Displaying all 19 publications

Abstract:
Sort:
  1. Nittami T, Mukai M, Uematsu K, Yoon LW, Schroeder S, Chua ASM, et al.
    Appl Microbiol Biotechnol, 2017 Dec;101(23-24):8607-8619.
    PMID: 29063174 DOI: 10.1007/s00253-017-8571-3
    Previous studies have shown that enhanced biological phosphorus removal (EBPR) performance under continuous aerobic conditions always eventually deteriorates; however, the speed at which this happens depends on the carbon source supplied. The published data suggest that propionate is a better carbon source than acetate is for maintaining operational stability, although it is not clear why. A lab-scale sequencing batch reactor was run initially under conventional anaerobic/aerobic conditions with either acetate or propionate as the carbon source. Chemical and microbiological analyses revealed that both sources performed as expected for such systems. When continuous aerobic conditions were imposed on both these established communities, marked shifts of the "Candidatus Accumulibacter" clades were recorded for both carbon sources. Here, we discuss whether this shift could explain the prolonged EBPR stability observed with propionate.
    Matched MeSH terms: Phosphorus/metabolism*
  2. Cheah WY, Show PL, Yap YJ, Mohd Zaid HF, Lam MK, Lim JW, et al.
    Bioengineered, 2020 12;11(1):61-69.
    PMID: 31884878 DOI: 10.1080/21655979.2019.1704536
    Chlorella sorokiniana CY-1 was cultivated using palm oil mill effluent (POME) in a novel-designed photobioreactor (NPBR) and glass-made vessel photobioreactor (PBR). The comparison was made on biomass and lipid productions, as well as its pollutants removal efficiencies. NPBR is transparent and is developed in thin flat panels with a high surface area per volume ratio. It is equipped with microbubbling and baffles retention, ensuring effective light and CO2 utilization. The triangular shape of this reactor at the bottom serves to ease microalgae cell harvesting by sedimentation. Both biomass and lipid yields attained in NPBR were 2.3-2.9 folds higher than cultivated in PBR. The pollutants removal efficiencies achieved were 93.7% of chemical oxygen demand, 98.6% of total nitrogen and 96.0% of total phosphorus. Mathematical model revealed that effective light received and initial mass contributes toward successful microalgae cultivation. Overall, the results revealed the potential of NPBR integration in Chlorella sorokiniana CY-1 cultivation, with an aim to achieve greater feasibility in microalgal-based biofuel real application and for environmental sustainability.
    Matched MeSH terms: Phosphorus/metabolism
  3. Loh TC, Lee YC, Liang JB, Tan D
    Bioresour Technol, 2005 Jan;96(1):111-4.
    PMID: 15364088
    Vermicomposting is commonly adopted for the treatment of livestock organic wastes. In the present study, two types of livestock manure were used for culturing of the earthworm, Eisenia foetida. Each treatment group consisted of six replicates and worm vermicasts were examined after 5 weeks. The concentrations of total C, P and K in goat manure vermicasts were higher than those in cattle manure vermicasts. Cattle vermicasts had a higher N content than goat vermicasts but the C:N ratio of fresh manure was higher than that of vermicasts for both materials. Earthworm biomass and reproductive performance, in terms of number of worms after 5 weeks of experiment, were higher in cattle manure than in goat manure. The cocoon production per worm in cattle manure was higher than in goat manure. However, the hatchability of cocoons was not affected by manure treatments. In conclusion, cattle manure provided a more nutritious and friendly environment to the earthworms than goat manure.
    Matched MeSH terms: Phosphorus/metabolism
  4. Lai YH, Puspanadan S, Lee CK
    Biotechnol Prog, 2019 05;35(3):e2798.
