Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Alizadeh F, Abdullah SN, Khodavandi A, Abdullah F, Yusuf UK, Chong PP
    J Plant Physiol, 2011 Jul 01;168(10):1106-13.
    PMID: 21333381 DOI: 10.1016/j.jplph.2010.12.007
    The expression profiles of Δ9 stearoyl-acyl carrier protein desaturase (SAD1 and SAD2) and type 3 metallothionein (MT3-A and MT3-B) were investigated in seedlings of oil palm (Elaeis guineensis) artificially inoculated with the pathogenic fungus Ganoderma boninense and the symbiotic fungus Trichoderma harzianum. Expression of SAD1 and MT3-A in roots and SAD2 in leaves were significantly up-regulated in G. boninense inoculated seedlings at 21 d after treatment when physical symptoms had not yet appeared and thereafter decreased to basal levels when symptoms became visible. Our finding demonstrated that the SAD1 expression in leaves was significantly down-regulated to negligible levels at 42 and 63 d after treatment. The transcripts of MT3 genes were synthesized in G. boninense inoculated leaves at 42 d after treatment, and the analyses did not show detectable expression of these genes before 42 d after treatment. In T. harzianum inoculated seedlings, the expression levels of SAD1 and SAD2 increased gradually and were stronger in roots than leaves, while for MT3-A and MT3-B, the expression levels were induced in leaves at 3d after treatment and subsequently maintained at same levels until 63d after treatment. The MT3-A expression was significantly up-regulated in roots at 3d after treatment and thereafter were maintained at this level. Both SAD and MT3 expression were maintained at maximum levels or at levels higher than basal. This study demonstrates that oil palm was able to distinguish between pathogenic and symbiotic fungal interactions, thus resulting in different transcriptional activation profiles of SAD and MT3 genes. Increases in expression levels of SAD and MT3 would lead to enhanced resistance against G. boninense and down-regulation of genes confer potential for invasive growth of the pathogen. Differences in expression profiles of SAD and MT3 relate to plant resistance mechanisms while supporting growth enhancing effects of symbiotic T. harzianum.
    Matched MeSH terms: Plant Diseases/genetics
  2. Arora S, Steuernagel B, Gaurav K, Chandramohan S, Long Y, Matny O, et al.
    Nat Biotechnol, 2019 02;37(2):139-143.
    PMID: 30718880 DOI: 10.1038/s41587-018-0007-9
    Disease resistance (R) genes from wild relatives could be used to engineer broad-spectrum resistance in domesticated crops. We combined association genetics with R gene enrichment sequencing (AgRenSeq) to exploit pan-genome variation in wild diploid wheat and rapidly clone four stem rust resistance genes. AgRenSeq enables R gene cloning in any crop that has a diverse germplasm panel.
    Matched MeSH terms: Plant Diseases/genetics*
  3. Ashkani S, Rafii MY, Sariah M, Siti Nor Akmar A, Rusli I, Abdul Rahim H, et al.
    Genet. Mol. Res., 2011 Jul 06;10(3):1345-55.
    PMID: 21751161 DOI: 10.4238/vol10-3gmr1331
    Among 120 simple sequence repeat (SSR) markers, 23 polymorphic markers were used to identify the segregation ratio in 320 individuals of an F(2) rice population derived from Pongsu Seribu 2, a resistant variety, and Mahsuri, a susceptible rice cultivar. For phenotypic study, the most virulent blast (Magnaporthe oryzae) pathotype, P7.2, was used in screening of F(2) population in order to understand the inheritance of blast resistance as well as linkage with SSR markers. Only 11 markers showed a good fit to the expected segregation ratio (1:2:1) for the single gene model (d.f. = 1.0, P < 0.05) in chi-square (χ(2)) analyses. In the phenotypic data analysis, the F(2) population segregated in a 3:1 (R:S) ratio for resistant and susceptible plants, respectively. Therefore, resistance to blast pathotype P7.2 in Pongsu Seribu 2 is most likely controlled by a single nuclear gene. The plants from F(2) lines that showed resistance to blast pathotype P7.2 were linked to six alleles of SSR markers, RM168 (116 bp), RM8225 (221 bp), RM1233 (175 bp), RM6836 (240 bp), RM5961 (129 bp), and RM413 (79 bp). These diagnostic markers could be used in marker assisted selection programs to develop a durable blast resistant variety.
    Matched MeSH terms: Plant Diseases/genetics*
  4. Ashkani S, Rafii MY, Rahim HA, Latif MA
    Mol Biol Rep, 2013 Mar;40(3):2503-15.
