Displaying publications 1 - 20 of 113 in total

Abstract:
Sort:
  1. Aishah Baharuddin S, Nadiah Abd Karim Shah N, Saiful Yazan L, Abd Rashed A, Kadota K, Al-Awaadh AM, et al.
    Ultrason Sonochem, 2023 Dec;101:106702.
    PMID: 38041881 DOI: 10.1016/j.ultsonch.2023.106702
    Colorectal cancer (CRC) is the most common malignancy and the third primary cause of cancer-related mortalities caused by unhealthy diet, hectic lifestyle, and genetic damage. People aged ≥ 50 are more at risk for CRC. Nowadays, bioactive compounds from plants have been widely studied in preventing CRC because of their anticancer and antioxidant properties. Herein, ultrasound-assisted extraction (UAE) was used to extract the bioactive compounds of Pluchea indica (L.) leaves. The resultant total phenolic content (TPC) and total flavonoid content (TFC) of P. indica (L.) leaves were analyzed using a response surface methodology (RSM). The central composite design was implemented to evaluate the amplitude (10 %-70 %) and treatment time (2-10 min) on both responses, i.e., TPC and TFC of P. indica (L.) leaves. The optimum UAE conditions were observed 40 % amplitude and 6 min of treatment, where the TPC and TFC were 3.26 ± 0.00 mg GAE/g d.w. and 67.58 ± 1.46 mg QE/g d.w., respectively. The optimum P. indica (L.) leaf extract was then screened for its cytotoxicity on the HT-29 colorectal cancer cell line. This extract had strong cytotoxicity with a half-maximal inhibitory concentration value (IC50) of 12 µg/mL. The phytochemical screening of bioactive compounds revealed that the optimal P. indica (L.) leaf extract contains flavonoids, namely, kaempferol 3-[2''',3''',5'''-triacetyl]-alpha-L-arabinofuranosyl-(1->6)-glucoside, myricetin 3-glucoside-7-galactoside, quercetin 3-(3''-sulfatoglucoside), and kaempferol 7,4'-dimethyl ether 3-O-sulfate, which could be good sources for promising anticancer agents. This study employs the RSM approach to utilize UAE for bioactive compounds extraction of P. indica (L.) leaves, identified the specific compounds present in the optimized extract and revealed its potential in preventing CRC.
    Matched MeSH terms: Phenols/pharmacology
  2. Jaganathan SK, Mondhe D, Wani ZA, Supriyanto E
    ScientificWorldJournal, 2014;2014:912051.
    PMID: 25506620 DOI: 10.1155/2014/912051
    People affected with leukemia are on the rise and several strategies were employed to thwart this deadly disease. Recent decade of research focuses on phenolic constituents as a tool for combating various inflammatory, cancer, and cardiac diseases. Our research showed honey and its phenolic constituents as crusaders against cancer. In this work, we explored the antileukemic activity of selected honey and one of its phenolic constituent eugenol against L1210 leukemia animal model. Results of this experiment showed that the selected honey samples as well as eugenol after intraperitoneal injection could not increase the median survival time (MST) of animals. Further, there was only slight marginal increase in the %T/C values of honey and eugenol treated groups. The number of phenolics present in the honey may not be a prime factor to promote antileukemic effect since there was no difference in the MST of two different honeys tested. This study limits the use of selected honey and eugenol against leukemia animal model.
    Matched MeSH terms: Phenols/pharmacology
  3. Jamal P, Alam MZ, Suhani F
    Med J Malaysia, 2008 Jul;63 Suppl A:107-8.
    PMID: 19025008
    Large quantities of agro-based liquid wastes are produced every year and their disposal is often a problem for industries. In light of that, in this study prudent effort was done to screen the agro-industrial wastes - pineapple waste (PAW) and palm oil mill effluent (POME) for valuable biophenols product. Three different solvents; ethanol, acetone and distilled water were screened in order to enhance the process. All experiments were performed using fixed process conditions of solid to solvent ratio, temperatures, time and agitation speed. Effectiveness of extraction process to produce biophenol was based on high amount with more activity. POME was selected as potential source with biophenol content of 125.42 mg/L GAE.
