Displaying publications 1 - 20 of 162 in total

Abstract:
Sort:
  1. Ghasemzadeh A, Jaafar HZ, Ashkani S, Rahmat A, Juraimi AS, Puteh A, et al.
    BMC Complement Altern Med, 2016 Mar 22;16:104.
    PMID: 27004511 DOI: 10.1186/s12906-016-1072-6
    Zingiber zerumbet (L.) is a traditional Malaysian folk remedy that contains several interesting bioactive compounds of pharmaceutical quality.
    Matched MeSH terms: Phenols/analysis
  2. Chua LS
    Plant Physiol Biochem, 2016 Sep;106:16-22.
    PMID: 27135814 DOI: 10.1016/j.plaphy.2016.04.040
    The identification of plant metabolites is very important for the understanding of plant physiology including plant growth, development and defense mechanism, particularly for herbal medicinal plants. The metabolite profile could possibly be used for future drug discovery since the pharmacological activities of the indigenous herbs have been proven for centuries. An untargeted mass spectrometric approach was used to identify metabolites from the leaves and stems of Impatiens balsamina using LC-DAD-MS/MS. The putative compounds are mostly from the groups of phenolic, organic and amino acids which are essential for plant growth and as intermediates for other compounds. Alanine appeared to be the main amino acid in the plant because many alanine derived metabolites were detected. There are also several secondary metabolites from the groups of benzopyrones, benzofuranones, naphthoquinones, alkaloids and flavonoids. The widely reported bioactive components such as kaempferol, quercetin and their glycosylated, lawsone and its derivatives were detected in this study. The results also revealed that aqueous methanol could extract flavonoids better than water, and mostly, flavonoids were detected from the leaf samples. The score plots of component analysis show that there is a minor variance in the metabolite profiles of water and aqueous methanolic extracts with 21.5 and 30.5% of the total variance for the first principal component at the positive and negative ion modes, respectively.
    Matched MeSH terms: Phenols/analysis
  3. Alzorqi I, Sudheer S, Lu TJ, Manickam S
    Ultrason Sonochem, 2017 Mar;35(Pt B):531-540.
    PMID: 27161557 DOI: 10.1016/j.ultsonch.2016.04.017
    Ganoderma mushroom cultivated recently in Malaysia to produce chemically different nutritional fibers has attracted the attention of the local market. The extraction methods, molecular weight and degree of branching of (1-3; 1-6)-β-d-glucan polysaccharides is of prime importance to determine its antioxidant bioactivity. Therefore three extraction methods i.e. hot water extraction (HWE), soxhlet extraction (SE) and ultrasound assisted extraction (US) were employed to study the total content of (1-3; 1-6)-β-d-glucans, degree of branching, structural characteristics, monosaccharides composition, as well as the total yield of polysaccharides that could be obtained from the artificially cultivated Ganoderma. The physical characteristics by HPAEC-PAD, HPGPC and FTIR, as well as the antioxidant in vitro assays of DPPH scavenging activity and ferric reducing power (FRAP) indicated that (1-3; 1-6)-β-d-glucans of Malaysian mushroom have better antioxidant activity, higher molecular weight and optimal degree of branching when extracted by US in comparison with conventional methods.
    Matched MeSH terms: Phenols/analysis
  4. Hwa KY, Karuppaiah P, Gowthaman NSK, Balakumar V, Shankar S, Lim HN
    Ultrason Sonochem, 2019 Nov;58:104649.
    PMID: 31450344 DOI: 10.1016/j.ultsonch.2019.104649
    Hydroquinone (HQ), a phenolic compound is expansively used in many industrial applications and due to the utilization of HQ, water pollution tragedies frequently found by the improper handling and accidental outflows. When HQ is adsorbed directly through the skin that create toxic effects to human by affecting kidney, liver, lungs, and urinary tract and hence, a highly selective and sensitive technique is required for its quantification. Herein, we have developed the ultrasonic synthesis of copper oxide nanoflakes (CuO-NFs) using ultrasonic bath (20 kHz, 100 W) and successfully employed for the sensitive detection of the environmental hazardous pollutant HQ. The formed CuO-NFs were confirmed by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), FT-IR spectroscopy and UV-visible spectroscopy and fabricated with the screen-printed carbon electrode (SPCE). The SEM images exhibited the uniform CuO-NFs with an average width of 85 nm. The linker-free CuO-NFs fabricated electrode showed the appropriate wide range of concentrations from 0.1 to 1400 µM and the limit of detection was found to be 10.4 nM towards HQ. The fabricated sensor having long term stability and sensitivity was successfully applied for the environmental and commercial real sample analysis and exhibited good recovery percentage, implying that the SPCE/CuO-NFs is an economically viable and benign robust scaffold for the determination of HQ.
