Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Hassan Y, Al-Ramahi RJ, Aziz NA, Ghazali R
    Ann Pharmacother, 2009 Oct;43(10):1598-605.
    PMID: 19776297 DOI: 10.1345/aph.1M187
    Appropriate drug selection and dosing for patients with chronic kidney disease (CKD) is important to avoid unwanted drug effects and ensure optimal patient outcomes.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  2. Dhabali AA, Awang R, Zyoud SH
    Int J Clin Pharmacol Ther, 2011 Aug;49(8):500-9.
    PMID: 21781650 DOI: 10.5414/cp201524
    BACKGROUND: The prescription of contraindicated drugs is a preventable medication error, which can cause morbidity and mortality. Recent data on the factors associated with drug contraindications (DCIs) is limited world-wide, especially in Malaysia.

    AIMS: The objectives of this study are 1) to quantify the prevalence of DCIs in a primary care setting at a Malaysian University; 2) to identify patient characteristics associated with increased DCI episodes, and 3) to identify associated factors for these DCIs.

    METHODS: We retrospectively collected data from 1 academic year using computerized databases at the Universiti Sains Malaysia (USM) from patients of USM's primary care. Descriptive and comparative statistics were used to characterize DCIs.

    RESULTS: There were 1,317 DCIs during the study period. These were observed in a cohort of 923 patients, out of a total of 17,288 patients, representing 5,339 DCIs per 100,000 patients, or 5.3% of all patients over a 1-year period. Of the 923 exposed patients, 745 (80.7%) were exposed to 1 DCI event, 92 (10%) to 2 DCI events, 35 (3.8%) to 3 DCI events, 18 (2%) to 4 DCI events, and 33 patients (3.6%) were exposed to 5 or more DCI events. The average age of the exposed patients was 30.7 ± 15 y, and 51.5% were male. Multivariate logistic regression analysis revealed that being male (OR = 1.3; 95% CI = 1.1 - 1.5; p < 0.001), being a member of the staff (OR = 3; 95% CI = 2.5 - 3.7; p < 0.001), having 4 or more prescribers (OR = 2.8; 95% CI = 2.2 - 3.6; p < 0.001), and having 4 or more longterm therapeutic groups (OR = 2.3; 95%CI = 1.7 - 3.1; p < 0.001), were significantly associated with increased chance of exposure to DCIs.

    DISCUSSION AND CONCLUSIONS: This is the first study in Malaysia that presents data on the prevalence of DCIs. The prescription of contraindicated drugs was found to be frequent in this primary care setting. Exposure to DCI events was associated with specific socio-demographic and health status factors. Further research is needed to evaluate the relationship between health outcomes and the exposure to DCIs.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  3. Jose J, Chong D, Lynn TS, Jye GE, Jimmy B
    Int J Pharm Pract, 2011 Aug;19(4):246-52.
    PMID: 21733012 DOI: 10.1111/j.2042-7174.2011.00113.x
    The aim of the study was to explore, in the Malaysian general population: knowledge and beliefs of the characteristics in general of medication-related side effects and side effects associated with different types of medicines; behaviour related to the safe use of drugs before and after taking a medication; and behaviour in the event of a medication-related side effect.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage
  4. Kumar H, Mishra G, Sharma AK, Gothwal A, Kesharwani P, Gupta U
    Pharm Nanotechnol, 2017;5(3):203-214.
    PMID: 28521670 DOI: 10.2174/2211738505666170515113936
    BACKGROUND: The convoluted pathophysiology of brain disorders along with penetration issue of drugs to brain represents major hurdle that requires some novel therapies. The blood-brain barrier (BBB) denotes a rigid barrier for delivery of therapeutics in vivo; to overcome this barrier, intranasal delivery is an excellent strategy to deliver the drug directly to brain via olfactory and trigeminal nerve pathways that originate as olfactory neuro-epithelium in the nasal cavity and terminate in brain.

    METHOD: Kind of therapeutics like low molecular weight drugs can be delivered to the CNS via this route. In this review, we have outlined the anatomy and physiological aspect of nasal mucosa, certain hurdles, various strategies including importance of muco-adhesive polymers to increase the drug delivery and possible clinical prospects that partly contribute in intranasal drug delivery.