    Matched MeSH terms: Phenols/pharmacology*
  4. Zakaria ZA, Mohamed AM, Jamil NS, Rofiee MS, Hussain MK, Sulaiman MR, et al.
    Am J Chin Med, 2011;39(1):183-200.
    PMID: 21213408
    The in vitro antiproliferative and antioxidant activities of the aqueous, chloroform and methanol extracts of Muntingia calabura leaves were determined in the present study. Assessed using the 3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay, the aqueous and methanol extracts of M. calabura inhibited the proliferation of MCF-7, HeLa, HT-29, HL-60 and K-562 cancer cells while the chloroform extract only inhibited the proliferation of MCF-7, HeLa, HL-60 and K-562 cancer cells. Interestingly, all extracts of M. calabura, which failed to inhibit the MDA-MB-231 cells proliferation, did not inhibit the proliferation of 3T3 (normal) cells, indicating its safety. All extracts (20, 100 and 500 μg/ml) were found to possess antioxidant activity when tested using the DPPH radical scavenging and superoxide scavenging assays with the methanol, followed by the aqueous and chloroform, extract exhibiting the highest antioxidant activity in both assays. The total phenolic content for the aqueous, methanol and chloroform extracts were 2970.4 ± 6.6, 1279.9 ± 6.1 and 2978.1 ± 4.3 mg/100 g gallic acid, respectively. In conclusion, the M. calabura leaves possess potential antiproliferative and antioxidant activities that could be attributed to its high content of phenolic compounds, and thus, needs to be further explored.
    Matched MeSH terms: Phenols/pharmacology
  5. Shahid M, Azfaralariff A, Law D, Najm AA, Sanusi SA, Lim SJ, et al.
    Sci Rep, 2021 01 15;11(1):1594.
    PMID: 33452398 DOI: 10.1038/s41598-021-81026-9
    Xanthorrhizol (XNT), is a bioactive compound found in Curcuma xanthorrhiza Roxb. This study aimed to determine the potential targets of the XNT via computational target fishing method. This compound obeyed Lipinski's and Veber's rules where it has a molecular weight (MW) of 218.37 gmol-1, TPSA of 20.23, rotatable bonds (RBN) of 4, hydrogen acceptor and donor ability is 1 respectively. Besides, it also has half-life (HL) values 3.5 h, drug-likeness (DL) value of 0.07, oral bioavailability (OB) of 32.10, and blood-brain barrier permeability (BBB) value of 1.64 indicating its potential as therapeutic drug. Further, 20 potential targets were screened out through PharmMapper and DRAR-CPI servers. Co-expression results derived from GeneMANIA revealed that these targets made connection with a total of 40 genes and have 744 different links. Four genes which were RXRA, RBP4, HSD11B1 and AKR1C1 showed remarkable co-expression and predominantly involved in steroid metabolic process. Furthermore, among these 20 genes, 13 highly expressed genes associated with xenobiotics by cytochrome P450, chemical carcinogenesis and steroid metabolic pathways were identified through gene ontology (GO) and KEGG pathway analysis. In conclusion, XNT is targeting multiple proteins and pathways which may be exploited to shape a network that exerts systematic pharmacological effects.
    Matched MeSH terms: Phenols/pharmacology
  6. Latiff NA, Ong PY, Abd Rashid SNA, Abdullah LC, Mohd Amin NA, Fauzi NAM
    Sci Rep, 2021 08 27;11(1):17297.