    Matched MeSH terms: Phenols/analysis*
  5. Hamid HA, Ramli ANM, Zamri N, Yusoff MM
    Food Chem, 2018 Nov 01;265:253-259.
    PMID: 29884381 DOI: 10.1016/j.foodchem.2018.05.033
    Eleven compounds were identified during profiling of polyphenols by UPLC-QTOF/MS. In abundance was quercetin-3-O-α-l-arabinofuranoside in M. malabathricum ethanolic leaves extract while 6-hydroxykaempferol-3-O-glucoside was present in the leaves extract of M. decenfidum (its rare variety). TPC and TFC were significantly higher in M. decemfidum extract than M. malabathricum extract. During DPPH, FRAF and β-carotene bleaching assays, M. decemfidum extract exhibited greater antioxidant activity compared to M. malabathricum extract. Effect of M. malabathricum and M. decemfidum extracts on viability of MDA-MB-231 cell at concentrations 6.25-100 μg/mL were evaluated for 24, 48 and 72 h. After 48 and 72 h treatment, M. malabathricum and M. decemfidum leaves extracts exhibited significant activity in inhibiting MDA-MB-231 cancer cell line with M. malabathricum extract being more cytotoxic. M. malabathricum and M. imbricatum serves as potential daily dietary source of natural phenolics and to improve chemotherapeutic effectiveness.
    Matched MeSH terms: Phenols/analysis*
  6. Kishore RK, Halim AS, Syazana MS, Sirajudeen KN
    Nutr Res, 2011 Apr;31(4):322-5.
    PMID: 21530807 DOI: 10.1016/j.nutres.2011.03.001
    Many chronic diseases are associated with increased oxidative stress caused by an imbalance between free-radical production and the antioxidant level. Antioxidants, which are abundant in natural honey, are free-radical scavengers that either reduce the formation of or neutralize free radicals. The composition and source of honey greatly dictates its biochemical properties. We performed a comparative analysis of the total phenolic content and antioxidant potential of common commercially available honeys along with Malaysian tualang honey. In vitro biochemical analysis of the phenolic content by the Folin-Ciocalteau method revealed a significantly elevated phenolic content (83.96 ± 4.53 mg gallic acid equivalents per 100 g) in tualang honey. In addition, the antioxidant capacity (53.06 ± 0.41 mg ascorbic acid equivalents per gram) of tualang honey was greater, as assessed by the phosphomolybdenum method, 2,2-diphenyl-1-picryl-hydrazyl assay, and ferric reducing/antioxidant power assay. Peroxynitrite and superoxide radical scavenging activity was determined by spectrophotometric analysis in different honey types. Our data suggest that the elevated free-radical scavenging and antioxidant activity observed in tualang honey is due to the increased level of phenolic compounds. In addition to its antibacterial, anticarcinogenic, and anti-inflammatory properties, our study highlights the favorable antioxidant properties of tualang honey, which may be important to human nutrition and health.
    Matched MeSH terms: Phenols/analysis
  7. Wetchakul P, Goon JA, Adekoya AE, Olatunji OJ, Ruangchuay S, Jaisamut P, et al.
    BMC Complement Altern Med, 2019 Aug 13;19(1):209.
    PMID: 31409340 DOI: 10.1186/s12906-019-2626-1
    BACKGROUND: The imbalance between the generation of free radicals and natural cellular antioxidant defenses, known as oxidative stress, can cause oxidation of biomolecules and further contribute to aging-associated diseases. The purpose of this study was to evaluate the antioxidant capacities of Thai traditional tonifying preparation, Jatu-Phala-Tiga (JPT) and its herbal ingredients consisting of Phyllanthus emblica, Terminalia arjuna, Terminalia chebula, and Terminalia bellirica and further assess its effect on longevity.