    PMID: 30828976 DOI: 10.1002/btpr.2798
    Present study aims to optimize the production of starch and total carbohydrates from Arthrospira platensis. Growing concerns toward unprecedented environmental issues associated with plastic pollution has created a tremendous impetus to develop new biomaterials for the production of bioplastic. Starch-based biopolymers from algae serve as sustainable feedstock for thermoplastic starch production due to their abundant availability and low cost. A. platensis was cultivated in Zarrouk's medium at 32 ± 1°C and exposed to red light with a photoperiod of 12:12 hr light/dark. Growth kinetics studies showed that the maximum specific growth rate (μmax ) obtained was 0.059 day-1 with the doubling time (td ) of 11.748 days. Subsequently, Zarrouk's medium with different concentrations of sulfur, phosphorus and nitrogen was prepared to establish the nutrient-limiting conditions to enhance the accumulation of starch and total carbohydrates. In this study, the highest starch accumulated was 6.406 ± 0.622 mg L-1 under optimized phosphorus limitation (0.025 g L-1 ) conditions. Nitrogen limitation (0.250 g L-1 ) results demonstrated significant influenced (p 
    Matched MeSH terms: Phosphorus/metabolism
  5. Hanizah Ngadiron, Razrim Rahim, Firdaus Hayati, Nornazirah Azizan, Affirul Chairil Ariffin
    MyJurnal
    Hypophosphataemia occurs in an abnormally low serum phosphate level. Three main mechanisms are postulated: decreased intestinal absorption, increased renal excretion, and extracellular shifts to intracellular compartments. It is potentially a fatal disease if not intervene. The management is merely treating the underlying disorder, giving phosphate supplement and requiring close biochemical monitoring. The incidence of symptomatic isolated hypophosphataemia is extremely rare. In this case report, a 33-year-old man presented with three days history of dysphagia, inability to complete sentences and generalized muscle weakness. He developed blurred vision especially upon exposure to bright light. He had a history of single parathyroidectomy for parathyroid adenoma 2 years ago. Physical examinations were unremarkable. Laboratory investigations were normal except for phosphate level of 0.30 mmol/L. Intravenous KH2PO4 with a dosage of 10 mmol was administered in slow bolus in 3 hours. His symptoms resolved slowly after correction. Although isolated hypophosphataemia is rare but need to recognize the symptoms and signs of hypophosphataemia and treat accordingly.
    Matched MeSH terms: Phosphorus Metabolism Disorders
  6. Hii KS, Lim PT, Kon NF, Takata Y, Usup G, Leaw CP
    Harmful Algae, 2016 06;56:9-21.
    PMID: 28073499 DOI: 10.1016/j.hal.2016.04.005
    Saxitoxins (STXs) constitute a family of potent sodium channel blocking toxins, causative agents of paralytic shellfish poisoning (PSP), and are produced by several species of marine dinoflagellates and cyanobacteria. Two STX-core genes, sxtA and sxtG, have been well elucidated in Alexandrium but the expression of these genes under various nutritional modes in tropical species remains unclear. This study investigates the physiological responses of a tropical Pacific strain of Alexandrium minutum growing with nitrate or ammonium, and with various nitrogen to phosphorus (N:P) supply ratios. The transcriptional responses of the sxt genes were observed. Likewise, a putative sxtI encoding O-carbamoyltransferase (herein designated as AmsxtI) was recovered from the transcriptomic data, and its expression was investigated. The results revealed that the cellular toxin quota (Qt) was higher in P-depleted, nitrate-grown cultures. With cultures at similar N:P (<16), cells grown with excess ammonium showed a higher Qt than those grown with nitrate. sxtA1 was not expressed under any culture conditions, suggesting that this gene might not be involved in STX biosynthesis by this strain. Conversely, sxtA4 and sxtG showed positive correlations with Qt, and were up-regulated in P-depleted, nitrate-grown cultures and with excess ambient ammonium. On the other hand, AmsxtI was expressed only when induced by P-depletion, suggesting that this gene may play an important role in P-recycling metabolism, while simultaneously enhancing toxin production.
    Matched MeSH terms: Phosphorus/metabolism
  7. Ab Halim MH, Nor Anuar A, Abdul Jamal NS, Azmi SI, Ujang Z, Bob MM
    J Environ Manage, 2016 Dec 15;184(Pt 2):271-280.
    PMID: 27720606 DOI: 10.1016/j.jenvman.2016.09.079
    The effect of temperature on the efficiency of organics and nutrients removal during the cultivation of aerobic granular sludge (AGS) in biological treatment of synthetic wastewater was studied. With this aim, three 3 L sequencing batch reactors (SBRs) with influent loading rate of 1.6 COD g (L d)(-1) were operated at different high temperatures (30, 40 and 50 °C) for simultaneous COD, phosphate and ammonia removal at a complete cycle time of 3 h. The systems were successfully started up and progressed to steady state at different cultivation periods. The statistical comparison of COD, phosphate and ammonia for effluent from the three SBRs revealed that there was a significant difference between groups of all the working temperatures of the bioreactors. The AGS cultivated at different high temperatures also positively correlated with the accumulation of elements including carbon, oxygen, phosphorus, silicon, iron, aluminium, calcium and magnesium that played important roles in the granulation process.