    PMID: 34453075 DOI: 10.1038/s41598-021-96623-x
    Cosmos caudatus (C. caudatus) is a medicinal plant that is high in bioactive compounds such as phenolics. In this study, an ultrasound extraction method was used to optimise the extraction of bioactive compounds from C. caudatus leaves. Response surface methodology (RSM) based on a Box-Behnken design (BBD) was applied to obtain the optimum extraction parameters which is solid-liquid ratio (10-30 g/mL), particle size (180-850 µm) and extraction time (20-30 min) for maximal quercitrin and total phenolic content (TPC) yields. Analysis of antimicrobial activity was performed against two human pathogenic microbes: Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) by the agar well diffusion method. The optimal ultrasonic extraction condition was as follow: solvent-liquid ratio of 1:28 (g/mL), particle size of 485 µm, and duration of 30 min, respectively. Remarkably, extraction using ultrasonic method had recovered more bioactive content and antioxidant activity than the Soxhlet method. The extract also exhibited good antimicrobial activities. Due to the above findings, the ultrasonic extraction was found to be suitable to improve recovery extraction of quercitrin and TPC from C. caudatus leaves. It also opens the possibility that the plant extract can be used for functional food and antimicrobial agents in various applications.
    Matched MeSH terms: Phenols/pharmacology
  7. Ng MY, Song ZJ, Venkatesan G, Rodriguez-Cuenca S, West JA, Yang S, et al.
    Sci Rep, 2024 Feb 28;14(1):4932.
    PMID: 38418847 DOI: 10.1038/s41598-024-54466-2
    One potential approach for treating obesity is to increase energy expenditure in brown and white adipose tissue. Here we aimed to achieve this outcome by targeting mitochondrial uncoupler compounds selectively to adipose tissue, thus avoiding side effects from uncoupling in other tissues. Selective drug accumulation in adipose tissue has been observed with many lipophilic compounds and dyes. Hence, we explored the feasibility of conjugating uncoupler compounds with a lipophilic C8-hydrocarbon chain via an ether bond. We found that substituting the trifluoromethoxy group in the uncoupler FCCP with a C8-hydrocarbon chain resulted in potent uncoupling activity. Nonetheless, the compound did not elicit therapeutic effects in mice, likely as a consequence of metabolic instability resulting from rapid ether bond cleavage. A lipophilic analog of the uncoupler compound 2,6-dinitrophenol, in which a C8-hydrocarbon chain was conjugated via an ether bond in the para-position (2,6-dinitro-4-(octyloxy)phenol), exhibited increased uncoupling activity compared to the parent compound. However, in vivo pharmacokinetics studies suggested that 2,6-dinitro-4-(octyloxy)phenol was also metabolically unstable. In conclusion, conjugation of a hydrophobic hydrocarbon chain to uncoupler compounds resulted in sustained or improved uncoupling activity. However, an ether bond linkage led to metabolic instability, indicating the need to conjugate lipophilic groups via other chemical bonds.
    Matched MeSH terms: Phenols/pharmacology
  8. Shahinuzzaman M, Akhtar P, Amin N, Ahmed Y, Anuar FH, Misran H, et al.
    Sci Rep, 2021 Jun 14;11(1):12503.
    PMID: 34127747 DOI: 10.1038/s41598-021-91913-w
    In this study, the extraction conditions extracted maximize amounts of phenolic and bioactive compounds from the fruit extract of Ficus auriculata by using optimized response surface methodology. The antioxidant capacity was evaluated through the assay of radical scavenging ability on DPPH and ABTS as well as reducing power assays on total phenolic content (TPC). For the extraction purpose, the ultrasonic assisted extraction technique was employed. A second-order polynomial model satisfactorily fitted to the experimental findings concerning antioxidant activity (R2 = 0.968, P 
    Matched MeSH terms: Phenols/pharmacology
  9. Rad SK, Movafagh A
    Recent Pat Food Nutr Agric, 2021;12(1):45-57.