    METHOD: Antioxidant activities of various extracts obtained from JPT and its herbal components were carried out using well-established methods including metal chelating, free radical scavenging, and ferric reducing antioxidant power assays. Qualitative analysis of the chemical composition from JPT water extract was done by high-performance liquid chromatography tandem with electrospray ionisation mass spectrometry. The effect of JPT water extract on the lifespan of Caenorhabditis elegans were additionally described.

    RESULTS: Among the extracts, JPT water extract exerted remarkable antioxidant activities as compared to the extracts from other solvents and individual constituting plant extract. JPT water extract was found to possess the highest metal chelating activity, with an IC50 value of 1.75 ± 0.05 mg/mL. Moreover, it exhibited remarkable scavenging activities towards DPPH, ABTS, and superoxide anion radicals, with IC50 values of 0.31 ± 0.02, 0.308 ± 0.004, and 0.055 ± 0.002 mg/mL, respectively. The ORAC and FRAP values of JPT water extract were 40.338 ± 2.273 μM of Trolox/μg of extract and 23.07 ± 1.84 mM FeSO4/mg sample, respectively. Several well-known antioxidant-related compounds including amaronols, quinic acid, gallic acid, fertaric acid, kurigalin, amlaic acid, isoterchebin, chebulagic acid, ginkgolide C, chebulinic acid, ellagic acid, and rutin were found in this extract. Treatment with JPT water extract at 1 and 5 mg/mL increased C. elegans lifespan under normal growth condition (7.26 ± 0.65 vs. 10.4 0± 0.75 (p 

    Matched MeSH terms: Phenols/analysis
  8. Mustafa RA, Abdul Hamid A, Mohamed S, Bakar FA
    J Food Sci, 2010 Jan-Feb;75(1):C28-35.
    PMID: 20492146 DOI: 10.1111/j.1750-3841.2009.01401.x
    Free radical scavenging activity of 21 tropical plant extracts was evaluated using 1,1-diphenyl-2-picrylhydrazyl assay (DPPH). Total phenolic compounds and flavonoids were determined using Folin-Ciocalteu and HPLC, respectively. Results of the study revealed that all the plants tested exhibited excellent antioxidant activity with IC(50) in the range of 21.3 to 89.6 microg/mL. The most potent activity was demonstrated by Cosmos caudatus (21.3 microg/mL) and Piper betle (23.0 microg/mL) that are not significantly different than that of -tocopherol or BHA. L. inermis extract was found to consist of the highest concentration of phenolics, catechin, epicatechin, and naringenin. High content of quercetin, myricetin, and kaempferol were identified in Vitex negundo, Centella asiatica, and Sesbania grandiflora extracts, respectively. Luteolin and apigenin, on the other hand, were found in Premna cordifolia and Kaempferia galanga extracts. Strong correlation (R = 0.8613) between total phenolic compounds and total flavonoids (R = 0.8430) and that of antioxidant activity of the extracts were observed. The study revealed that phenolic, in particular flavonoids, may be the main contributors to the antioxidant activity exhibited by the plants.
    Matched MeSH terms: Phenols/analysis*
  9. Tan BL, Mustafa AM
    Asia Pac J Public Health, 2004;16(1):54-63.
    PMID: 18839869
    Alkylphenols and most pesticides, especially organochlorine pesticides are endocrine-disrupting chemicals and they usually mimic the female hormone, estrogen. Using these chemicals in our environment would eventually lead us to consume them somehow in the food web. Several rivers in the State of Selangor, Malaysia were selected to monitor the level of alkylphenols and pesticides contamination for several months. The compounds were extracted from the water samples using liquid-liquid extraction method with dichloromethane and ethyl acetate as the extracting solvents. The alkylphenols and pesticides were analyzed by selected ion monitoring (SIM) mode using the quadrapole detector in Shimadzu QP-5000 gas chromatograph-mass spectrometer (GCMS). Recovery of most alkylphenols and pesticides were in the range of 50% to 120%. Trace amounts of the compounds were detected in the river water samples, mainly in the range of parts per trillion. This technique of monitoring the levels of endocrine-disruptors in river water is consistent and cost effective.
