Displaying publications 1 - 20 of 1823 in total

Abstract:
Sort:
  1. Bohlen J, Dvořák T, Šlechta V, Šlechtová V
    Mol Phylogenet Evol, 2020 07;148:106806.
    PMID: 32247884 DOI: 10.1016/j.ympev.2020.106806
    Western Southeast Asia is hosting one of the world's most diverse faunas, and one of the reasons for this huge diversity is the complex geologic past of the area, increasing the frequency of isolation and expansion events over evolutionary time scale. As an example case, the present study reveals the phylogeny and biogeographic history of the Paracanthocobitis zonalternans species complex, small benthic freshwater fish (Teleostei: Nemacheilidae) that are commonly occurring across western Southeast Asia (from central Myanmar through western and southern Thailand to northern Malaysia). The group is particularly interesting since it occurs in three biogeographic subdivisions (Indian, Indochinese, Malay/Sundaic) and across all of the major biogeographic barriers in the region. Basing on mitochondrial and nuclear sequence data of 93 samples from about 50 localities we found six major clades, most with exclusive geographic distribution. Divergence time dated the origin of the P. zonalternans species complex to early Miocene (17.8 MYA) and a biogeographic analysis identified the Tenasserim region as the ancestral region. From this region the fish spread during periods of lowered global sea level, particularly during late Miocene (11-8 MYA) northwards into all Burmese river basins and southwards into south Thailand and northern Malaysia. Besides lowered global sea level periods, local stream capture events allowed the complex to expand, e.g. into the Mae Klong basin. Strong fragmentations during periods with elevated sea level during the Pliocene and Pleistocene repeatedly restricted populations to refuges and shaped the observed major lineages. Our results document a higher diversity within the P. zonalternans species complex than formerly believed and a strong impact of global sea level on its evolutionary history. Low sea levels promoted dispersal and elevated sea levels fragmentation events. A very similar impact of sea level changes can be expected in all stationary fauna (freshwater and terrestrial) in all non-mountainous coastal regions worldwide.
    Matched MeSH terms: Phylogeny
  2. Vilkamaa P, Rudzinski HG, BurdÍkovÁ N, ŠevČÍk J
    Zootaxa, 2018 Mar 21;4399(2):248-260.
    PMID: 29690308 DOI: 10.11646/zootaxa.4399.2.8
    Four Oriental species of Aerumnosa Mohrig, 1999 (Diptera: Sciaridae), a genus previously known only from Papua New Guinea, are newly described and illustrated: Aerumnosa bituberculata sp. n. (India), A. gemmifera sp. n. (Malaysia: Sabah), A. horrifica sp. n. (Brunei, Thailand) and A. impar sp. n. (Malaysia: Sabah). On the basis of the new material, the genus is redefined. A key to the known species of Aerumnosa is presented, including four new species. An updated molecular phylogenetic analysis based on four gene markers (18S, 28S, 16S and COI) shows Aerumnosa to be a member of the subfamily Cratyninae. The monophyly of Cratyninae is well supported, which clade also includes the genera Hyperlasion Schmitz, 1919, Pnyxiopalpus Vilkamaa Hippa, 1999 and Pseudoaerumnosa Rudzinski, 2006. According to the present phylogenetic hypothesis, the monophyly of Cratyna Winnertz, 1967 s. l. needs to be revisited. The clade including Cratyna (s. str.) ambigua (Lengersdorf, 1934) appears as the sister group of Aerumnosa.
    Matched MeSH terms: Phylogeny
  3. Carter BE, Larraín J, Manukjanová A, Shaw B, Shaw AJ, Heinrichs J, et al.
    Mol Phylogenet Evol, 2017 02;107:16-26.
    PMID: 27744015 DOI: 10.1016/j.ympev.2016.10.002
    Frullania subgenus Microfrullania is a clade of ca. 15 liverwort species occurring in Australasia, Malesia, and southern South America. We used combined nuclear and chloroplast sequence data from 265 ingroup accessions to test species circumscriptions and estimate the biogeographic history of the subgenus. With dense infra-specific sampling, we document an important role of long-distance dispersal in establishing phylogeographic patterns of extant species. At deeper time scales, a combination of phylogenetic analyses, divergence time estimation and ancestral range estimation were used to reject vicariance and to document the role of long-distance dispersal in explaining the evolution and biogeography of the clade across the southern Hemisphere. A backbone phylogeny for the subgenus is proposed, providing insight into evolution of morphological patterns and establishing the basis for an improved sectional classification of species within Microfrullania. Several species complexes are identified, the presence of two undescribed but genetically and morphologically distinct species is noted, and previously neglected names are discussed.