    PMID: 32807070 DOI: 10.2174/2212798411666200817120307
    BACKGROUND: Cinnamomum cassia (C. cassia) is an evergreen tree in China and Southern and Eastern Asia. In traditional medicine, cinnamon is widely used due to its many bioactivity effects.

    OBJECTIVE: The present novel study aims to evaluate and make a comparison of antioxidant and antiproliferative activities of different extractions of C. cassia bark using seven solvents having different polarities. Solvents polarity gradients start with the solvent of lower polarity, n-hexane, and end with water as the highest polar solvent. Among the extracts, acetone extract contains the highest phenolic and flavonoid contents; therefore, it is assessed for the ability to protect DNA from damage.

    METHODS: The extracts are evaluated for total phenolic, flavonoid contents and antioxidant activities, using FRAP, DPPH, superoxide, and hydroxyl and nitric oxide radicals scavenging assays. DNA damage protecting activity of the acetone extract is studied with the comet assay. Each of the extracts is studied for its antiproliferative effect against, MCF-7, MDA-MB-231(breast cancer), and HT29 (colon cancer), using MTT assay.

    RESULTS: The acetone extract exhibited the highest FRAP value, phenolic and flavonoids contents when compared to the other extracts and could protect 45% mouse fibroblast cell line (3T3-L1) from DNA damage at 30 μg/ml. The lowest IC50 value in DPPH, superoxide, and hydroxyl radicals scavenging was noticed in the ethyl acetate extract. IC50 value obtained for the hexane extract was the lowest compared to the other extracts in scavenging nitric oxide radicals. The hexane extract showed the highest antiproliferative effect against cancer cells followed by the chloroform extract. The ethyl acetate extract inhibited the proliferation of only MCF-7 by IC50 of 100 μg/ml, while the other extracts exhibited no IC50 in all the cancer cells.

    CONCLUSION: C. cassia showed promising antioxidant and anticancer activities with significant DNA damage protecting effect.

    Matched MeSH terms: Phenols/pharmacology
  10. Lee SH, Jaganath IB, Wang SM, Sekaran SD
    PLoS One, 2011;6(6):e20994.
    PMID: 21698198 DOI: 10.1371/journal.pone.0020994
    Current chemotherapeutic drugs kill cancer cells mainly by inducing apoptosis. However, they become ineffective once cancer cell has the ability to metastasize, hence the poor prognosis and high mortality rate. Therefore, the purpose of this study was to evaluate the antimetastatic potential of Phyllanthus (P. niruri, P. urinaria, P. watsonii, and P. amarus) on lung and breast carcinoma cells.
    Matched MeSH terms: Phenols/pharmacology
  11. Ong CE, Ahmad R, Goh YK, Azizan KA, Baharum SN, Goh KJ
    PLoS One, 2021;16(12):e0262029.
    PMID: 34972183 DOI: 10.1371/journal.pone.0262029
    Various phenolic compounds have been screened against Ganoderma boninense, the fungal pathogen causing basal stem rot in oil palms. In this study, we focused on the effects of salicylic acid (SA) on the growth of three G. boninense isolates with different levels of aggressiveness. In addition, study on untargeted metabolite profiling was conducted to investigate the metabolomic responses of G. boninense towards salicylic acid. The inhibitory effects of salicylic acid were both concentration- (P < 0.001) and isolate-dependent (P < 0.001). Also, growth-promoting effect was observed in one of the isolates at low concentrations of salicylic acid where it could have been utilized by G. boninense as a source of carbon and energy. Besides, adaptation towards salicylic acid treatment was evident in this study for all isolates, particularly at high concentrations. In other words, inhibitory effect of salicylic acid treatment on the fungal growth declined over time. In terms of metabolomics response to salicylic acid treatment, G. boninense produced several metabolites such as coumarin and azatyrosine, which suggests that salicylic acid modulates the developmental switch in G. boninense towards the defense mode for its survival. Furthermore, the liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis showed that the growth of G. boninense on potato dextrose agar involved at least four metabolic pathways: amino acid metabolism, lipid pathway, tryptophan pathway and phenylalanine pathway. Overall, there were 17 metabolites that contributed to treatment separation, each with P<0.005. The release of several antimicrobial metabolites such as eudistomin I may enhance G. boninense's competitiveness against other microorganisms during colonisation. Our findings demonstrated the metabolic versatility of G. boninense towards changes in carbon sources and stress factors. G. boninense was shown to be capable of responding to salicylic acid treatment by switching its developmental stage.