    RESULTS: Exhaustive literature survey related to intranasal drug delivery system revealed the new strategy that circumvents the BBB, based on non-invasive concept for treating various CNS disorders. Numerous advantages like prompt effects, self-medication through wide-ranging devices, and the frequent as well protracted dosing are associated with this novel route.

    CONCLUSION: Recently few reports have proven that nasal to brain drug delivery system bypasses the BBB. This novel route is associated with targeting efficiency and less exposure of therapeutic substances to non-target site. Nevertheless, this route desires much more research into the safe transferring of therapeutics to the brain. Role of muco-adhesive polymer and surface modification with specific ligands are area of interest of researcher to explore more about this.

    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  5. Yellepeddi VK, Sheshala R, McMillan H, Gujral C, Jones D, Raghu Raj Singh T
    Drug Discov Today, 2015 Jul;20(7):884-9.
    PMID: 25668579 DOI: 10.1016/j.drudis.2015.01.013
    Punctal plugs (PPs) are miniature medical implants that were initially developed for the treatment of dry eyes. Since their introduction in 1975, many PPs made from different materials and designs have been developed. PPs, albeit generally successful, suffer from drawbacks such as epiphora and suppurative canaliculitis. To overcome these issues intelligent designs of PPs were proposed (e.g. SmartPLUG™ and Form Fit™). PPs are also gaining interest among pharmaceutical scientists for sustaining drug delivery to the eye. This review aims to provide an overview of PPs for dry eye treatment and drug delivery to treat a range of ocular diseases. It also discusses current challenges in using PPs for ocular diseases.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  6. Wong TW
    J Control Release, 2014 Nov 10;193:257-69.
    PMID: 24801250 DOI: 10.1016/j.jconrel.2014.04.045
    Transdermal drug delivery is hindered by the barrier property of the stratum corneum. It limits the route to transport of drugs with a log octanol-water partition coefficient of 1 to 3, molecular weight of less than 500Da and melting point of less than 200°C. Active methods such as iontophoresis, electroporation, sonophoresis, magnetophoresis and laser techniques have been investigated for the past decades on their ability, mechanisms and limitations in modifying the skin microenvironment to promote drug diffusion and partition. Microwave, an electromagnetic wave characterized by frequencies range between 300MHz and 300GHz, has recently been reported as the potential skin permeation enhancer. Microwave has received a widespread application in food, engineering and medical sectors. Its potential use to facilitate transdermal drug transport is still in its infancy stage of evaluation. This review provides an overview and update on active methods utilizing electrical, magnetic, photomechanical and cavitational waves to overcome the skin barrier for transdermal drug administration with insights into mechanisms and future perspectives of the latest microwave technique described.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  7. Barahuie F, Hussein MZ, Fakurazi S, Zainal Z
    Int J Mol Sci, 2014;15(5):7750-86.
    PMID: 24802876 DOI: 10.3390/ijms15057750
    Layered hydroxides (LHs) have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, many organic pharmaceutical drugs have been intercalated into the interlayer galleries of LHs and, consequently, novel nanodrugs or smart drugs may revolutionize in the treatment of diseases. Layered hydroxides, as green nanoreservoirs with sustained drug release and cell targeting properties hold great promise of improving health and prolonging life.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  8. Ibrahim IR, Ibrahim MI, Al-Haddad MS
    Int J Clin Pharm, 2012 Oct;34(5):728-32.
    PMID: 22744843 DOI: 10.1007/s11096-012-9667-6
    BACKGROUND: Beyond the direct pharmacological effect of medicines, preferences and perceptions toward a particular oral solid dosage form (OSDF) play a crucial role in recovery and may reduce adherence to the prescribed treatment.

    OBJECTIVES: This study conducted to investigate the most preferred OSDF and the degree to which swallowing solid medication is an issue, to assess perceptions of the therapeutic benefits of the OSDF, and to find predictors of the most preferred OSDF.

    METHOD: A cross-sectional study, through convenience sample method, was conducted to survey consumers visiting community pharmacies in Baghdad, Iraq. Data was collected by self-administered and pre-piloted questionnaires, and analyzed using Statistical Package for Social Science. Multiple logistic regression analysis and Chi-square tests were used at alpha level = 0.05.