    Matched MeSH terms: Phosphorus/metabolism
  8. Nagaratnam S, Karupiah M, Mustafa N
    J ASEAN Fed Endocr Soc, 2020;35(1):105-108.
    PMID: 33442176 DOI: 10.15605/jafes.035.01.17
    Hypophosphatemic osteomalacia is a rare form of metabolic bone disorder in neurofibromatosis type 1 (NF1). The exact disease mechanism of this disorder in NF1 is yet to be established. We present a 44-year-old female known to have NF1, who presents with debilitating bone pain, weakness and multiple fractures. Laboratory investigations showed persistent hypophosphatemia with renal phosphate wasting suggestive of hypophosphatemic osteomalacia. She also had concomitant vitamin D deficiency which contributed to the disease severity. Medical therapy with oral phosphate and vitamin D improved her symptoms without significant changes in fracture healing or phosphate levels.
    Matched MeSH terms: Phosphorus Metabolism Disorders
  9. Nordiah B, Harah ZM, Sidik BJ, Hazma WN
    Pak J Biol Sci, 2012 Jul 01;15(13):621-8.
    PMID: 24218931
    Azolla pinnata R.Br. growth performance experiments in different water sources were conducted from May until July 2011 at Aquaculture Research Station, Puchong, Malaysia. Four types of water sources (waste water, drain water, paddy field water and distilled water) each with different nutrient contents were used to grow and evaluate the growth performance of A. pinnata. Four water sources with different nutrient contents; waste, drain, paddy and distilled water as control were used to evaluate the growth performance of A. pinnata. Generally, irrespective of the types of water sources there were increased in plant biomass from the initial biomass (e.g., after the first week; lowest 25.2% in distilled water to highest 133.3% in drain water) and the corresponding daily growth rate (3.61% in distilled water to 19.04% in drain water). The increased in biomass although fluctuated with time was consistently higher in drain water compared to increased in biomass for other water sources. Of the four water sources, drain water with relatively higher nitrate concentration (0.035 +/- 0.003 mg L(-l)) and nitrite (0.044 +/- 0.005 mg L(-1)) and with the available phosphate (0.032 +/- 0.006 mg L(-1)) initially provided the most favourable conditions for Azolla growth and propagation. Based on BVSTEP analysis (PRIMER v5), the results indicated that a combination of more than one nutrient or multiple nutrient contents explained the observed increased in biomass of A. pinnata grown in the different water sources.
    Matched MeSH terms: Phosphorus/metabolism
  10. Nur Aainaa H, Haruna Ahmed O, Ab Majid NM
    PLoS One, 2018;13(9):e0204401.
    PMID: 30261005 DOI: 10.1371/journal.pone.0204401
    Efficient management of P fertilizers ensures good yield of crops and adequate food supply. In the acid soil of the tropics, soluble P is fixed by Al and Fe. Exploitation of the high CEC and pH of Clinoptilolite zeolite (CZ) could mitigate low soil pH and P fixation in acid soils. This study was undertaken to determine the effects of amending a weathered acid soil with CZ on: (i) soil P availability and other related soil chemical properties, and (ii) nutrient concentration, nutrient uptake, above-ground biomass, agronomic efficiency, and yield of Zea mays L. on a tropical acidic soil. Triple superphosphate (TSP), Egypt Rock phosphate (ERP), and Christmas Island Rock phosphate (CIRP) were used as P sources. The treatments evaluated were: (i) soil alone, (ii) 100% recommended fertilizer rate (NPK), and (iii) 75% fertilizer rate + Clinoptilolite zeolite. Selected soil chemical properties and P availability were determined before and after field trials. Zea mays L. above-ground biomass, nutrient concentration, nutrient uptake, agronomic efficiency, and fresh cob yield were also determined. Results revealed that the effects of treatments with and without CZ treatments on soil pH, P fractions, soil acidity, dry matter production, yield of maize, nutrient uptake, and agronomic efficiency were similar. Hence, suggesting CZ inclusion in the fertilization program of Zea mays L is beneficial in terms of reducing excessive or unbalanced use of chemical fertilizers due to reduction of fertilizers usage by 25%.