    Matched MeSH terms: Phenols/pharmacology
  12. Halabi MF, Shakir RM, Bardi DA, Al-Wajeeh NS, Ablat A, Hassandarvish P, et al.
    PLoS One, 2014;9(5):e95908.
    PMID: 24800807 DOI: 10.1371/journal.pone.0095908
    BACKGROUND: The study was carried out to determine the cytotoxic, antioxidant and gastro-protective effect of ethyl-4-[(3,5-di-tert-butyl-2-hydroxybenzylid ene)amino] benzoate (ETHAB) in rats.

    METHODOLOGY/PRINCIPAL FINDINGS: The cytotoxic effect of ETHAB was assessed using a MTT cleavage assay on a WRL68 cell line, while its antioxidant activity was evaluated in vitro. In the anti-ulcer study, rats were divided into six groups. Group 1 and group 2 received 10% Tween 20 (vehicle). Group 3 received 20 mg/kg Omeprazole. Groups 4, 5 and 6 received ETHAB at doses of 5, 10, and 20 mg/kg, respectively. After an hour, group 1 received the vehicle. Groups 2-6 received absolute ethanol to induce gastric mucosal lesions. In the WRL68 cell line, an IC50 of more than 100 µg/mL was observed. ETHAB results showed antioxidant activity in the DPPH, FRAP, nitric oxide and metal chelating assays. There was no acute toxicity even at the highest dosage (1000 mg/kg). Microscopy showed that rats pretreated with ETHAB revealed protection of gastric mucosa as ascertained by significant increases in superoxide dismutase (SOD), pH level, mucus secretion, reduced gastric lesions, malondialdehyde (MDA) level and remarkable flattened gastric mucosa. Histologically, pretreatment with ETHAB resulted in comparatively better gastric protection, due to reduction of submucosal edema with leucocyte infiltration. PAS staining showed increased intensity in uptake of Alcian blue. In terms of immunohistochemistry, ETHAB showed down-expression of Bax proteins and over-expression of Hsp70 proteins.

    CONCLUSION/SIGNIFICANCE: The gastroprotective effect of ETHAB may be attributed to antioxidant activity, increased gastric wall mucus, pH level of gastric contents, SOD activity, decrease in MDA level, ulcer area, flattening of gastric mucosa, reduction of edema and leucocyte infiltration of the submucosal layer, increased PAS staining, up-regulation of Hsp70 protein and suppressed expression of Bax.

    Matched MeSH terms: Phenols/pharmacology
  13. Chua LK, Lim CL, Ling APK, Chye SM, Koh RY
    Plant Foods Hum Nutr, 2019 Mar;74(1):18-27.
    PMID: 30535971 DOI: 10.1007/s11130-018-0704-z
    Cancer is a preventable and treatable disease, however, the incidence rates are on the rise. Classical treatment modalities for cancer include surgery, radiotherapy and chemotherapy. However, these are associated with detrimental side effects such as nausea and emesis. Therefore, researchers currently vest interest in complementary and alternative medicines for cancer treatment and prevention. Plants such as Syzygium sp. are a common basis of complementary medicines due to its abundance of bioactive phytochemicals. Numerous natural compounds derived from Syzygium sp., such as phenolics, oleanolic acids, and betulinic acids, and dimethyl cardamonins, were reported to have anticancer effects. Many possess the ability to inhibit cell proliferation and induce apoptosis. In this review, we discuss the vast potential Syzygium sp. harbours as a source of anticancer natural compounds due to its abundance, easy acceptability, affordability and safety for regular consumption.