    RESULTS: A total of 1,000 questionnaire were included in the analysis. Of all respondents, 52.9 % preferred capsule among other OSDF and this preference varied significantly with a number of socio-demographic factors. Ease of swallowing solid medication was the main issue which resulted in preferences for a particular form. A negative perception of the therapeutic benefits of the OSDF was found among 89.1 % of the consumers. Multiple logistic regression analysis indicated that gender, ease of swallowing, and perceptions of the therapeutic benefits of the OSDF were significant predictors of capsule preferences.

    CONCLUSIONS: Given the fact that consumers are the end users of medicines and their preferences may influence response to the treatment, efforts are worthwhile by the prescribers and medicines' manufactures to understand consumers' preferences of a particular dosage form in order to achieve successful therapy outcomes.

    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  9. Wong TW
    Recent Pat Drug Deliv Formul, 2011 Sep;5(3):227-43.
    PMID: 21834774
    Design of oral fast-release solid dispersion of poorly water-soluble drugs has been a great challenge over past decades on issues of drug recrystallization, drug polymorphism, formulation limited to low drug-to-carrier ratio and drug particle aggregation in matrix. The complexity in solid dispersion design is envisaged to be resolvable by the use of nanoparticulate system as solid dosage form. This manuscript reviews several patented processing approaches of nanoparticulate solid dispersion that have been reported recently. Through drug nanoencapsulation, a higher content of drug may be delivered with less aggregation via placing the same drug mass in a greater number of tinier carriers. Nanoencapsulation, by its own process of formation, brings about submicron particles. Keeping drug in these nanoparticles, a remarkable rise in specific surface area of drug is realized for dissolution. The augmentation of drug dissolution can be sufficiently high to the extent that the influences of polymorphism and crystallization phenomenon on drug dissolution in a solid dispersion may be negligible.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  10. Chua SS, Tea MH, Rahman MH
    J Clin Pharm Ther, 2009 Apr;34(2):215-23.
    PMID: 19250142 DOI: 10.1111/j.1365-2710.2008.00997.x
    Drug administration errors were the second most frequent type of medication errors, after prescribing errors but the latter were often intercepted hence, administration errors were more probably to reach the patients. Therefore, this study was conducted to determine the frequency and types of drug administration errors in a Malaysian hospital ward.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  11. Khan NR, Harun MS, Nawaz A, Harjoh N, Wong TW
    Curr Pharm Des, 2015;21(20):2848-66.
    PMID: 25925113
    Transdermal drug delivery is impeded by the natural barrier of epidermis namely stratum corneum. This limits the route to transport of drugs with a log octanol-water partition coefficient of 1 to 3, molecular weight of less than 500 Da and melting point of less than 200°C. Nanotechnology has received widespread investigation as nanocarriers are deemed to be able to fluidize the stratum corneum as a function of size, shape, surface charges, and hydrophilicity-hydrophobicity balance, while delivering drugs across the skin barrier. This review provides an overview and update on the latest designs of liposomes, ethosomes, transfersomes, niosomes, magnetosomes, oilin- water nanoemulsions, water-in-oil nanoemulsions, bicontinuous nanoemulsions, covalently crosslinked polysaccharide nanoparticles, ionically crosslinked polysaccharide nanoparticles, polyelectrolyte coacervated nanoparticles and hydrophobically modified polysaccharide nanoparticles with respect to their ability to fuse or fluidize lipid/protein/tight junction regimes of skin, and effect changes in skin permeability and drug flux. Universal relationships of nanocarrier size, zeta potential and chemical composition on transdermal permeation characteristics of drugs will be developed and discussed.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  12. Jeevanandam J, Chan YS, Danquah MK
    Biochimie, 2016 Sep-Oct;128-129:99-112.
    PMID: 27436182 DOI: 10.1016/j.biochi.2016.07.008