    Matched MeSH terms: Phosphorus/metabolism*
  11. Yang F, Xu X, Wang W, Ma J, Wei D, He P, et al.
    PLoS One, 2017;12(5):e0177509.
    PMID: 28498839 DOI: 10.1371/journal.pone.0177509
    Estimating balanced nutrient requirements for soybean (Glycine max [L.] Merr) in China is essential for identifying optimal fertilizer application regimes to increase soybean yield and nutrient use efficiency. We collected datasets from field experiments in major soybean planting regions of China between 2001 and 2015 to assess the relationship between soybean seed yield and nutrient uptake, and to estimate nitrogen (N), phosphorus (P), and potassium (K) requirements for a target yield of soybean using the quantitative evaluation of the fertility of tropical soils (QUEFTS) model. The QUEFTS model predicted a linear-parabolic-plateau curve for the balanced nutrient uptake with a target yield increased from 3.0 to 6.0 t ha-1 and the linear part was continuing until the yield reached about 60-70% of the potential yield. To produce 1000 kg seed of soybean in China, 55.4 kg N, 7.9 kg P, and 20.1 kg K (N:P:K = 7:1:2.5) were required in the above-ground parts, and the corresponding internal efficiencies (IE, kg seed yield per kg nutrient uptake) were 18.1, 126.6, and 49.8 kg seed per kg N, P, and K, respectively. The QUEFTS model also simulated that a balanced N, P, and K removal by seed which were 48.3, 5.9, and 12.2 kg per 1000 kg seed, respectively, accounting for 87.1%, 74.1%, and 60.8% of the total above-ground parts, respectively. These results were conducive to make fertilizer recommendations that improve the seed yield of soybean and avoid excessive or deficient nutrient supplies. Field validation indicated that the QUEFTS model could be used to estimate nutrient requirements which help develop fertilizer recommendations for soybean.
    Matched MeSH terms: Phosphorus/metabolism
  12. Ordway EM, Asner GP
    Proc Natl Acad Sci U S A, 2020 04 07;117(14):7863-7870.
    PMID: 32229568 DOI: 10.1073/pnas.1914420117
    Nearly 20% of tropical forests are within 100 m of a nonforest edge, a consequence of rapid deforestation for agriculture. Despite widespread conversion, roughly 1.2 billion ha of tropical forest remain, constituting the largest terrestrial component of the global carbon budget. Effects of deforestation on carbon dynamics in remnant forests, and spatial variation in underlying changes in structure and function at the plant scale, remain highly uncertain. Using airborne imaging spectroscopy and light detection and ranging (LiDAR) data, we mapped and quantified changes in forest structure and foliar characteristics along forest/oil palm boundaries in Malaysian Borneo to understand spatial and temporal variation in the influence of edges on aboveground carbon and associated changes in ecosystem structure and function. We uncovered declines in aboveground carbon averaging 22% along edges that extended over 100 m into the forest. Aboveground carbon losses were correlated with significant reductions in canopy height and leaf mass per area and increased foliar phosphorus, three plant traits related to light capture and growth. Carbon declines amplified with edge age. Our results indicate that carbon losses along forest edges can arise from multiple, distinct effects on canopy structure and function that vary with edge age and environmental conditions, pointing to a need for consideration of differences in ecosystem sensitivity when developing land-use and conservation strategies. Our findings reveal that, although edge effects on ecosystem structure and function vary, forests neighboring agricultural plantations are consistently vulnerable to long-lasting negative effects on fundamental ecosystem characteristics controlling primary productivity and carbon storage.
    Matched MeSH terms: Phosphorus/metabolism
  13. Xomphoutheb T, Jiao S, Guo X, Mabagala FS, Sui B, Wang H, et al.
    Sci Rep, 2020 04 20;10(1):6574.