    Matched MeSH terms: Phylogeny
  4. Mulders MN, Lipskaya GY, van der Avoort HG, Koopmans MP, Kew OM, van Loon AM
    J Infect Dis, 1995 Jun;171(6):1399-405.
    PMID: 7769273
    The genomic relationships of wild poliovirus type 1 strains recently isolated in Europe, the Middle East, and the Indian subcontinent was analyzed by automated amplicon sequencing of the VP1/2A junction region of the genome. Four major genotypes of poliovirus type 1 were found to circulate. Two genotypes were found predominantly in Eastern Europe, one of these in the Caucasian Region and the other in countries bordering the Black Sea. A third genotype circulated mainly in Egypt. The fourth and largest genotype circulated in the largest geographic area. Strains belonging to this genotype could be found in countries as far apart as Malaysia and Ukraine. Considerable genetic variation was observed among strains isolated in Egypt, Pakistan, and India, where poliovirus is endemic. Strains belonging to all four genotypes circulated in Pakistan. Data confirm the extent of poliovirus circulation in certain regions, stressing the need for intensification of vaccination in these regions.
    Matched MeSH terms: Phylogeny
  5. Beck SV, Carvalho GR, Barlow A, Rüber L, Hui Tan H, Nugroho E, et al.
    PLoS One, 2017;12(7):e0179557.
    PMID: 28742862 DOI: 10.1371/journal.pone.0179557
    The complex climatic and geological history of Southeast Asia has shaped this region's high biodiversity. In particular, sea level fluctuations associated with repeated glacial cycles during the Pleistocene both facilitated, and limited, connectivity between populations. In this study, we used data from two mitochondrial and three anonymous nuclear markers to determine whether a fresh/brackish water killifish, Aplocheilus panchax, Hamilton, 1822, could be used to further understand how climatic oscillations and associated sea level fluctuations have shaped the distribution of biota within this region, and whether such patterns show evidence of isolation within palaeodrainage basins. Our analyses revealed three major mitochondrial clades within A. panchax. The basal divergence of A. panchax mitochondrial lineages was approximately 3.5 Ma, whilst the subsequent divergence timings of these clades occurred early Pleistocene (~2.6 Ma), proceeding through the Pleistocene. Continuous phylogeographic analysis showed a clear west-east dispersal followed by rapid radiation across Southeast Asia. Individuals from Krabi, just north of the Isthmus of Kra, were more closely related to the Indian lineages, providing further evidence for a freshwater faunal disjunction at the Isthmus of Kra biogeographic barrier. Our results suggest that Sulawesi, across the Wallace Line, was colonised relatively recently (~30 ka). Nuclear DNA is less geographically structured, although Mantel tests indicated that nuclear genetic distances were correlated with geographic proximity. Overall, these results imply that recent gene flow, as opposed to historical isolation, has been the key factor determining patterns of nuclear genetic variation in A. panchax, however, some evidence of historical isolation is retained within the mitochondrial genome. Our study further validates the existence of a major biogeographic boundary at the Kra Isthmus, and also demonstrates the use of widely distributed fresh/brackishwater species in phylogeographic studies, and their ability to disperse across major marine barriers in relatively recent time periods.
    Matched MeSH terms: Phylogeny*
  6. Abidin N, Ismail SI, Vadamalai G, Yusof MT, Hakiman M, Karam DS, et al.
    PLoS One, 2020;15(6):e0234350.