    Nano-formulations of medicinal drugs have attracted the interest of many researchers for drug delivery applications. These nano-formulations enhance the properties of conventional drugs and are specific to the targeted delivery site. Dendrimers, polymeric nanoparticles, liposomes, nano-emulsions and micelles are some of the nano-formulations that are gaining prominence in pharmaceutical industry for enhanced drug formulation. Wide varieties of synthesis methods are available for the preparation of nano-formulations to deliver drugs in biological system. The choice of synthesis methods depend on the size and shape of particulate formulation, biochemical properties of drug, and the targeted site. This article discusses recent developments in nano-formulation and the progressive impact on pharmaceutical research and industries. Additionally, process challenges relating to consistent generation of nano-formulations for drug delivery are discussed.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  13. Choudhury H, Gorain B, Pandey M, Chatterjee LA, Sengupta P, Das A, et al.
    J Pharm Sci, 2017 07;106(7):1736-1751.
    PMID: 28412398 DOI: 10.1016/j.xphs.2017.03.042
    Being an emerging transdermal delivery tool, nanoemulgel, has proved to show surprising upshots for the lipophilic drugs over other formulations. This lipophilic nature of majority of the newer drugs developed in this modern era resulting in poor oral bioavailability, erratic absorption, and pharmacokinetic variations. Therefore, this novel transdermal delivery system has been proved to be advantageous over other oral and topical drug delivery to avoid such disturbances. These nanoemulgels are basically oil-in-water nanoemulsions gelled with the use of some gelling agent in it. This gel phase in the formulation is nongreasy, which favors user compliance and stabilizes the formulation through reduction in surface as well as interfacial tension. Simultaneously, it can be targeted more specifically to the site of action and can avoid first-pass metabolism and relieve the user from gastric/systemic incompatibilities. This brief review is focused on nanoemulgel as a better topical drug delivery system including its components screening, formulation method, and recent pharmacokinetic and pharmacodynamic advancement in research studies carried out by the scientists all over the world. Therefore, at the end of this survey it could be inferred that nanoemulgel can be a better and effective drug delivery tool for the topical system.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  14. Tan KX, Lau SY, Danquah MK
    Biomed Pharmacother, 2018 May;101:996-1002.
    PMID: 29635910 DOI: 10.1016/j.biopha.2018.03.052
    Targeted drug delivery is a promising strategy to promote effective delivery of conventional and emerging pharmaceuticals. The emergence of aptamers as superior targeting ligands to direct active drug molecules specifically to desired malignant cells has created new opportunities to enhance disease therapies. The application of biodegradable polymers as delivery carriers to develop aptamer-navigated drug delivery system is a promising approach to effectively deliver desired drug dosages to target cells. This study reports the development of a layer-by-layer aptamer-mediated drug delivery system (DPAP) via a w/o/w double emulsion technique homogenized by ultrasonication or magnetic stirring. Experimental results showed no significant differences in the biophysical characteristics of DPAP nanoparticles generated using the two homogenization techniques. The DPAP formulation demonstrated a strong targeting performance and selectivity towards its target receptor molecules in the presence of non-targets. The DPAP formulation demonstrated a controlled and sustained drug release profile under the conditions of pH 7 and temperature 37 °C. Also, the drug release rate of DPAP formulation was successfully accelerated under an endosomal acidic condition of ∼pH 5.5, indicating the potential to enhance drug delivery within the endosomal micro-environment. The findings from this work are useful to understanding polymer-aptamer-drug relationship and their impact on developing effective targeted delivery systems.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  15. Balan S, Hassali MA, Mak VSL
    Res Social Adm Pharm, 2017 May-Jun;13(3):653-655.
    PMID: 27493130 DOI: 10.1016/j.sapharm.2016.06.014
    The pediatric population is an enormously diverse segment of population varying both in size and age. The diversity caused pharmacists face various challenges primarily related to procuring, provision as well as use of drugs in this group of patients. Pediatric dose calculation is particularly a concern for pharmacists. Another challenge faced by pharmacists is unavailability of suitable formulations for pediatric use. This has also led many pharmacists to prepare extemporaneous liquid preparations, even though stability data on such preparations are scarce. Some extemporaneous preparations contain excipients which are potentially harmful in children. Besides that, inadequate labeling and drug information for pediatric drug use had not only challenged pharmacists in recommending and optimizing drug use in children, but also inadvertently caused many drugs used outside the approved terms of the product license (off-label use). Pharmacists are striving to stay connected to overcome the common and comparable challenges faced in their day to day duties and strive to maximize the safe and effective use of medicines for children.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  16. Wong TW, Dhanawat M, Rathbone MJ