    PMID: 32313140 DOI: 10.1038/s41598-020-63567-7
    An appropriate tillage method must be implemented by maize growers to improve phosphorus dynamics in the soil in order to increase phosphorus uptake by plant. The objective of this study was to investigate the effects of tillage systems on phosphorus and its fractions in rhizosphere and non-rhizosphere soils under maize. An experimental field was established, with phosphate fertilizers applied to four treatment plots: continuous rotary tillage (CR), continuous no-tillage (CN), plowing-rotary tillage (PR), and plowing-no tillage (PN). Under the different tillage methods, the available P was increased in the non-rhizosphere region. However, the concentration of available P was reduced in the rhizosphere soil region. The soil available P decreased with the age of the crop until the maize reached physiological maturity. The non-rhizosphere region had 132.9%, 82.5%, 259.8%, and 148.4% more available P than the rhizosphere region under the CR, PR, CN, and PN treatments, respectively. The continuous no-tillage method (CN) improved the uptake of soil phosphate by maize. The concentrations of Ca2-P, Ca8-P, Fe-P, Al-P and O-P at the maturity stage were significantly lower than other seedling stages. However, there was no significant relationship between total P and the P fractions. Therefore, a continuous no-tillage method (CN) can be used by farmers to improve phosphorus availability for spring maize. Soil management practices minimizing soil disturbance can be used to impove phosphorus availability for maize roots, increase alkaline phosphatase activity in the rhizosphere soil and increase the abundance of different phosphorus fractions.
    Matched MeSH terms: Phosphorus/metabolism*
  14. Boyero L, Graça MAS, Tonin AM, Pérez J, J Swafford A, Ferreira V, et al.
    Sci Rep, 2017 09 05;7(1):10562.
    PMID: 28874830 DOI: 10.1038/s41598-017-10640-3
    Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce 'syndromes' resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.
    Matched MeSH terms: Phosphorus/metabolism
  15. Paramaesvaran N
    Med J Malaya, 1965 Mar;19(3):224-8.
    PMID: 4220475
    Matched MeSH terms: Phosphorus Metabolism Disorders*
  16. Gikonyo EW, Zaharah AR, Hanafi MM, Anuar RA
    ScientificWorldJournal, 2010 Sep 01;10:1679-93.
    PMID: 20842313 DOI: 10.1100/tsw.2010.174
    The effectiveness of different soil tests in assessing soil phosphorus (P) in soils amended with phosphate rocks (PRs) is uncertain. We evaluated the effects of triple superphosphate (TSP) and PRs on extractable P by conventional soil tests (Mehlich 3 [Meh3] and Bray-1 [B1]) and a nonconventional test (iron oxide-impregnated paper, strip). Extracted amounts of P were in the order: Meh3 >B1 > strip. All the tests were significantly correlated (p = 0.001). Acidic reagents extracted more P from TSP than PRs, while the strip removed equal amounts from the two sources. The P removed by the three tests was related significantly to dry matter yield (DMY), but only in the first harvest, except for B1. Established critical P levels (CPLs) differed for TSP and PRs. In PR-fertilized soils, CPLs were 27, 17, and 12 mg P kg(-1) soil for Meh3, B1, and strip, respectively, and 42, 31, and 12 mg P kg(-1) soil, respectively, in TSP-fertilized soils. Thus, the strip resulted in a common CPL for TSP and PRs (12 mg P kg(-1) soil). This method can be used effectively in soils where integrated nutrient sources have been used, but there is need to establish CPLs for different crops. For cost-effective fertilizer P recommendations based on conventional soil tests, there is a need to conduct separate calibrations for TSP- and PR-fertilized soils.
    Matched MeSH terms: Phosphorus/metabolism
  17. Haruna Ahmed O, Aainaa Hasbullah N, Ab Majid NM
    ScientificWorldJournal, 2010 Oct 12;10:1988-95.
    PMID: 20953548 DOI: 10.1100/tsw.2010.196
    The world's tropical rainforests are decreasing at an alarming rate as they are converted to agricultural land, pasture, and plantations. Decreasing tropical forests affect global warming. As a result, afforestation progams have been suggested to mitigate this problem. The objective of this study was to determine the carbon and phosphorus accumulation of a rehabilitated forest of different ages. The size of the study area was 47.5 ha. Soil samples were collected from the 0-, 6-, 12-, and 17-year-old rehabilitated forest. Twenty samples were taken randomly with a soil auger at depths of 0-20 and 20-40 cm. The procedures outlined in the Materials and Methods section were used to analyze the soil samples for pH, total C, organic matter, total P, C/P ratio, yield of humic acid (HA), and cation exchange capacity (CEC). The soil pH decreased significantly with increasing age of forest rehabilitation regardless of depth. Age did not affect CEC of the rehabilitated forest. Soil organic matter (SOM), total C, and total P contents increased with age. However, C/P ratio decreased with time at 0-20 cm. Accumulation of HA with time and soil depth was not consistent. The rehabilitated forest has shown signs of being a C and P sink.