    Matched MeSH terms: Phenols/pharmacology
  14. Rukayadi Y, Hwang JK
    Phytother Res, 2013 Jul;27(7):1061-6.
    PMID: 22969012 DOI: 10.1002/ptr.4834
    The purpose of this study was to investigate the activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. on Candida albicans biofilms at adherent, intermediate, and mature phase of growth. C. albicans biofilms were formed in flat-bottom 96-well microtiter plates. The biofilms of C. albicans at different phases of development were exposed to xanthorrhizol at different concentrations (0.5 µg/mL-256 µg/mL) for 24 h. The metabolic activity of cells within the biofilms was quantified using the XTT reduction assay. Sessile minimum inhibitory concentrations (SMICs) were determined at 50% and 80% reduction in the biofilm OD₄₉₀ compared to the control wells. The SMIC₅₀ and SMIC₈₀ of xanthorrhizol against 18 C. albicans biofilms were 4--16 µg/mL and 8--32 µg/mL, respectively. The results demonstrated that the activity of xanthorrhizol in reducing C. albicans biofilms OD₄₉₀ was dependent on the concentration and the phase of growth of biofilm. Xanthorrhizol at concentration of 8 µg/mL completely reduced in biofilm referring to XTT-colorimetric readings at adherent phase, whereas 32 µg/mL of xanthorrhizol reduced 87.95% and 67.48 % of biofilm referring to XTT-colorimetric readings at intermediate and mature phases, respectively. Xanthorrhizol displayed potent activity against C. albicans biofilms in vitro and therefore might have potential therapeutic implication for biofilm-associated candidal infections.
    Matched MeSH terms: Phenols/pharmacology*
  15. Aisha AF, Abu-Salah KM, Alrokayan SA, Ismail Z, Abdulmajid AM
    Pak J Pharm Sci, 2012 Jan;25(1):7-14.
    PMID: 22186303
    Parkia speciosa Hassk is a traditional medicinal plant with strong antioxidant and hypoglycemic properties. This study aims to investigate the total phenolic content, antioxidant, cytotoxic and antiangiogenic effect of eight extracts from P. speciosa empty pods. The extracts were found to contain high levels of total phenols and demonstrated strong antioxidant effect in DPPH scavenging test. In rat aortic rings, P. speciosa extracts significantly inhibited the microvessel outgrowth from aortic tissue explants by more than 50%. The antiangiogenic activity was further confirmed by tube formation on matrigel matrix involving human endothelial cells. Cytotoxic effect was evaluated by XTT test on endothelial cells as a model of angiogenesis versus a panel of human cancer and normal cell lines. Basically the extracts did not show acute cytotoxicity. Morphology examination of endothelial cells indicated induction of autophagy characterized by formation of plenty of cytoplasmic vacuoles. The extracts were found to work by decreasing expression of vascular endothelial growth factor in endothelial cells.
    Matched MeSH terms: Phenols/pharmacology
  16. Utami R, Khalid N, Sukari MA, Rahmani M, Abdul AB, Dachriyanus
    Pak J Pharm Sci, 2013 Mar;26(2):245-50.