    PMID: 32530926 DOI: 10.1371/journal.pone.0234350
    Jackfruit-bronzing is caused by bacteria Pantoea stewartii subspecies stewartii (P. stewartii subsp. stewartii), showing symptoms of yellowish-orange to reddish discolouration and rusty specks on pulps and rags of jackfruit. Twenty-eight pure bacterial strains were collected from four different jackfruit outbreak collection areas in Peninsular Malaysia (Jenderam, Maran, Muadzam Shah and Ipoh). Positive P. stewartii subsp. stewartii verification obtained in the study was based on the phenotypic, hypersensitivity, pathogenicity and molecular tests. Multilocus sequence analysis (MLSA) was performed using four housekeeping genes (gyrB, rpoB, atpD and infB) on all 28 bacterial strains. Single gyrB, rpoB, atpD and infB phylogenetic trees analyses revealed the bootstrap value of 99-100% between our bacterial strains with P. stewartii subsp. stewartii reference strains and P. stewartii subsp. indologenes reference strains. On the other hand, phylogenetic tree of the concatenated sequences of the four housekeeping genes revealed that our 28 bacterial strains were more closely related to P. stewartii subsp. stewartii (99% similarities) compared to its close relative P. stewartii subsp. indologenes, although sequence similarity between these two subspecies were up to 100%. All the strains collected from the four collection areas clustered together, pointing to no variation among the bacterial strains. This study improves our understanding and provided new insight on the genetic diversity of P. stewartii subsp. stewartii associated with jackfruit-bronzing in Malaysia.
    Matched MeSH terms: Phylogeny
  7. Sarmin NIM, Tan GYA, Franco CMM, Edrada-Ebel R, Latip J, Zin NM
    Int J Syst Evol Microbiol, 2013 Oct;63(Pt 10):3733-3738.
    PMID: 23645019 DOI: 10.1099/ijs.0.047878-0
    A spore-forming streptomycete designated strain SUK12(T) was isolated from a Malaysian ethnomedicinal plant. Its taxonomic position, established using a polyphasic approach, indicates that it is a novel species of the genus Streptomyces. Morphological and chemical characteristics of the strain were consistent with those of members of the genus Streptomyces. Analysis of the almost complete 16S rRNA gene sequence placed strain SUK12(T) in the genus Streptomyces where it formed a distinct phyletic line with recognized species of this genus. The strain exhibited highest sequence similarity to Streptomyces corchorusii DSM 40340(T) (98.2 %) followed by Streptomyces chrestomyceticus NRRL B-3310(T) (98.1 %). The G+C content of the genomic DNA was 74 mol%. Chemotaxonomic data [MK-9(H8) as the major menaquinone; LL-diaminopimelic acid as a component of cell-wall peptidoglycan; C12 : 0, C14 : 0, C15 : 0 and C17 : 1 as the major fatty acids; phospholipid type II] supported the affiliation of strain SUK12(T) to the genus Streptomyces. The results of the phylogenetic analysis and phenotypic data derived from this and previous studies allowed the genotypic and phenotypic differentiation of strain SUK12(T) from the related species of the genus Streptomyces. The DNA-DNA relatedness value between strain SUK12(T) and S. corchorusii DSM 40340(T) is 18.85±4.55 %. Strain SUK12(T) produces phenazine-1-carboxylic acid, known as tubermycin B, an antibacterial agent. It is proposed, therefore, that strain SUK12(T) ( = DSM 42048(T) = NRRL B-24860(T)) be classified in the genus Streptomyces as the type strain of Streptomyces kebangsaanensis sp. nov.
    Matched MeSH terms: Phylogeny*
  8. Wills C, Wang B, Fang S, Wang Y, Jin Y, Lutz J, et al.
    PLoS Comput Biol, 2021 Apr;17(4):e1008853.
