, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia between November 2015 and February 2016. Results: The most significant cytotoxic effect of anastrozole towards 3 cancer cell lines was obtained when its concentration was 400 µg/mL. The MCF7 cells were more sensitive to anastrozole compared with the HepG2 and PC-3 cells. There was a significant increase in membrane permeability, cytochrome c and nuclear intensity when anastrozole (200 µg/mL) was used compared with doxorubicin (20 µg/mL) as a standard. Also, there was a significant decrease in cell viability and mitochondrial membrane permeability when anastrozole (200 µg/mL) was used compared with positive control. Conclusion: Anastrozole showed cytotoxic effects against the MCF7, HepG2, and PC3 cell lines as determined in-vitro by the MTT assay. The HCS technique also showed toxic effect towards MCF7. It is evident that anastrozole inhibits the aromatase enzyme preventing the aromatization mechanism; however, it has a toxic effect.
    Matched MeSH terms: Cell Membrane Permeability/drug effects
  18. Devasvaran K, Tan JJ, Ng CT, Fong LY, Yong YK
    Oxid Med Cell Longev, 2019;2019:1202676.
    PMID: 31531177 DOI: 10.1155/2019/1202676
    Malaysian Tualang honey (TH) is a known therapeutic honey extracted from the honeycombs of the Tualang tree (Koompassia excelsa) and has been reported for its antioxidant, anti-inflammatory, antiproliferative, and wound healing properties. However, the possible vascular protective effect of TH against oxidative stress remains unclear. In this study, the effects of TH on hydrogen peroxide- (H2O2-) elicited vascular hyperpermeability in human umbilical vein endothelial cells (HUVECs) and Balb/c mice were evaluated. Our data showed that TH concentrations ranging from 0.01% to 1.00% showed no cytotoxic effect to HUVECs. Induction with 0.5 mM H2O2 was found to increase HUVEC permeability, but the effect was significantly reversed attenuated by TH (p < 0.05), of which the permeability with the highest inhibition peaked at 0.1%. In Balb/c mice, TH (0.5 g/kg-1.5 g/kg) significantly (p < 0.05) reduced H2O2 (0.3%)-induced albumin-bound Evans blue leak, in a dose-dependent manner. Immunofluorescence staining confirmed that TH reduced actin stress fiber formation while increasing cortical actin formation and colocalization of caveolin-1 and β-catenin in HUVECs. Signaling studies showed that HUVECs pretreated with TH significantly (p < 0.05) decreased intracellular calcium release, while sustaining the level of cAMP when challenged with H2O2. These results suggested that TH could inhibit H2O2-induced vascular hyperpermeability in vitro and in vivo by suppression of adherence junction protein redistribution via calcium and cAMP, which could have a therapeutic potential for diseases related to the increase of both oxidant and vascular permeability.
    Matched MeSH terms: Capillary Permeability/drug effects*
  19. Ng CT, Fong LY, Tan JJ, Rajab NF, Abas F, Shaari K, et al.
    BMC Complement Altern Med, 2018 Jul 06;18(1):210.
    PMID: 29980198 DOI: 10.1186/s12906-018-2270-1
    BACKGROUND: Clinacanthus nutans (Burm. f.) Lindau. has traditionally been using in South East Asia countries to manage cancer. However, scientific evidence is generally lacking to support this traditional claim. This study aims to investigate the in vitro, ex-vivo and in vivo effects of C. nutans extracts on angiogenesis.

    METHODS: C. nutans leaves was extracted with 50-100% ethanol or deionised water at 1% (w/v). Human umbilical veins endothelial cell (HUVEC) proliferation was examined using MTT assay. The in vitro anti-angiogenic effects of C. nutans were assessed using wound scratch, tube formation and transwell migration assays. The VEGF levels secreted by human oral squamous cell carcinoma (HSC-4) cell and HUVEC permeability were also measured. Besides, the rat aortic ring and chick embryo chorioallantoic membrane (CAM) assays, representing ex vivo and in vivo models, respectively, were performed.

    RESULTS: The MTT assay revealed that water extract of C. nutans leaves exhibited the highest activity, compared to the ethanol extracts. Therefore, the water extract was chosen for subsequent experiments. C. nutans leaf extract significantly suppressed endothelial cell proliferation and migration in both absence and presence of VEGF. However, the water extract failed to suppress HUVEC transmigration, differentiation and permeability. C. nutans water extract also did not suppress HSC-4 cell-induced VEGF production. Importantly, C. nutans water extract significantly abolished the sprouting of vessels in aortic rings as well as in chick embryo CAM.

    CONCLUSION: In conclusion, these findings reveal potential anti-angiogenic effects of C. nutans, providing new evidence for its potential application as an anti-angiogenic agent.

    Matched MeSH terms: Cell Membrane Permeability/drug effects
  20. Hiu JJ, Yap MKK
    Int J Biol Macromol, 2021 Aug 01;184:776-786.
    PMID: 34174307 DOI: 10.1016/j.ijbiomac.2021.06.145
    Naja sumatrana venom cytotoxin (sumaCTX) is a basic protein which belongs to three-finger toxin family. It has been shown to induce caspase-dependent, mitochondrial-mediated apoptosis in MCF-7 cells at lower concentrations. This study aimed to investigate the alteration of secretome in MCF-7 cells following membrane permeabilization by high concentrations of sumaCTX, using label-free quantitative (LFQ) approach. The degree of membrane permeabilization of sumaCTX was determined by lactate dehydrogenase (LDH) assay and calcein-propidium iodide (PI) assays. LDH and calcein-PI assays revealed time-dependent membrane permeabilization within a narrow concentration range. However, as toxin concentrations increased, prolonged exposure of MCF-7 cells to sumaCTX did not promote the progression of membrane permeabilization. The secretome analyses showed that membrane permeabilization was an event preceding the release of intracellular proteins. Bioinformatics analyses of the LFQ secretome revealed the presence of 105 significantly distinguished proteins involved in metabolism, structural supports, inflammatory responses, and necroptosis in MCF-7 cells treated with 29.8 μg/mL of sumaCTX. Necroptosis was presumably an initial stress response in MCF-7 cells when exposed to high sumaCTX concentration. Collectively, sumaCTX-induced the loss of membrane integrity in a concentration-dependent manner, whereby the cell death pattern of MCF-7 cells transformed from apoptosis to necroptosis with increasing toxin concentrations.
    Matched MeSH terms: Cell Membrane Permeability/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links