    Matched MeSH terms: Phenols/analysis*
  10. Benjamin MAZ, Ng SY, Saikim FH, Rusdi NA
    Molecules, 2022 Sep 30;27(19).
    PMID: 36234995 DOI: 10.3390/molecules27196458
    The therapeutic potential of bamboos has acquired global attention. Nonetheless, the biological activities of the plants are rarely considered due to limited available references in Sabah, Malaysia. Furthermore, the drying technique could significantly affect the retention and degradation of nutrients in bamboos. Consequently, the current study investigated five drying methods, namely, sun, shade, microwave, oven, and freeze-drying, of the leaves of six bamboo species, Bambusa multiplex, Bambusa tuldoides, Bambusa vulgaris, Dinochloa sublaevigata, Gigantochloa levis, and Schizostachyum brachycladum. The infused bamboo leaves extracts were analysed for their total phenolic content (TPC) and total flavonoid content (TFC). The antioxidant activities of the samples were determined via the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays, whereas their toxicities were evaluated through the brine shrimp lethality assay (BSLA). The chemical constituents of the samples were determined using liquid chromatography−tandem mass spectrometry (LC-MS/MS). The freeze-drying method exhibited the highest phytochemical contents and antioxidant activity yield, excluding the B. vulgaris sample, in which the microwave-dried sample recorded the most antioxidant and phytochemical levels. The TPC and TFC results were within the 2.69 ± 0.01−12.59 ± 0.09 mg gallic acid equivalent (GAE)/g and 0.77 ± 0.01−2.12 ± 0.01 mg quercetin equivalent (QE)/g ranges, respectively. The DPPH and ABTS IC50 (half-maximal inhibitory concentration) were 2.92 ± 0.01−4.73 ± 0.02 and 1.89−0.01 to 3.47 ± 0.00 µg/mL, respectively, indicating high radical scavenging activities. The FRAP values differed significantly between the drying methods, within the 6.40 ± 0.12−36.65 ± 0.09 mg Trolox equivalent (TE)/g range. The phytochemical contents and antioxidant capacities exhibited a moderate correlation, revealing that the TPC and TFC were slightly responsible for the antioxidant activities. The toxicity assessment of the bamboo extracts in the current study demonstrated no toxicity against the BSLA based on the LC50 (lethal concentration 50) analysis at >1000 µg/mL. LC-MS analysis showed that alkaloid and pharmaceutical compounds influence antioxidant activities, as found in previous studies. The acquired information might aid in the development of bamboo leaves as functional food items, such as bamboo tea. They could also be investigated for their medicinal ingredients that can be used in the discovery of potential drugs.
    Matched MeSH terms: Phenols/analysis
  11. Chang SK, Alasalvar C, Shahidi F
    Crit Rev Food Sci Nutr, 2019;59(10):1580-1604.
    PMID: 29360387 DOI: 10.1080/10408398.2017.1422111
    The term "superfruit" has gained increasing usage and attention recently with the marketing strategy to promote the extraordinary health benefits of some exotic fruits, which may not have worldwide popularity. This has led to many studies with the identification and quantification of various groups of phytochemicals. This contribution discusses phytochemical compositions, antioxidant efficacies, and potential health benefits of the main superfruits such as açai, acerola, camu-camu, goji berry, jaboticaba, jambolão, maqui, noni, and pitanga. Novel product formulations, safety aspects, and future perspectives of these superfruits have also been covered. Research findings from the existing literature published within the last 10 years have been compiled and summarized. These superfruits having numerous phytochemicals (phenolic acids, flavonoids, proanthocyanidins, iridoids, coumarins, hydrolysable tannins, carotenoids, and anthocyanins) together with their corresponding antioxidant activities, have increasingly been utilized. Hence, these superfruits can be considered as a valuable source of functional foods due to the phytochemical compositions and their corresponding antioxidant activities. The phytochemicals from superfruits are bioaccessible and bioavailable in humans with promising health benefits. More well-designed human explorative studies are needed to validate the health benefits of these superfruits.