    PMID: 33914731 DOI: 10.1371/journal.pcbi.1008853
    When Darwin visited the Galapagos archipelago, he observed that, in spite of the islands' physical similarity, members of species that had dispersed to them recently were beginning to diverge from each other. He postulated that these divergences must have resulted primarily from interactions with sets of other species that had also diverged across these otherwise similar islands. By extrapolation, if Darwin is correct, such complex interactions must be driving species divergences across all ecosystems. However, many current general ecological theories that predict observed distributions of species in ecosystems do not take the details of between-species interactions into account. Here we quantify, in sixteen forest diversity plots (FDPs) worldwide, highly significant negative density-dependent (NDD) components of both conspecific and heterospecific between-tree interactions that affect the trees' distributions, growth, recruitment, and mortality. These interactions decline smoothly in significance with increasing physical distance between trees. They also tend to decline in significance with increasing phylogenetic distance between the trees, but each FDP exhibits its own unique pattern of exceptions to this overall decline. Unique patterns of between-species interactions in ecosystems, of the general type that Darwin postulated, are likely to have contributed to the exceptions. We test the power of our null-model method by using a deliberately modified data set, and show that the method easily identifies the modifications. We examine how some of the exceptions, at the Wind River (USA) FDP, reveal new details of a known allelopathic effect of one of the Wind River gymnosperm species. Finally, we explore how similar analyses can be used to investigate details of many types of interactions in these complex ecosystems, and can provide clues to the evolution of these interactions.
    Matched MeSH terms: Phylogeny
  9. Cao HX, Dale-Skey N, Burwell CJ, Zhu CD
    Zootaxa, 2022 Sep 30;5190(4):451-484.
    PMID: 37045360 DOI: 10.11646/zootaxa.5190.4.1
    This study is dedicated to the late Dr. John LaSalle, and reviews the world species of Pleurotroppopsis Girault (Hymenoptera: Eulophidae); fourteen species are treated, of which two are newly described: P. dactylispae Cao & Zhu sp. nov. from China and P. peukscutella Cao & Zhu sp. nov. from Malaysia. On the basis of morphological characters, tentative relationships among genera allied to Pleurotroppopsis are discussed. A revised definition of Pleurotroppopsis is presented based on study of type specimens of all species and a critical review of previous studies on the genus. In addition, parsimony analyses were conducted to infer a phylogeny of Pleurotroppopsis species based on a unique data matrix of morphological characters. Keys to genera allied to Pleurotroppopsis and to known species of Pleurotroppopsis are provided.
    Matched MeSH terms: Phylogeny
  10. Yang MJ, Liu JH, Wan XS, Zhang QL, Fu DY, Wang XB, et al.
    Mitochondrial DNA B Resour, 2020 Oct 27;5(3):3638-3639.
    PMID: 33367040 DOI: 10.1080/23802359.2020.1831984
    The black-winged fly, Felderimyia fuscipennis (Diptera: Tephritidae), is an insect pest of bamboo shoot, mainly distributed in Thailand, Malaysia and Yunnan Province and Guangxi Autonomous Region, China. The complete sequence of the mitogenome of F. fuscipennis has been determined in this study. The whole mitogenome sequence is 16,536 bp in length, which totally contains 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a non-coding region (putative control region, CR). The phylogeny indicates that F. fuscipennis of subfamily Trypetinae was monophyletic and clearly separated from both Dacinae and Tephritinae with high bootstrap value supported.
    Matched MeSH terms: Phylogeny
  11. Wang X, Xie Y, Zhou X
    Virus Genes, 2004 Dec;29(3):303-9.
    PMID: 15550769
    Six papaya samples showing downward leaf curling were collected in Guangdong and Guangxi provinces, China. The result of TAS-ELISA showed they were all infected by geminiviruses. Comparison of partial DNA-A sequences reveals that these virus isolates can be classified into two groups. Group I includes isolates G2, G4, G5, G28 and G29 from Guangxi province, while isolate GD2 from Guangdong province belongs to Group II. The complete DNA-A sequence of G2 and GD2 were characterized. Sequence comparisons showed that the DNA-A of G2 and GD2 were most closely related to that of Ageratum yellow vein China virus- [Hn2] and Ageratum yellow vein virus , respectively, with 83.4 and 75.2% nucleotide sequence identity, while DNA-A sequence between G2 and GD2 had only 73.4% sequence identity. The molecular data suggests that G2 and GD2 are two distinct begomoviruses, for which the name Papaya leaf curl China virus (PaLCuCNV) for G2 and Papaya leaf curl Guangdong virus (PaLCuGDV) for GD2 are proposed. Comparison of individual encoded proteins showed the coat protein of G2 and GD2 shared highest amino acid sequence identity (97.7 and 94.2%, respectively) with that of Pepper leaf curl virus -[Malaysia] (PepLCV-[MY]), suggesting the CP of these viruses may have identical ancestor.
