Displaying publications 1 - 20 of 127 in total

Abstract:
Sort:
  1. Ribas A, Wells K, Morand S, Chaisiri K, Agatsuma T, Lakim MB, et al.
    Parasitol Int, 2020 Aug;77:102128.
    PMID: 32330535 DOI: 10.1016/j.parint.2020.102128
    The whipworm Trichuris muris is known to be associated with various rodent species in the northern hemisphere, but the species identity of whipworm infecting rodents in the Oriental region remains largely unknown. We collected Trichuris of Muridae rodents in mainland and insular Southeast Asia between 2008 and 2015 and used molecular and morphological approaches to identify the systematic position of new specimens. We discovered two new species that were clearly distinct from T. muris, both in terms of molecular phylogenetic clustering and morphological features, with one species found in Thailand and another one in Borneo. We named the new species from Thailand as Trichuris cossoni and the species from Borneo as Trichuris arrizabalagai. Molecular phylogeny using internal transcribed spacer region (ITS1-5.8S-ITS2) showed a divergence between T. arrizabalagai n. sp., T. cossoni n. sp. and T. muris. Our findings of phylogeographically distinct Trichuris species despite some globally distributed host species requires further research into the distribution of different species, previously assumed to belong to T. muris, which has particular relevance for using these species as laboratory model organisms.
    Matched MeSH terms: Phylogeography
  2. Norhazrina N, Vanderpoorten A, Hedenäs L, Patiño J
    Mol Phylogenet Evol, 2016 12;105:139-145.
    PMID: 27530707 DOI: 10.1016/j.ympev.2016.08.008
    As opposed to angiosperms, moss species richness is similar among tropical regions of the world, in line with the hypothesis that tropical bryophytes are extremely good dispersers. Here, we reconstructed the phylogeny of the pantropical moss genus Pelekium to test the hypothesis that high migration rates erase any difference in species richness among tropical regions. In contrast with this hypothesis, several species considered to have a pantropical range were resolved as a complex of species with a strong geographic structure. Consequently, a significant phylogeographical signal was found in the data, evidencing that cladogenetic diversification within regions takes place at a faster rate than intercontinental migration. The shape of the Pelekium phylogeny, along with the selection of a constant-rate model of diversification among species in the genus, suggests, however, that the cladogenetic speciation patterns observed in Pelekium are not comparable to some of the spectacular examples of tropical radiations reported in angiosperms. Rather, the results presented here point to the constant accumulation of diversity through time in Pelekium. This, combined with evidence for long-distance dispersal limitations in the genus, suggests that the similar patterns of species richness among tropical areas are better explained in terms of comparable rates of diversification across tropical regions than by the homogenization of species richness by recurrent migrations.
    Matched MeSH terms: Phylogeography
  3. Flury JM, Haas A, Brown RM, Das I, Pui YM, Boon-Hee K, et al.
    Mol Phylogenet Evol, 2021 10;163:107210.