    PMID: 23455191
    Elaeocarpus floribundus is higher plant that has been used as traditional medicine for treating several diseases. There is no previous report on phytochemicals and bioactivity studies of this species. In this investigation, triterpenoids friedelin, epifriedelanol and β-sitosterol were isolated from its leaves and stem bark. Determination of total phenolic content of methanolic extract of leaves and stem bark was carried out using Folin-Ciocalteu reagent. All extracts and isolated compounds were subjected to screening of antioxidant activity using DPPH free radical scavenging method and cytotoxic activities by MTT assay towards human T4 lymphoblastoid (CEM-SS) and human cervical (HeLa) cancer cells. In the total phenolic content determination, methanolic extract of leaves gave higher value of 503.08±16.71 mg GAE/g DW than stem bark with value of 161.5±24.81 mg GAE/g DW. Polar extracts of leaves and stem bark possessed promising antioxidant activity with methanol extract of stem bark exhibited strongest activity with IC50 value of 7.36±0.01 μg/ml. In the cytotoxic activity assay, only chloroform extract of leaves showed significant activity with IC50 value of 25.6±0.06 μg/ml against CEM-SS cancer cell, while friedelin and epifriedelanol were found to be active against the two cancer cells with IC50 values ranging from 3.54 to 11.45 μg/ml.
    Matched MeSH terms: Phenols/pharmacology*
  17. Bin Karim MF, Imam H, Sarker MM, Uddin N, Hasan N, Paul N, et al.
    Pak J Pharm Sci, 2015 May;28(3):915-20.
    PMID: 26004725
    In this phyto-pharmacological screening of Pistia stratiotes L leaf and root extracts each separately in two different solvents demonstrated its potential medicinal value. Apparent antioxidant value is demonstrated by DPPH, Nitric oxide scavenging and Ferric ion reducing method. Additionally, total flavonoid and phenolic compounds were measured. The leaf methanolic extract scavenged both nitric oxide (NO) and DPPH radical with a dose dependent manner. But the pet ether fraction of root was found to have highest efficacy in Fe(3±) reducing power assay. Flavonoid was found to contain highest in the pet ether fraction of root (411.35mg/g) in terms of quercetin equivalent, similarly highest amount (34.96mg/g) of total phenolic compounds (assayed as gallic acid equivalents) were found to contain in the same fraction. The methanolic fractions appeared less cytotoxic compared to pet ether extracts. The plant extracts caused a dose dependent decrease in faecal droppings in both castor oil and magnesium sulphate induced diarrhea, where as leaf extracts in each solvent appeared most effective. Also, the plant extracts showed anthelmintic activity in earthworm by inducing paralysis and death in a dose dependent manner. At highest doses (50 mg/ml) all fractions were almost effective as the positive control piperazine citrate (10 mg/ml). Thus, besides this cytotoxic effect it's traditional claim for therapeutic use can never be overlooked.
    Matched MeSH terms: Phenols/pharmacology
  18. Ho WY, Yeap S, Liang WS, Beh BK, Mohamad N, Alitheen NB
    Pak J Pharm Sci, 2015 Jan;28(1):15-22.
    PMID: 25553678
    Vernonia amygdalina is a strong natural antioxidant that possessed various medicinal properties. In this study, the spray-dried water extract of V. amygdalina was evaluated for its in vitro antioxidant capacity and in vivo hepatoprotective effect against alcoholic-mediated liver damage. Total phenolic and flavonoid content of spray-dried V. amygdalina water extract were determined. Liver enzyme profiles, liver antioxidant level and nitric oxide level were evaluated in alcohol-induced liver injured mice or co-supplement with spray-dried V. amydalina. Water extract of spray-dried V. amygalina that contained phenolic content of 24.8±1.5 mg/g gallic acid equivalent and total flavonoid content of 25.7±1.3 mg/g catechin equivalent was able to inhibit 50% of xanthine and tyrosinase oxidation at 170 μg/ml and 2 mg/mL, respectively. On the other hand, extracts at both 10 and 50 mg/kg body weight were able to reduce the levels of Alanine transaminase (ALT), Alkaline phosphatase (ALP), Aspartate transaminase (AST), triglyceride and total bilirubin content inthe alcohol-mediated liver injury in mice. Furthermore, it also helped to increase levels of Superoxide dismutase (SOD), Ferric reducing ability of plasma (FRAP) and reduce the levels of Nitric oxide (NO) and Malondialdehyde (MDA) in the liver of the treated mice. These resultssuggestedthat water extract of spray-dried V. amygdalina exhibited liver protective effect, which could be contributed by its antioxidant properties.