    Matched MeSH terms: Phylogeny
  12. Zhang YY, Fan LL, Zheng FY, Zhao T, Rong JD, Chen LG, et al.
    Mitochondrial DNA B Resour, 2020 Feb 06;5(1):306-307.
    PMID: 33366532 DOI: 10.1080/23802359.2019.1702484
    Gigantochloa verticillata is produced in Mengla and Jinghong, Yunnan Province, China, and cultivated in Hong Kong. Vietnam, Thailand, India, Indonesia, and Malaysia are distributed and cultivated. We determined the complete chloroplast genome sequence for G. verticillata using Illumina sequencing data. The complete chloroplast sequence is 139,489 bp, including large single-copy (LSC) region of 83,062 bp, small single-copy (SSC) region of 12,877 bp, and a pair of invert repeats (IR) regions of 21,775 bp. Plastid genome contain 132 genes, 85 protein-coding genes, 39 tRNA genes, and 8 rRNA genes. Phylogenetic analysis based on 23 chloroplast genomes indicates that G. verticillata is closely related to Dendrocalamus latiflorus in Bambusodae.
    Matched MeSH terms: Phylogeny
  13. Nejat N, Vadamalai G, Davis RE, Harrison NA, Sijam K, Dickinson M, et al.
    Int J Syst Evol Microbiol, 2013 Feb;63(Pt 2):540-548.
    PMID: 22523165 DOI: 10.1099/ijs.0.041467-0
    This study addressed the taxonomic position and group classification of a phytoplasma responsible for virescence and phyllody symptoms in naturally diseased Madagascar periwinkle plants in western Malaysia. Unique regions in the 16S rRNA gene from the Malaysian periwinkle virescence (MaPV) phytoplasma distinguished the phytoplasma from all previously described 'Candidatus Phytoplasma' species. Pairwise sequence similarity scores, calculated through alignment of full-length 16S rRNA gene sequences, revealed that the MaPV phytoplasma 16S rRNA gene shared 96.5 % or less sequence similarity with that of previously described 'Ca. Phytoplasma' species, justifying the recognition of the MaPV phytoplasma as a reference strain of a novel taxon, 'Candidatus Phytoplasma malaysianum'. The 16S rRNA gene F2nR2 fragment from the MaPV phytoplasma exhibited a distinct restriction fragment length polymorphism (RFLP) profile and the pattern similarity coefficient values were lower than 0.85 with representative phytoplasmas classified in any of the 31 previously delineated 16Sr groups; therefore, the MaPV phytoplasma was designated a member of a new 16Sr group, 16SrXXXII. Phytoplasmas affiliated with this novel taxon and the new group included diverse strains infecting periwinkle, coconut palm and oil palm in Malaysia. Three phytoplasmas were characterized as representatives of three distinct subgroups, 16SrXXXII-A, 16SrXXXII-B and 16SrXXXII-C, respectively.
    Matched MeSH terms: Phylogeny*
  14. Naderali N, Nejat N, Vadamalai G, Davis RE, Wei W, Harrison NA, et al.
    Int J Syst Evol Microbiol, 2017 Oct;67(10):3765-3772.
    PMID: 28905707 DOI: 10.1099/ijsem.0.002187
    Landscape-grown foxtail palm (Wodyetia bifurcata A. K. Irvine) trees displaying symptoms of severe foliar chlorosis, stunting, general decline and mortality reminiscent of coconut yellow decline disease were observed in Bangi, Malaysia, during 2012. DNA samples from foliage tissues of 15 symptomatic palms were analysed by employing a nested PCR assay primed by phytoplasma universal ribosomal RNA operon primer pairs, P1/P7 followed by R16F2n/R2. The assay yielded amplicons of a single band of 1.25 kb from DNA samples of 11 symptomatic palms. Results from cloning and sequence analysis of the PCR-amplified 16S rRNA gene segments revealed that, in three palms, three mutually distinct phytoplasmas comprising strains related to 'Candidatus Phytoplasma asteris' and 'Candidatus Phytoplasma cynodontis', as well as a novel phytoplasma, were present as triple infections. The 16S rRNA gene sequence derived from the novel phytoplasma shared less than 96 % nucleotide sequence identity with that of each previously describedspecies of the provisional genus 'Ca. Phytoplasma', justifying its recognition as the reference strain of a new taxon, 'Candidatus Phytoplasma wodyetiae'. Virtual RFLP profiles of the R16F2n/R2 portion of the 16S rRNA gene and the pattern similarity coefficient value (0.74) supported the delineation of 'Ca. Phytoplasma wodyetiae' as the sole representative subgroup A member of a new phytoplasma ribosomal group, 16SrXXXVI.