    PMID: 34029720 DOI: 10.1016/j.ympev.2021.107210
    One of the most urgent contemporary tasks for taxonomists and evolutionary biologists is to estimate the number of species on earth. Recording alpha diversity is crucial for protecting biodiversity, especially in areas of elevated species richness, which coincide geographically with increased anthropogenic environmental pressures - the world's so-called biodiversity hotspots. Although the distribution of Puddle frogs of the genus Occidozyga in South and Southeast Asia includes five biodiversity hotspots, the available data on phylogeny, species diversity, and biogeography are surprisingly patchy. Samples analyzed in this study were collected throughout Southeast Asia, with a primary focus on Sundaland and the Philippines. A mitochondrial gene region comprising ~ 2000 bp of 12S and 16S rRNA with intervening tRNA Valine and three nuclear loci (BDNF, NTF3, POMC) were analyzed to obtain a robust, time-calibrated phylogenetic hypothesis. We found a surprisingly high level of genetic diversity within Occidozyga, based on uncorrected p-distance values corroborated by species delimitation analyses. This extensive genetic diversity revealed 29 evolutionary lineages, defined by the > 5% uncorrected p-distance criterion for the 16S rRNA gene, suggesting that species diversity in this clade of phenotypically homogeneous forms probably has been underestimated. The comparison with results of other anuran groups leads to the assumption that anuran species diversity could still be substantially underestimated in Southeast Asia in general. Many genetically divergent lineages of frogs are phenotypically similar, indicating a tendency towards extensive morphological conservatism. We present a biogeographic reconstruction of the colonization of Sundaland and nearby islands which, together with our temporal framework, suggests that lineage diversification centered on the landmasses of the northern Sunda Shelf. This remarkably genetically structured group of amphibians could represent an exceptional case for future studies of geographical structure and diversification in a widespread anuran clade spanning some of the most pronounced geographical barriers on the planet (e.g., Wallace's Line). Studies considering gene flow, morphology, ecological and bioacoustic data are needed to answer these questions and to test whether observed diversity of Puddle frog lineages warrants taxonomic recognition.
    Matched MeSH terms: Phylogeography
  4. Guan M, Tan H, Fazhan H, Xie Z, Shi X, Zhang Y, et al.
    Mitochondrial DNA B Resour, 2018 Oct 26;3(2):1244-1245.
    PMID: 33474478 DOI: 10.1080/23802359.2018.1532345
    The mitochondrial genome plays an important role in studies on phylogeography and population genetic diversity. Here we report the complete mitochondrial genome of Lupocycloporus gracilimanus (Stimpson, 1858) which is the first mitochondrial genome reported in genus Lupocycloporus by now. The mitogenome is 15,990 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and a putative control region. The phylogenetic analysis showed that L. gracilimanus was closest to genus Scylla. The present research should provide valuable information for phylogenetic analysis and classification of Portunidae.
    Matched MeSH terms: Phylogeography
  5. Al-abd NM, Mahdy MA, Al-Mekhlafi AM, Snounou G, Abdul-Majid NB, Al-Mekhlafi HM, et al.
    PLoS One, 2013;8(7):e67853.
    PMID: 23861823 DOI: 10.1371/journal.pone.0067853
    The accuracy of the conclusions from in vivo efficacy anti-malarial drug trials depends on distinguishing between recrudescences and re-infections which is accomplished by genotyping genes coding P. falciparum merozoite surface 1 (MSP1) and MSP2. However, the reliability of the PCR analysis depends on the genetic markers' allelic diversity and variant frequency. In this study the genetic diversity of the genes coding for MSP1 and MSP2 was obtained for P. falciparum parasites circulating in Yemen.
    Matched MeSH terms: Phylogeography
  6. Karin BR, Lough-Stevens M, Lin TE, Reilly SB, Barley AJ, Das I, et al.
    BMC Ecol Evol, 2024 Feb 20;24(1):25.
    PMID: 38378475 DOI: 10.1186/s12862-024-02212-7
    BACKGROUND: Human-commensal species often display deep ancestral genetic structure within their native range and founder-effects and/or evidence of multiple introductions and admixture in newly established areas. We investigated the phylogeography of Eutropis multifasciata, an abundant human-commensal scincid lizard that occurs across Southeast Asia, to determine the extent of its native range and to assess the sources and signatures of human introduction outside of the native range. We sequenced over 350 samples of E. multifasciata for the mitochondrial ND2 gene and reanalyzed a previous RADseq population genetic dataset in a phylogenetic framework.

    RESULTS: Nuclear and mitochondrial trees are concordant and show that E. multifasciata has retained high levels of genetic structure across Southeast Asia despite being frequently moved by humans. Lineage boundaries in the native range roughly correspond to several major biogeographic barriers, including Wallace's Line and the Isthmus of Kra. Islands at the outer fringe of the range show evidence of founder-effects and multiple introductions.