    Matched MeSH terms: Phenols/analysis
  12. Al-Maqtari QA, Al-Ansi W, Mahdi AA, Al-Gheethi AAS, Mushtaq BS, Al-Adeeb A, et al.
    Environ Sci Pollut Res Int, 2021 May;28(20):25479-25492.
    PMID: 33462691 DOI: 10.1007/s11356-021-12346-6
    Artemisia arborescens, Artemisia abyssinica, Pulicaria jaubertii, and Pulicaria petiolaris are fragrant herbs traditionally used in medication and as a food seasoning. To date, there are no studies on the use of supercritical fluids extraction with carbon dioxide (SFE-CO2) on these plants. This study evaluates and compares total phenolic content (TPC), antioxidant activity by DPPH• and ABTS•+, antibacterial, and anti-biofilm activities of SFE-CO2 extracts. Extraction was done by SFE-CO2 with 10% ethanol as a co-solvent. A. abyssinica extract had the highest extraction yield (8.9% ± 0.41). The GC/MS analysis of volatile compounds identified 307, 265, 213, and 201compounds in A. abyssinica, A. arborescens, P. jaubertii, and P. petiolaris, respectively. The P. jaubertii extract had the highest TPC (662.46 ± 50.93 mg gallic acid equivalent/g dry extract), antioxidant activity (58.98% ± 0.20), and antioxidant capacity (71.78 ± 1.84 mg Trolox equivalent/g dry extract). The A. abyssinica and P. jaubertii extracts had significantly higher antimicrobial activity and were more effective against Gram-positive bacteria. B. subtilis was the most sensitive bacterium. P. aeruginosa was the most resistant bacterium. P. jaubertii extract had the optimum MIC and MBC (0.4 mg/ml) against B. subtilis. All SFE-CO2 extracts were effective as an anti-biofilm formation for all tested bacteria at 1/2 MIC. Meanwhile, P. jaubertii and P. petiolaris extracts were effective anti-biofilm for most tested bacteria at 1/16 MIC. Overall, the results indicated that the SFE-CO2 extracts of these plants are good sources of TPC, antioxidants, and antibacterial, and they have promising applications in the industrial fields.
    Matched MeSH terms: Phenols/analysis
  13. Mirshekari A, Madani B, Golding JB
    J Sci Food Agric, 2017 Aug;97(11):3706-3711.
    PMID: 28111769 DOI: 10.1002/jsfa.8231
    BACKGROUND: The marketability of fresh-cut banana slices is limited by the rapid rate of fruit softening and browning. However, there is no scientific literature available about the role of postharvest calcium propionate and chitosan treatment on the quality attributes of fresh-cut banana. Therefore, the aim of the present study was to investigate these effects.

    RESULTS: The application of calcium propionate plus chitosan (CaP+Chit) retained higher firmness, higher ascorbic acid content, higher total antioxidant activity and higher total phenolic compounds, along with lower browning, lower polyphenol oxidase, lower peroxidase, lower polygalacturonase and lower pectin methyl esterase activities and microbial growth, compared to control banana slices after 5 days of cold storage.

    CONCLUSION: The results of the present study show that CaP+Chit could be used to slow the loss of quality at the same time as maintaining quality and inhibiting microbial loads. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Phenols/analysis
  14. Devi Ramaiya S, Bujang JS, Zakaria MH, King WS, Shaffiq Sahrir MA
    J Sci Food Agric, 2013 Mar 30;93(5):1198-205.
    PMID: 23027609 DOI: 10.1002/jsfa.5876
    The levels of sugars, ascorbic acid, total phenolic content (TPC) and total antioxidant activity (TAA) were determined in fruit juices from seven passion fruit (Passiflora spp.) cultivars: P. edulis cultivars Purple, Frederick, Yellow, Pink, P. edulis f. flavicarpa, P. maliformis and P. quadrangularis (we also tested this cultivar's mesocarp).