    Matched MeSH terms: Phylogeny*
  15. Zhao JX, Wang LY, Irfan M, Zhang ZS
    Zootaxa, 2021 Aug 13;5020(3):457-488.
    PMID: 34810991 DOI: 10.11646/zootaxa.5020.3.3
    The cribellate, Asian endemic, spider genus, Taira is further studied, and six new species are recognized and described from China and Eastern Malaysia (Borneo): Taira borneoensis sp. nov. (♀), Taira gyaisiensis sp. nov. (♀), Taira nyagqukaensis sp. nov. (♀), Taira wanzhouensis sp. nov. (♂♀), Taira xuanenensis sp. nov. (♂) and Taira yangi sp. nov. (♂♀). Males of Taira latilabiata Zhang, Zhu Song, 2008 and Taira obtusa Zhang, Zhu Song, 2008 are also described for the first time. Drawings of the copulatory organs of the six new species, and comparative photos of the habitus and copulatory organs of all described species are provided, except for the male palp of the type species, T. flavidorsalis (Yaginuma, 1964). New records of known species and distribution maps are presented.
    Matched MeSH terms: Phylogeny*
  16. Zhang T, Wu Q, Zhang Z
    Curr Biol, 2020 04 06;30(7):1346-1351.e2.
    PMID: 32197085 DOI: 10.1016/j.cub.2020.03.022
    An outbreak of coronavirus disease 2019 (COVID-19) caused by the 2019 novel coronavirus (SARS-CoV-2) began in the city of Wuhan in China and has widely spread worldwide. Currently, it is vital to explore potential intermediate hosts of SARS-CoV-2 to control COVID-19 spread. Therefore, we reinvestigated published data from pangolin lung samples from which SARS-CoV-like CoVs were detected by Liu et al. [1]. We found genomic and evolutionary evidence of the occurrence of a SARS-CoV-2-like CoV (named Pangolin-CoV) in dead Malayan pangolins. Pangolin-CoV is 91.02% and 90.55% identical to SARS-CoV-2 and BatCoV RaTG13, respectively, at the whole-genome level. Aside from RaTG13, Pangolin-CoV is the most closely related CoV to SARS-CoV-2. The S1 protein of Pangolin-CoV is much more closely related to SARS-CoV-2 than to RaTG13. Five key amino acid residues involved in the interaction with human ACE2 are completely consistent between Pangolin-CoV and SARS-CoV-2, but four amino acid mutations are present in RaTG13. Both Pangolin-CoV and RaTG13 lost the putative furin recognition sequence motif at S1/S2 cleavage site that can be observed in the SARS-CoV-2. Conclusively, this study suggests that pangolin species are a natural reservoir of SARS-CoV-2-like CoVs.
    Matched MeSH terms: Phylogeny
  17. Yang Q, Ge YM, Iqbal NM, Yang X, Zhang XL
    Antonie Van Leeuwenhoek, 2021 Jul;114(7):1091-1106.