    CONCLUSIONS: Most of enormous range of E. multifasciata across Southeast Asia is native and it only displays signs of human-introduction or recent expansion along the eastern and northern fringe of its range. There were at least three events of human-introductions to Taiwan and offshore islands, and several oceanic islands in eastern Indonesia show a similar pattern. In Myanmar and Hainan, there is a founder-effect consistent with post-warming expansion after the last glacial maxima or human introduction.

    Matched MeSH terms: Phylogeography
  7. Louisirirotchanakul S, Olinger CM, Arunkaewchaemsri P, Poovorawan Y, Kanoksinsombat C, Thongme C, et al.
    J Med Virol, 2012 Oct;84(10):1541-7.
    PMID: 22930500 DOI: 10.1002/jmv.23363
    Phylogenetic analysis was performed on hepatitis B virus (HBV) strains obtained from 86 hepatitis B surface antigen (HBsAg) positive donors from Thailand originating throughout the country. Based on the S gene, 87.5% of strains were of genotype C while 10.5% were of genotype B, with all genotype B strains obtained from patients originating from the central or the south Thailand. No genotype B strains were found in the north of Thailand. Surprisingly, one patient was infected with a genotype H strain while another patient was infected with a genotype G strain. Complete genome sequencing and recombination analysis identified the latter as being a genotype G and C2 recombinant with the breakpoint around nucleotide position 700. The origin of the genotype G fragment was not identifiable while the genotype C2 fragment most likely came from strains circulating in Laos or Malaysia. The performance of different HBsAg diagnostic kits and HBV nucleic acid amplification technology (NAT) was evaluated. The genotype H and G/C2 recombination did not interfere with HBV detection.
    Matched MeSH terms: Phylogeography*
  8. Fuchs J, Ericson PG, Bonillo C, Couloux A, Pasquet E
    Mol Ecol, 2015 Nov;24(21):5460-74.
    PMID: 26224534 DOI: 10.1111/mec.13337
    The Indo-Malayan bioregion has provided some of the most spectacular discoveries of new vertebrate species (e.g. saola, khanyou, bare-faced bulbul) over the last 25 years. Yet, very little is known about the processes that led to the current biodiversity in this region. We reconstructed the phylogeographic history of a group of closely related passerines, the Alophoixus bulbuls. These birds are continuously distributed in Indo-Malaya around the Thailand lowlands such that their distribution resembles a ring. Our analyses revealed a single colonization event of the mainland from Sundaland with sequential divergence of taxa from southwest to northeast characterized by significant gene flow between parapatric taxa, and reduced or ancient gene flow involving the two taxa at the extremities of the ring. We detected evidence of population expansion in two subspecies, including one that was involved in the closing of the ring. Hence, our analyses indicate that the diversification pattern of Alophoixus bulbuls fits a ring species model driven by geographic isolation. To our knowledge, the Alophoixus bulbuls represent the first case of a putative broken ring species complex in Indo-Malaya. We also discuss the implications of our results on our understanding of the biogeography in Indo-Malaya.
    Matched MeSH terms: Phylogeography
  9. Ismail NA, Adilah-Amrannudin N, Hamsidi M, Ismail R, Dom NC, Ahmad AH, et al.
    J Med Entomol, 2017 11 07;54(6):1573-1581.
    PMID: 28981849 DOI: 10.1093/jme/tjx126
    The global expansion of Ae. albopictus from its native range in Southeast Asia has been implicated in the recent emergence of dengue endemicity in Malaysia. Genetic variability studies of Ae. albopictus are currently lacking in the Malaysian setting, yet are crucial to enhancing the existing vector control strategies. The study was conducted to establish the genetic variability of maternally inherited mitochondrial DNA encoding for cytochrome oxidase subunit 1 (CO1) gene in Ae. albopictus. Twelve localities were selected in the Subang Jaya district based on temporal indices utilizing 120 mosquito samples. Genetic polymorphism and phylogenetic analysis were conducted to unveil the genetic variability and geographic origins of Ae. albopictus. The haplotype network was mapped to determine the genealogical relationship of sequences among groups of population in the Asian region. Comparison of Malaysian CO1 sequences with sequences derived from five Asian countries revealed genetically distinct Ae. albopictus populations. Phylogenetic analysis revealed that all sequences from other Asian countries descended from the same genetic lineage as the Malaysian sequences. Noteworthy, our study highlights the discovery of 20 novel haplotypes within the Malaysian population which to date had not been reported. These findings could help determine the genetic variation of this invasive species, which in turn could possibly improve the current dengue vector surveillance strategies, locally and regionally.