    Matched MeSH terms: Phosphorus/metabolism
  18. Ong YH, Chua ASM, Fukushima T, Ngoh GC, Shoji T, Michinaka A
    Water Res, 2014 Nov 01;64:102-112.
    PMID: 25046374 DOI: 10.1016/j.watres.2014.06.038
    The applicability of the enhanced biological phosphorus removal (EBPR) process for the removal of phosphorus in warm climates is uncertain due to frequent reports of EBPR deterioration at temperature higher than 25 °C. Nevertheless, a recent report on a stable and efficient EBPR process at 28 °C has inspired the present study to examine the performance of EBPR at 24 °C-32 °C, as well as the PAOs and GAOs involved, in greater detail. Two sequencing batch reactors (SBRs) were operated for EBPR in parallel at different temperatures, i.e., SBR-1 at 28 °C and SBR-2 first at 24 °C and subsequently at 32 °C. Both SBRs exhibited high phosphorus removal efficiencies at all three temperatures and produced effluents with phosphorus concentrations less than 1.0 mg/L during the steady state of reactor operation. Real-time quantitative polymerase chain reaction (qPCR) revealed Accumulibacter-PAOs comprised 64% of the total bacterial population at 24 °C, 43% at 28 °C and 19% at 32 °C. Based on fluorescent in situ hybridisation (FISH), the abundance of Competibacter-GAOs at both 24 °C and 28 °C was rather low (<10%), while it accounted for 40% of the total bacterial population at 32 °C. However, the smaller Accumulibacter population and larger population of Competibacter at 32 °C did not deteriorate the phosphorus removal performance. A polyphosphate kinase 1 (ppk1)-based qPCR analysis on all studied EBPR processes detected only Accumulibacter clade IIF. The Accumulibacter population shown by 16S rRNA and ppk1 was not significantly different. This finding confirmed the existence of single clade IIF in the processes and the specificity of the clade IIF primer sets designed in this study. Habitat filtering related to temperature could have contributed to the presence of a unique clade. The clade IIF was hypothesised to be able to perform the EBPR activity at high temperatures. The clade's robustness most likely helps it to fit the high-temperature EBPR sludge best and allows it not only to outcompete other Accumulibacter clades but coexist with GAOs without compromising EBPR activity.
    Matched MeSH terms: Phosphorus/metabolism*
  19. Alam MZ, Fakhru'l-Razi A, Molla AH
    Water Res, 2003 Sep;37(15):3569-78.
    PMID: 12867323
    The biosolids accumulation and biodegradation of domestic wastewater treatment plant (DWTP) sludge by filamentous fungi have been investigated in a batch fermenter. The filamentous fungi Aspergillus niger and Penicillium corylophilum isolated from wastewater and DWTP sludge was used to evaluate the treatment performance. The optimized mixed inoculum (A. niger and P. corylophilum) and developed process conditions (co-substrate and its concentration, temperature, initial pH, inoculum size, and aeration and agitation rate) were incorporated to accelerate the DWTP sludge treatment process. The results showed that microbial treatment of higher strength of DWTP sludge (4% w/w of TSS) was highly influenced by the liquid state bioconversion (LSB) process. In developed bioconversion processes, 93.8 g/kg of biosolids was enriched with fungal biomass protein of 30 g/kg. Enrichment of nutrients such as nitrogen (N), phosphorous (P), potassium (K) in biosolids was recorded in 6.2% (w/w), 3.1% (w/w) and 0.15% (w/w) from its initial values of 4.8% (w/w), 2.0% (w/w) and 0.08% (w/w) respectively after 10 days of fungal treatment. The biodegradation results revealed that 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of COD in treated DWTP sludge supernatant were removed after 8 days of microbial treatment. The specific resistance to filtration (SRF) in treated sludge (1.4x10(12) m/kg) was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation compared to untreated sample (85x10(12) m/kg).
    Matched MeSH terms: Phosphorus/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links