    PMID: 33895907 DOI: 10.1007/s10482-021-01580-0
    Marine phycosphere harbors unique cross-kingdom associations with enormous ecological significance in aquatic ecosystems as well as relevance for algal biotechnology industry. During our investigating the microbial composition and bioactivity of marine phycosphere microbiota (PM), a novel lightly yellowish and versatile bacterium designated strain AM1-D1T was isolated from cultivable PM of marine dinoflagellate Alexandrium minutum amtk4 that produces high levels of paralytic shellfish poisoning toxins (PSTs). Strain AM1-D1T demonstrates notable bioflocculanting bioactivity with bacterial exopolysaccharides (EPS), and microalgae growth-promoting (MGP) potential toward its algal host. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain AM1-D1T was affiliated to the members of genus Sulfitobacter within the family Rhodobacteraceae, showing the highest sequence similarity of 97.9% with Sulfitobacter noctilucae NB-68T, and below 97.8% with other type strains. The complete genome of strain AM1-D1T consisted of a circular 3.84-Mb chromosome and five circular plasmids (185, 95, 15, 205 and 348 Kb, respectively) with the G+C content of 64.6%. Low values obtained by phylogenomic calculations on the average nucleotide identity (ANI, 77.2%), average amino acid identity (AAI, 74.7%) and digital DNA-DNA hybridization (dDDH, 18.6%) unequivocally separated strain AM1-D1T from its closest relative. The main polar lipids were identified as phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol, one unidentified phospholipid and one unidentified lipid. The predominant fatty acids (> 10%) were C18:1 ω7c, C19:0 cyclo ω8c and C16:0. The respiratory quinone was Q-10. The genome of strain AM1-D1T was predicted to encode series of gene clusters responsible for sulfur oxidation (sox) and utilization of dissolved organic sulfur exometabolites from marine dinoflagellates, taurine (tau) and dimethylsulfoniopropionate (DMSP) (dmd), as well as supplementary vitamin B12 (cob), photosynthesis carotenoids (crt) which are pivotal components during algae-bacteria interactions. Based on the evidences by the polyphasic characterizations, strain AM1-D1T represents a novel species of the genus Sulfitobacter, for which the name Sulfitobacter alexandrii sp. nov. is proposed. The type strain is AM1-D1T (= CCTCC 2017277T = KCTC 62491T).
    Matched MeSH terms: Phylogeny
  18. Hong X, Liu SN, Xu FF, Han LL, Jiang P, Wang ZQ, et al.
    Trop Biomed, 2020 Mar 01;37(1):237-250.
    PMID: 33612735
    Spirometra larvae are etiological agents of human sparganosis. However, the systematics of spirometrid cestodes has long been controversial. In order to determine the current knowledge on the evolution and genetic structure of Spirometra, an exhaustive population diversity analysis of spirometrid cestodes using the mitochondrial gene: cytochrome c oxidase subunit 1 (cox1) was performed. All publicly available cox1 sequences available in the GenBank and 127 new sequencing genes from China were used as the dataset. The haplotype identify, network, genetic differentiation and phylogenetic analysis were conducted successively. A total of 488 sequences from 20 host species, representing four spirometrid tapeworms (S. decipiens, S. ranarum, S. erinaceieuropaei and Sparganum proliferum) and several unclassified American and African isolates from 113 geographical locations in 17 countries, identified 45 haplotypes. The genetic analysis revealed that there are four clades of spirometrid cestodes: Clade 1 (Brazil + USA) and Clade 2 (Argentina + Venezuela) included isolates from America, Clade 3 contained African isolates and one Korean sample, and the remainders from Asia and Australia belonged to Clade 4; unclassified Spirometra from America and Africa should be considered the separate species within the genus; and the taxonomy of two Korea isolates (S. erinaceieuropaei KJ599680 and S. decipiens KJ599679) was still ambiguous and needs to be further identified. In addition, the demographical analyses supported population expansion for the total spirometrid population. In summary, four lineages were found in the spirometrid tapeworm, and further investigation with deeper sampling is needed to elucidate the population structure.
    Matched MeSH terms: Phylogeny*
  19. Geiser DM, Al-Hatmi AMS, Aoki T, Arie T, Balmas V, Barnes I, et al.
    Phytopathology, 2021 Jul;111(7):1064-1079.
    PMID: 33200960 DOI: 10.1094/PHYTO-08-20-0330-LE
    Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.
    Matched MeSH terms: Phylogeny
  20. Hu FJ, Li YD, Jiao SL, Zhang S
    Zhonghua Yu Fang Yi Xue Za Zhi, 2013 Dec;47(12):1100-4.
    PMID: 24529267
    To investigate the epidemiological characteristics of influenza B viruses and explore the genetic evolution characteristics of the hemagglutinin(HA) and neuraminidase(NA) genes of local isolated strains in Ningbo, Southeast China, during 2010 to 2012.
    Matched MeSH terms: Phylogeny
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links