    Matched MeSH terms: Phylogeography
  10. Dai X, Mak YL, Lu CK, Mei HH, Wu JJ, Lee WH, et al.
    Harmful Algae, 2017 07;67:107-118.
    PMID: 28755713 DOI: 10.1016/j.hal.2017.07.002
    Recent molecular phylogenetic studies of Gambierdiscus species flagged several new species and genotypes, thus leading to revitalizing its systematics. The inter-relationships of clades revealed by the primary sequence information of nuclear ribosomal genes (rDNA), however, can sometimes be equivocal, and therefore, in this study, the taxonomic status of a ribotype, Gambierdiscus sp. type 6, was evaluated using specimens collected from the original locality, Marakei Island, Republic of Kiribati; and specimens found in Rawa Island, Peninsular Malaysia, were further used for comparison. Morphologically, the ribotype cells resembled G. scabrosus, G. belizeanus, G. balechii, G. cheloniae and G. lapillus in thecal ornamentation, where the thecal surfaces are reticulate-foveated, but differed from G. scabrosus by its hatchet-shaped Plate 2', and G. belizeanus by the asymmetrical Plate 3'. To identify the phylogenetic relationship of this ribotype, a large dataset of the large subunit (LSU) and small subunit (SSU) rDNAs were compiled, and performed comprehensive analyses, using Bayesian-inference, maximum-parsimony, and maximum-likelihood, for the latter two incorporating the sequence-structure information of the SSU rDNA. Both the LSU and SSU rDNA phylogenetic trees displayed an identical topology and supported the hypothesis that the relationship between Gambierdiscus sp. type 6 and G. balechii was monophyletic. As a result, the taxonomic status of Gambierdiscus sp. type 6 was revised, and assigned as Gambierdiscus balechii. Toxicity analysis using neuroblastoma N2A assay confirmed that the Central Pacific strains were toxic, ranging from 1.1 to 19.9 fg P-CTX-1 eq cell-1, but no toxicity was detected in a Western Pacific strain. This suggested that the species might be one of the species contributing to the high incidence rate of ciguatera fish poisoning in Marakei Island.
    Matched MeSH terms: Phylogeography*
  11. Gibbs S, Hundt PJ, Nelson A, Egan JP, Tongnunui P, Simons AM
    Zootaxa, 2018 Jan 03;4369(2):270-280.
    PMID: 29689891 DOI: 10.11646/zootaxa.4369.2.7
    The combtooth blenny (Blenniidae) genus Omobranchus contains small, cryptobenthic fishes common to nearshore habitats throughout the Indo-West Pacific. Recent molecular systematic studies have resolved Omobranchus as monophyletic but little research has been done to resolve species-level relationships. Herein, phylogenetic analyses of one mitochondrial (CO1) and four nuclear (ENC1, myh6, sreb2, and tbr1) genes provide evidence for the monophyly of Omobranchus and support for the elongatus and banditus species group. Sampling of multiple individuals from widespread species (O. ferox, O. punctatus, and O. elongatus) suggested that the Thai-Malay Peninsula is a phylogeographic break that may be a historic barrier to gene flow. Additionally, common meristics and other morphological characters are used to describe an early life history stage of O. ferox and O. punctatus.
    Matched MeSH terms: Phylogeography
  12. Ismail F, Couvin D, Farakhin I, Abdul Rahman Z, Rastogi N, Suraiya S
    PLoS One, 2014;9(12):e114832.