    PMID: 23203411 DOI: 10.1007/s11033-012-2331-3
    Rice blast is one of the major fungal diseases that badly reduce rice production in Asia including Malaysia. There is not much information on identification of QTLs as well as linked markers and their association with blast resistance within local rice cultivars. In order to understanding of the genetic control of blast in the F3 families from indica rice cross Pongsu seribu2/Mahsuri, an analysis of quantitative trait loci against one of the highly virulent Malaysian rice blast isolate Magnaporthe oryzae, P5.0 was carried out. Result indicated that partial resistance to this pathotype observed in the present study was controlled by multiple loci or different QTLs. In QTL analysis in F3 progeny fifteen QTLs on chromosomes 1, 2, 3, 5, 6, 11 and 12 for resistance to blast nursery tests was identified. Three of detected QTLs (qRBr-6.1, qRBr-11.4, and qRBr-12.1) had significant threshold (LOD >3) and approved by both IM and CIM methods. Twelve suggestive QTLs, qRBr-1.2, qRBr-2.1, qRBr-4.1, qRBr-5.1, qRBr-6.2, qRBr-6.3, qRBr-8.1, qRBr-10.1, qRBr-10.2, qRBr-11.1, qRBr-11.2 and qRBr-11.3) with Logarithmic of Odds (LOD) <3.0 or LRS <15) were distributed on chromosomes 1, 2, 4, 5, 6, 8, 10, and 11. Most of the QTLs detected using single isolate had the resistant alleles from Pongsu seribu 2 which involved in the resistance in the greenhouse. We found that QTLs detected for deferent traits for the using isolate were frequently located in similar genomic regions. Inheritance study showed among F3 lines resistance segregated in the expected ratio of 15: 1 for resistant to susceptible. The average score for blast resistance measured in the green house was 3.15, 1.98 and 29.95 % for three traits, BLD, BLT and % DLA, respectively.
    Matched MeSH terms: Plant Diseases/genetics*
  5. Ashkani S, Yusop MR, Shabanimofrad M, Azady A, Ghasemzadeh A, Azizi P, et al.
    Curr Issues Mol Biol, 2015;17:57-73.
    PMID: 25706446
    Allele mining is a promising way to dissect naturally occurring allelic variants of candidate genes with essential agronomic qualities. With the identification, isolation and characterisation of blast resistance genes in rice, it is now possible to dissect the actual allelic variants of these genes within an array of rice cultivars via allele mining. Multiple alleles from the complex locus serve as a reservoir of variation to generate functional genes. The routine sequence exchange is one of the main mechanisms of R gene evolution and development. Allele mining for resistance genes can be an important method to identify additional resistance alleles and new haplotypes along with the development of allele-specific markers for use in marker-assisted selection. Allele mining can be visualised as a vital link between effective utilisation of genetic and genomic resources in genomics-driven modern plant breeding. This review studies the actual concepts and potential of mining approaches for the discovery of alleles and their utilisation for blast resistance genes in rice. The details provided here will be important to provide the rice breeder with a worthwhile introduction to allele mining and its methodology for breakthrough discovery of fresh alleles hidden in hereditary diversity, which is vital for crop improvement.
    Matched MeSH terms: Plant Diseases/genetics*
  6. Azad MA, Amin L, Sidik NM
    ScientificWorldJournal, 2014;2014:768038.
    PMID: 24757435 DOI: 10.1155/2014/768038
    Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research.
    Matched MeSH terms: Plant Diseases/genetics
  7. Goh KM, Dickinson M, Supramaniam CV
    Physiol Plant, 2018 Mar;162(3):274-289.
    PMID: 28940509 DOI: 10.1111/ppl.12645
    Lignification of the plant cell wall could serve as the first line of defense against pathogen attack, but the molecular mechanisms of virulence and disease between oil palm and Ganoderma boninense are poorly understood. This study presents the biochemical, histochemical, enzymology and gene expression evidences of enhanced lignin biosynthesis in young oil palm as a response to G. boninense (GBLS strain). Comparative studies with control (T1), wounded (T2) and infected (T3) oil palm plantlets showed significant accumulation of total lignin content and monolignol derivatives (syringaldehyde and vanillin). These derivatives were deposited on the epidermal cell wall of infected plants. Moreover, substantial differences were detected in the activities of enzyme and relative expressions of genes encoding phenylalanine ammonia lyase (EC 4.3.1.24), cinnamate 4-hydroxylase (EC 1.14.13.11), caffeic acid O-methyltransferase (EC 2.1.1.68) and cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195). These enzymes are key intermediates dedicated to the biosynthesis of lignin monomers, the guaicyl (G), syringyl (S) and ρ-hydroxyphenyl (H) subunits. Results confirmed an early, biphasic and transient positive induction of all gene intermediates, except for CAD enzyme activities. These differences were visualized by anatomical and metabolic changes in the profile of lignin in the oil palm plantlets such as low G lignin, indicating a potential mechanism for enhanced susceptibility toward G. boninense infection.
    Matched MeSH terms: Plant Diseases/genetics*
  8. Habib MA, Yuen GC, Othman F, Zainudin NN, Latiff AA, Ismail MN
    Biochem. Cell Biol., 2017 04;95(2):232-242.