    Expert Opin Drug Deliv, 2014 Sep;11(9):1419-34.
    PMID: 24960192 DOI: 10.1517/17425247.2014.924499
    Vaginal infection is widespread and > 80% of females encounter such infections during their lives. Topical treatment and prevention of vaginal infection allows direct therapeutic action, reduced drug doses and adverse effects, convenient administration and improved compliance. The advent of nanotechnology results in the use of nanoparticulate vehicle to control drug release, to enhance dosage form mucoadhesive properties and vaginal retention, and to promote mucus and epithelium permeation for both extracellular and intracellular drug delivery.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  17. Heidarpour F, Mohammadabadi MR, Zaidul IS, Maherani B, Saari N, Hamid AA, et al.
    Pharmazie, 2011 May;66(5):319-24.
    PMID: 21699064
    The oral route is considered the most patient-convenient means of drug administration. In recent years there has been a tendency to employ smart carrier systems that enable controlled or timed release of a bioactive material, thereby providing a better dosing pattern and minimizing side effects. Nano-encapsulation systems (nanocarriers) offer important advantages over conventional drug delivery techniques. Nanocarriers can protect the drug from chemical/enzymatic degradation and enhance bioavailability. Prebiotics are ideal ingredients for the nano-encapsulation and oral drug delivery due to their natural ability to protect the encapsulated compound in the upper gasterointestinal (GI) tract. Here the potential of prebiotics for oral delivery of drugs and other bioactives is reviewed.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  18. Sheshala R, Kok YY, Ng JM, Thakur RR, Dua K
    Recent Pat Drug Deliv Formul, 2015;9(3):237-48.
    PMID: 26205681
    Ophthalmic drug delivery system is very interesting and challenging due to the normal physiologically factor of eyes which reduces the bioavailability of ocular products. The development of new ophthalmic dosage forms for existing drugs to improve efficacy and bioavailability, patient compliance and convenience has become one of the main trend in the pharmaceuticals industry. The present review encompasses various conventional and novel ocular drug delivery systems, methods of preparation, characterization and recent research in this area. Furthermore, the information on various commercially available in situ gel preparations and the existing patents of in situ drug delivery systems i.e. in situ gel formation of pectin, in situ gel for therapeutic use, medical uses of in situ formed gels and in situ gelling systems as sustained delivery for front of eye are also covered in this review.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
  19. Wui WT
    PMID: 25966873
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage
  20. Haque ST, Chowdhury EH
    Curr Drug Deliv, 2018;15(4):485-496.
    PMID: 29165073 DOI: 10.2174/1567201814666171120114034
    BACKGROUND: Delivery of conventional small molecule drugs and currently evolving nucleic acid-based therapeutics, such as small interfering RNAs (siRNAs) and genes, and contrast agents for high resolution imaging, to the target site of action is highly demanding to increase the therapeutic and imaging efficacy while minimizing the off-target effects of the delivered molecules, as well as develop novel therapeutic and imaging approaches.

    METHODS: We have undertaken a structured search for peer-reviewed research and review articles predominantly indexed in PubMed focusing on the organic-inorganic hybrid nanoparticles with evidence of their potent roles in intracellular delivery of therapeutic and imaging agents in different animal models.

    RESULTS: Organic-inorganic hybrid nanoparticles offer a number of advantages by combining the unique properties of the organic and inorganic counterparts, thus improving the pharmacokinetic behavior and targetability of drugs and contrast agents, and conferring the exclusive optical and magnetic properties for both therapeutic and imaging purposes. Different polymers, lipids, dendrimers, peptides, cell membranes, and small organic molecules are attached via covalent or non-covalent interactions with diverse inorganic nanoparticles of gold, mesoporous silica, magnetic iron oxide, carbon nanotubes and quantum dots for efficient drug delivery and imaging purposes.

    CONCLUSION: We have thus highlighted here the progress made so far in utilizing different organicinorganic hybrid nanoparticles for in vivo delivery of anti-cancer drugs, siRNA, genes and imaging agents.

    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links