    PMID: 25502956 DOI: 10.1371/journal.pone.0114832
    Tuberculosis (TB) still constitutes a major public health problem in Malaysia. The identification and genotyping based characterization of Mycobacterium tuberculosis complex (MTBC) isolates causing the disease is important to determine the effectiveness of the control and surveillance programs.
    Matched MeSH terms: Phylogeography
  13. Carter BE, Larraín J, Manukjanová A, Shaw B, Shaw AJ, Heinrichs J, et al.
    Mol Phylogenet Evol, 2017 02;107:16-26.
    PMID: 27744015 DOI: 10.1016/j.ympev.2016.10.002
    Frullania subgenus Microfrullania is a clade of ca. 15 liverwort species occurring in Australasia, Malesia, and southern South America. We used combined nuclear and chloroplast sequence data from 265 ingroup accessions to test species circumscriptions and estimate the biogeographic history of the subgenus. With dense infra-specific sampling, we document an important role of long-distance dispersal in establishing phylogeographic patterns of extant species. At deeper time scales, a combination of phylogenetic analyses, divergence time estimation and ancestral range estimation were used to reject vicariance and to document the role of long-distance dispersal in explaining the evolution and biogeography of the clade across the southern Hemisphere. A backbone phylogeny for the subgenus is proposed, providing insight into evolution of morphological patterns and establishing the basis for an improved sectional classification of species within Microfrullania. Several species complexes are identified, the presence of two undescribed but genetically and morphologically distinct species is noted, and previously neglected names are discussed.
    Matched MeSH terms: Phylogeography
  14. Chong CW, Goh YS, Convey P, Pearce D, Tan IK
    Extremophiles, 2013 Sep;17(5):733-45.
    PMID: 23812890 DOI: 10.1007/s00792-013-0555-3
    A range of small- to moderate-scale studies of patterns in bacterial biodiversity have been conducted in Antarctica over the last two decades, most suggesting strong correlations between the described bacterial communities and elements of local environmental heterogeneity. However, very few of these studies have advanced interpretations in terms of spatially associated patterns, despite increasing evidence of patterns in bacterial biogeography globally. This is likely to be a consequence of restricted sampling coverage, with most studies to date focusing only on a few localities within a specific Antarctic region. Clearly, there is now a need for synthesis over a much larger spatial to consolidate the available data. In this study, we collated Antarctic bacterial culture identities based on the 16S rRNA gene information available in the literature and the GenBank database (n > 2,000 sequences). In contrast to some recent evidence for a distinct Antarctic microbiome, our phylogenetic comparisons show that a majority (~75 %) of Antarctic bacterial isolates were highly similar (≥99 % sequence similarity) to those retrieved from tropical and temperate regions, suggesting widespread distribution of eurythermal mesophiles in Antarctic environments. However, across different Antarctic regions, the dominant bacterial genera exhibit some spatially distinct diversity patterns analogous to those recently proposed for Antarctic terrestrial macroorganisms. Taken together, our results highlight the threat of cross-regional homogenisation in Antarctic biodiversity, and the imperative to include microbiota within the framework of biosecurity measures for Antarctica.
    Matched MeSH terms: Phylogeography
  15. Gao X, Liu H, Wang H, Fu S, Guo Z, Liang G
    PLoS Negl Trop Dis, 2013;7(9):e2459.
    PMID: 24069502 DOI: 10.1371/journal.pntd.0002459
    Although a previous study predicted that Japanese encephalitis virus (JEV) originated in the Malaysia/Indonesia region, the virus is known to circulate mainly on the Asian continent. However, there are no reported systematic studies that adequately define how JEV then dispersed throughout Asia.
    Matched MeSH terms: Phylogeography*
  16. Slik JW, Aiba S, Bastian M, Brearley FQ, Cannon CH, Eichhorn KA, et al.
    Proc Natl Acad Sci U S A, 2011 Jul 26;108(30):12343-7.