    Matched MeSH terms: Phenols/pharmacology
  19. Chan KW, Ismail M, Mohd Esa N, Mohamed Alitheen NB, Imam MU, Ooi J, et al.
    Oxid Med Cell Longev, 2018;2018:6742571.
    PMID: 29849908 DOI: 10.1155/2018/6742571
    The present study aimed to investigate the antioxidant and anti-inflammatory properties of defatted kenaf seed meal (DKSM) and its phenolic-saponin-rich extract (PSRE) in hypercholesterolemic rats. Hypercholesterolemia was induced using atherogenic diet feeding, and dietary interventions were conducted by incorporating DKSM (15% and 30%) or PSRE (at 2.3% and 4.6%, resp., equivalent to the total content of DKSM-phenolics and saponins in the DKSM groups) into the atherogenic diets. After ten weeks of intervention, serum total antioxidant capacities of hypercholesterolemic rats were significantly enhanced by DKSM and PSRE supplementation (p < 0.05). Similarly, DKSM and PSRE supplementation upregulated the hepatic mRNA expression of antioxidant genes (Nrf2, Sod1, Sod2, Gsr, and Gpx1) of hypercholesterolemic rats (p < 0.05), except for Gpx1 in the DKSM groups. The levels of circulating oxidized LDL and proinflammatory biomarkers were also markedly suppressed by DKSM and PSRE supplementation (p < 0.05). In aggregate, DKSM and PSRE attenuated the hypercholesterolemia-associated oxidative stress and systemic inflammation in rats, potentially by enhancement of hepatic endogenous antioxidant defense via activation of the Nrf2-ARE pathway, which may be contributed by the rich content of phenolics and saponins in DKSM and PSRE. Hence, DKSM and PSRE are prospective functional food ingredients for the potential mitigation of atherogenic risks in hypercholesterolemic individuals.
    Matched MeSH terms: Phenols/pharmacology
  20. Kassim M, Achoui M, Mustafa MR, Mohd MA, Yusoff KM
    Nutr Res, 2010 Sep;30(9):650-9.
    PMID: 20934607 DOI: 10.1016/j.nutres.2010.08.008
    Natural honey has been used in traditional medicine of different cultures throughout the world. This study looked into the extraction of Malaysian honey and the evaluation of the anti-inflammatory activity of these extracts. It was hypothesized that honey extracts contain varying amounts of phenolic compounds and that they possess different in vitro anti-inflammatory activities. Honey extracts were analyzed using liquid chromatography-mass spectrometry to identify and compare phenolic compounds, whereas high-performance liquid chromatography was used for their quantification. Subsequently, honey methanol extract (HME) and honey ethyl acetate extract (HEAE) were tested in vitro for their effect on nitric oxide production in stimulated macrophages. The extracts were also tested for their effects on tumor necrosis factor-α (TNF) cytotoxicity in L929 cells. The major phenolics in the extracts were ellagic, gallic, and ferulic acids; myricetin; chlorogenic acid; and caffeic acid. Other compounds found in lower concentrations were hesperetin, p-coumaric acid, chrysin, quercetin, luteolin, and kaempferol. Ellagic acid was the most abundant of the phenolic compounds recorded, with mean concentrations of 3295.83 and 626.74 μg/100 g of honey in HME and HEAE, respectively. The median maximal effective concentrations for in vitro nitric oxide inhibition by HEAE and HME were calculated to be 37.5 and 271.7 μg/mL, respectively. The median maximal effective concentrations for protection from TNF cytotoxicity by HEAE and HME were 168.1 and 235.4 μg/mL, respectively. In conclusion, HEAE exhibited greater activity in vitro, whereas HME contained a higher concentration of phenolic compounds per 100 g of honey.
    Matched MeSH terms: Phenols/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links