    Matched MeSH terms: Phenols/analysis*
  15. Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H
    Anal Bioanal Chem, 2006 Nov;386(5):1285-92.
    PMID: 17031625
    The stacked-film immobilization of 3-methyl-2-benzothiazolinone hydrazone (MBTH) in hybrid nafion/sol-gel silicate film and horseradish peroxidase (HRP) in chitosan, performed in order to allow the determination of phenolic compounds, was investigated via an optical method. The stacked films were deposited onto a microscope glass slide by a spin-coating technique. The quinone or free radical product formed by the enzymatic reactions of phenolic compounds interacts with MBTH to form azo-dye products, which can be measured spectrophotometrically at a wavelength of 500 nm. The color intensity of the product was found to increase in proportion to the phenolic concentration after 5 min of exposure. The response of the biosensor was linear over concentration ranges of 0.025-0.500, 0.010-0.070 and 0.050-0.300 mM for guaiacol, resorcinol and o-cresol, respectively, and gave detection limits of 0.010, 0.005 and 0.012 mM. The sensor exhibited good sensitivity and stability for at least two months.
    Matched MeSH terms: Phenols/analysis*
  16. Mohd Hazli UHA, Abdul-Aziz A, Mat-Junit S, Chee CF, Kong KW
    Food Res Int, 2019 01;115:241-250.
    PMID: 30599938 DOI: 10.1016/j.foodres.2018.08.094
    Alternanthera sessilis (red) (ASR) is an edible herbal plant with many beneficial health effects. This study aimed to investigate the antioxidant components and antioxidant activities of the edible leaves and stems of ASR extracted using solvent of varying polarities namely water, ethanol, ethyl acetate and hexane. ASR leaf extracts showed higher in both antioxidant components and activities than the stem extracts. Among the antioxidant components, the ethanol leaf extract showed higher phenolic (77.29 ± 1.02 mg GAE/g extract) content while the ethyl acetate leaf extract was rich in flavonoids (157.44 ± 10.19 mg RE/g extract), carotenoids (782.97 ± 10.78 mg BE/g extract) and betalains (betanin: 67.08 ± 0.49 mg/g extract; amaranthin: 93.94 ± 0.68 mg/g extract and betaxanthin: 53.92 ± 0.88 mg/g extract). Nevertheless, the ethanol leaf extract showed the highest DPPH radical scavenging activity and ABTS radical cation scavenging activity. It also exhibited highest ferric reducing activity among all the extracts. Four polyphenolic compounds from ASR leaf, namely ferulic acid, rutin, quercetin and apigenin, were identified and quantified using ultra high performance liquid chromatography. The existence of these compounds was further verified using tandem mass spectrometry. These current results indicate that ASR leaf particularly the ethanol extract has the potential to be exploited as a source of natural antioxidants.
    Matched MeSH terms: Phenols/analysis; Polyphenols/analysis*
  17. Santhi VA, Hairin T, Mustafa AM
    Chemosphere, 2012 Mar;86(10):1066-71.
    PMID: 22197311 DOI: 10.1016/j.chemosphere.2011.11.063
    A study to assess the level of organochlorine pesticides (OCPs) and bisphenol A (BPA) in edible marine biota collected from coastal waters of Malaysia was conducted using GC-MS and SPE extraction. An analytical method was developed and validated to measure the level of 15 OCPs and BPA simultaneously from five selected marine species. It was observed that some samples had low levels of p,p'-DDE, p,p'-DDT and p,p'- DDD ranging from 0.50 ng g(-1) to 22.49 ng g(-1) dry weight (d.w) but significantly elevated level of endosulfan I was detected in a stingray sample at 2880 ng g(-1) d.w. BPA was detected in 31 out of 57 samples with concentration ranging from below quantification level (LOQ: 3 ng g(-1)) to 729 ng g(-1) d.w. The presence of OCPs is most likely from past use although there is also indication of illegal use in recent times. The study also reveals that BPA is more widely distributed in coastal species caught off the coast of the most developed state. The potential health risk from dietary intakes of OCPs and BPA from the analysed fish species was negligible.