    PMID: 21746913 DOI: 10.1073/pnas.1103353108
    The marked biogeographic difference between western (Malay Peninsula and Sumatra) and eastern (Borneo) Sundaland is surprising given the long time that these areas have formed a single landmass. A dispersal barrier in the form of a dry savanna corridor during glacial maxima has been proposed to explain this disparity. However, the short duration of these dry savanna conditions make it an unlikely sole cause for the biogeographic pattern. An additional explanation might be related to the coarse sandy soils of central Sundaland. To test these two nonexclusive hypotheses, we performed a floristic cluster analysis based on 111 tree inventories from Peninsular Malaysia, Sumatra, and Borneo. We then identified the indicator genera for clusters that crossed the central Sundaland biogeographic boundary and those that did not cross and tested whether drought and coarse-soil tolerance of the indicator genera differed between them. We found 11 terminal floristic clusters, 10 occurring in Borneo, 5 in Sumatra, and 3 in Peninsular Malaysia. Indicator taxa of clusters that occurred across Sundaland had significantly higher coarse-soil tolerance than did those from clusters that occurred east or west of central Sundaland. For drought tolerance, no such pattern was detected. These results strongly suggest that exposed sandy sea-bed soils acted as a dispersal barrier in central Sundaland. However, we could not confirm the presence of a savanna corridor. This finding makes it clear that proposed biogeographic explanations for plant and animal distributions within Sundaland, including possible migration routes for early humans, need to be reevaluated.
    Matched MeSH terms: Phylogeography
  17. Rahman SA, Hassan L, Epstein JH, Mamat ZC, Yatim AM, Hassan SS, et al.
    Emerg Infect Dis, 2013 Jan;19(1):51-60.
    PMID: 23261015 DOI: 10.3201/eid1901.120221
    We conducted cross-sectional and longitudinal studies to determine the distribution of and risk factors for seropositivity to Nipah virus (NiV) among Pteropus vampyrus and P. hypomelanus bats in Peninsular Malaysia. Neutralizing antibodies against NiV were detected at most locations surveyed. We observed a consistently higher NiV risk (odds ratio 3.9) and seroprevalence (32.8%) for P. vampyrus than P. hypomelanus (11.1%) bats. A 3-year longitudinal study of P. hypomelanus bats indicated nonseasonal temporal variation in seroprevalence, evidence for viral circulation within the study period, and an overall NiV seroprevalence of 9.8%. The seroprevalence fluctuated over the study duration between 1% and 20% and generally decreased during 2004-2006. Adult bats, particularly pregnant, with dependent pup and lactating bats, had a higher prevalence of NiV antibodies than juveniles. Antibodies in juveniles 6 months-2 years of age suggested viral circulation within the study period.
    Matched MeSH terms: Phylogeography
  18. Lim HC, Rahman MA, Lim SL, Moyle RG, Sheldon FH
    Evolution, 2011 Feb;65(2):321-34.
    PMID: 20796023 DOI: 10.1111/j.1558-5646.2010.01105.x
    Sundaland, a biogeographic region of Southeast Asia, is a major biodiversity hotspot. However, little is known about the relative importance of Pleistocene habitat barriers and rivers in structuring populations and promoting diversification here. We sampled 16 lowland rainforest bird species primarily from peninsular Malaysia and Borneo to test the long-standing hypothesis that animals on different Sundaic landmasses intermixed extensively when lower sea-levels during the Last Glacial Maximum (LGM) exposed land-bridges. This hypothesis was rejected in all but five species through coalescent simulations. Furthermore, we detected a range of phylogeographic patterns; Bornean populations are often genetically distinct from each other, despite their current habitat connectivity. Environmental niche modeling showed that the presence of unsuitable habitats between western and eastern Sundaland during the LGM coincided with deeper interpopulation genetic divergences. The location of this habitat barrier had been hypothesized previously based on other evidence. Paleo-riverine barriers are unlikely to have produced such a pattern, but we cannot rule out that they acted with habitat changes to impede population exchanges across the Sunda shelf. The distinctiveness of northeastern Borneo populations may be underlied by a combination of factors such as rivers, LGM expansion of montane forests and other aspects of regional physiography.
    Matched MeSH terms: Phylogeography
  19. Soares PA, Trejaut JA, Rito T, Cavadas B, Hill C, Eng KK, et al.
    Hum Genet, 2016 Mar;135(3):309-26.
    PMID: 26781090 DOI: 10.1007/s00439-015-1620-z
    There are two very different interpretations of the prehistory of Island Southeast Asia (ISEA), with genetic evidence invoked in support of both. The "out-of-Taiwan" model proposes a major Late Holocene expansion of Neolithic Austronesian speakers from Taiwan. An alternative, proposing that Late Glacial/postglacial sea-level rises triggered largely autochthonous dispersals, accounts for some otherwise enigmatic genetic patterns, but fails to explain the Austronesian language dispersal. Combining mitochondrial DNA (mtDNA), Y-chromosome and genome-wide data, we performed the most comprehensive analysis of the region to date, obtaining highly consistent results across all three systems and allowing us to reconcile the models. We infer a primarily common ancestry for Taiwan/ISEA populations established before the Neolithic, but also detected clear signals of two minor Late Holocene migrations, probably representing Neolithic input from both Mainland Southeast Asia and South China, via Taiwan. This latter may therefore have mediated the Austronesian language dispersal, implying small-scale migration and language shift rather than large-scale expansion.
    Matched MeSH terms: Phylogeography
  20. Gauffre-Autelin P, von Rintelen T, Stelbrink B, Albrecht C
    Parasit Vectors, 2017 03 06;10(1):126.
    PMID: 28264699 DOI: 10.1186/s13071-017-2043-6
    BACKGROUND: The planorbid snail Indoplanorbis exustus is the sole intermediate host for the Schistosoma indicum species group, trematode parasites responsible for cattle schistosomiasis and human cercarial dermatitis. This freshwater snail is widely distributed in Southern Asia, ranging from Iran to China eastwards including India and from the southeastern Himalayas to Southeast Asia southwards. The veterinary and medical importance of this snail explains the interest in understanding its geographical distribution patterns and evolutionary history. In this study, we used a large and comprehensive sampling throughout Indo-Malaya, including specimens from South India and Indonesia, areas that have been formerly less studied.

    RESULTS: The phylogenetic inference revealed five highly divergent clades (genetic distances among clades: 4.4-13.9%) that are morphologically indistinguishable, supporting the assumption that this presumed nominal species may represent a cryptic species complex. The species group may have originated in the humid subtropical plains of Nepal or in southern adjacent regions in the Early Miocene. The major cladogenetic events leading to the fives clades occurred successively from the Early Miocene to the Early Pleistocene, coinciding with major periods of monsoonal intensification associated with major regional paleogeographic events in the Miocene and repeated climate changes due to the Plio-Pleistocene climatic oscillations. Our coverage of the Indo-Australian Archipelago (IAA) highlights the presence of a single clade there. Contrary to expectations, an AMOVA did not reveal any population genetic structure among islands or along a widely recognised zoogeographical regional barrier, suggesting a recent colonisation independent of natural biogeographical constraints. Neutrality tests and mismatch distributions suggested a sudden demographic and spatial population expansion that could have occurred naturally in the Pleistocene or may possibly result of a modern colonisation triggered by anthropogenic activities.

    CONCLUSIONS: Even though Indoplanorbis is the main focus of this study, our findings may also have important implications for fully understanding its role in hosting digenetic trematodes. The existence of a cryptic species complex, the historical phylogeographical patterns and the recent range expansion in the IAA provide meaningful insights to the understanding and monitoring of the parasites potential spread. It brings a substantial contribution to veterinary and public health issues.

    Matched MeSH terms: Phylogeography*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links