    Matched MeSH terms: Phenols/analysis
  18. Aziz SQ, Aziz HA, Yusoff MS, Mohajeri S
    Environ Monit Assess, 2012 Oct;184(10):6147-58.
    PMID: 22068314 DOI: 10.1007/s10661-011-2409-8
    In this research, two types of sequencing batch reactors (SBRs) with 8 h of cycle times, namely non-powdered activated carbon (NPAC-SBR) and powdered activated carbon (PAC-SBR), were used for the treatment of raw leachates at Kulim and Pulau Burung landfill sites. To test the performance of SBRs, phenols, total iron, zinc, ammonia, nitrite, nitrate, color, suspended solids, chemical oxygen demand, biochemical oxygen demand, and total dissolved salts removal efficiencies and sludge volume index (SVI) were studied at both sites. The rates of phenols removal, for instance in NPAC-SBRs and PAC-SBRs at Kulim, were 25% and 55%, respectively, whereas those at Pulau Buring were 94.81% and 97.75%, respectively. PAC as adsorbent in PAC-SBRs enhanced the removal efficiencies of the aforementioned pollutants from leachates at both sites. In addition, PAC as adsorbent decreased the SVI values at Kulim (59.7 mL/g) and Pulau Burung (91.4 mL/g) leachates and improved the nitrification and denitrification processes.
    Matched MeSH terms: Phenols/analysis*
  19. Alam MZ, Muyibi SA, Mansor MF, Wahid R
    J Environ Sci (China), 2006;18(3):446-52.
    PMID: 17294638
    The study was attempted to produce activated carbons from palm oil mill effluent (POME) sludge. The adsorption capacity of the activated carbons produced was evaluated in aqueous solution of phenol. Two types of activation were followed, namely, thermal activation at 300, 500 and 800 degrees C, and physical activation at 15 degrees C (boiling treatment). A control (raw POME sludge) was used to compare the adsorption capacity of the activated carbons produced. The results indicated that the activation temperature of 800 degrees C showed maximum absorption capacity by the activated carbon (POME 800) in aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon of POME 800. It was observed that the adsorption capacity was higher at lower values of pH (2-3) and higher value of initial concentration of phenol (200-300 mg/L). The equilibrium data were fitted by the Langmuir and Freundlich adsorption isotherms. The adsorption of phenol onto the activated carbon POME 800 was studied in terms of pseudo- first and second order kinetics to predict the rate constant and equilibrium capacity with the effect of initial phenol concentrations. The rate of adsorption was found to be better correlation for the pseudo-second order kinetics compared to the first order kinetics.
    Matched MeSH terms: Phenols/analysis
  20. Choong CE, Ibrahim S, Yoon Y, Jang M
    Ecotoxicol Environ Saf, 2018 Feb;148:142-151.
    PMID: 29040822 DOI: 10.1016/j.ecoenv.2017.10.025
    In this work, palm shell waste powder activated carbon coated by magnesium silicate (PPAC-MS) were synthesized by the impregnation of magnesium silicate (MgSiO3) using economical material (silicon dioxide powder) via mild hydrothermal approach for the first time. As an effective adsorbent, PPAC-MS simultaneously removes BPA and Pb(II) in single and binary mode. Surprisingly, PPAC-MS exhibited a homogeneous thin plate mesh-like structure, as well as meso- and macropores with a high surface area of 772.1m2g-1. Due to its specific morphological characteristics, PPAC-MS had adsorption capacities of Pb(II) as high as 419.9mgg-1 and 408.8mgg-1 in single mode and binary mode based on Freudliuch isotherm model while those for BPA by PPAC-MS were 168.4mgg-1 and 254.7mgg-1 for single mode and binary modes corresponding to Langmuir isotherm model. Experiment results also indicated that the synergistic removal of BPA occurred because the precipitation process of Pb(II) leads to the co-precipitation of BPA with Pb(OH)2 compound. PPAC-MS showed a good reusability for 5 regeneration cycles using Mg(II) solution followed by thermal treatment. Overall, PPAC-MS has a high potential in the treatment process for wastewater containing both toxic heavy metals and emerging pollutants due to its high sorption capacities and reusability.
    Matched MeSH terms: Phenols/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links