    PMID: 28177774 DOI: 10.1139/bcb-2016-0144
    The natural rubber latex extracted from the bark of Hevea brasiliensis plays various important roles in today's modern society. Following ultracentrifugation, the latex can be separated into 3 layers: C-serum, lutoids, and rubber particles. Previous studies have shown that a large number of proteins are present in these 3 layers. However, a complete proteome for this important plant is still unavailable. Protein sequences have been recently translated from the completed draft genome database of H. brasiliensis, leading to the creation of annotated protein databases of the following H. brasiliensis biosynthetic pathways: photosynthesis, latex allergens, rubberwood formation, latex biosynthesis, and disease resistance. This research was conducted to identify the proteins contained within the latex by way of de novo sequencing from mass spectral data obtained from the 3 layers of the latex. Peptides from these proteins were fragmented using collision-induced dissociation, higher-energy collisional dissociation, and electron-transfer dissociation activation methods. A large percentage of proteins from the biosynthetic pathways (63% to 100%) were successfully identified. In addition, a total of 1839 unique proteins were identified from the whole translated draft genome database (AnnHBM).
    Matched MeSH terms: Plant Diseases/genetics
  9. Hasan MM, Rafii MY, Ismail MR, Mahmood M, Alam MA, Abdul Rahim H, et al.
    J Sci Food Agric, 2016 Mar 15;96(4):1297-305.
    PMID: 25892666 DOI: 10.1002/jsfa.7222
    Blast caused by the fungus Magnaporthe oryzae is a significant disease threat to rice across the world and is especially prevalent in Malaysia. An elite, early-maturing, high-yielding Malaysian rice variety, MR263, is susceptible to blast and was used as the recurrent parent in this study. To improve MR263 disease resistance, the Pongsu Seribu 1 rice variety was used as donor of the blast resistance Pi-7(t), Pi-d(t)1 and Pir2-3(t) genes and qLN2 quantitative trait locus (QTL). The objective was to introgress these blast resistance genes into the background of MR263 using marker-assisted backcrossing with both foreground and background selection.
    Matched MeSH terms: Plant Diseases/genetics*
  10. Hasan N, Rafii MY, Abdul Rahim H, Nusaibah SA, Mazlan N, Abdullah S
    Genet. Mol. Res., 2017 Jan 23;16(1).
    PMID: 28128411 DOI: 10.4238/gmr16019280
    Rice (Oryza sativa L.) blast disease is one of the most destructive rice diseases in the world. The fungal pathogen, Magnaporthe oryzae, is the causal agent of rice blast disease. Development of resistant cultivars is the most preferred method to achieve sustainable rice production. However, the effectiveness of resistant cultivars is hindered by the genetic plasticity of the pathogen genome. Therefore, information on genetic resistance and virulence stability are vital to increase our understanding of the molecular basis of blast disease resistance. The present study set out to elucidate the resistance pattern and identify potential simple sequence repeat markers linked with rice blast disease. A backcross population (BC2F1), derived from crossing MR264 and Pongsu Seribu 2 (PS2), was developed using marker-assisted backcross breeding. Twelve microsatellite markers carrying the blast resistance gene clearly demonstrated a polymorphic pattern between both parental lines. Among these, two markers, RM206 and RM5961, located on chromosome 11 exhibited the expected 1:1 testcross ratio in the BC2F1 population. The 195 BC2F1 plants inoculated against M. oryzae pathotype P7.2 showed a significantly different distribution in the backcrossed generation and followed Mendelian segregation based on a single-gene model. This indicates that blast resistance in PS2 is governed by a single dominant gene, which is linked to RM206 and RM5961 on chromosome 11. The findings presented in this study could be useful for future blast resistance studies in rice breeding programs.
    Matched MeSH terms: Plant Diseases/genetics*
  11. Hatta MAM, Arora S, Ghosh S, Matny O, Smedley MA, Yu G, et al.
    Plant Biotechnol J, 2021 Feb;19(2):273-284.
    PMID: 32744350 DOI: 10.1111/pbi.13460
    In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe. In contrast to wheat with 60 designated stem rust (Sr) resistance genes, barley's genetic variation for stem rust resistance is very narrow with only ten resistance genes genetically identified. Of these, only one complex locus consisting of three genes is effective against TTKSK, a widely virulent Pgt race of the Ug99 tribe which emerged in Uganda in 1999 and has since spread to much of East Africa and parts of the Middle East. The objective of this study was to assess the functionality, in barley, of cloned wheat Sr genes effective against race TTKSK. Sr22, Sr33, Sr35 and Sr45 were transformed into barley cv. Golden Promise using Agrobacterium-mediated transformation. All four genes were found to confer effective stem rust resistance. The barley transgenics remained susceptible to the barley leaf rust pathogen Puccinia hordei, indicating that the resistance conferred by these wheat Sr genes was specific for Pgt. Furthermore, these transgenic plants did not display significant adverse agronomic effects in the absence of disease. Cloned Sr genes from wheat are therefore a potential source of resistance against wheat stem rust in barley.
    Matched MeSH terms: Plant Diseases/genetics*
  12. Henry Sum MS, Yee SF, Eng L, Poili E, Lamdin J
    Biomed Res Int, 2017;2017:3608042.
    PMID: 29201901 DOI: 10.1155/2017/3608042
    Rice tungro disease (RTD) is one of the most destructive diseases of rice in South and Southeast Asia. RTD is routinely detected based on visual observation of the plant. However, it is not always easy to identify the disease in the field as it is often confused with other diseases or physiological disorders. Here we report the development of two serological based assays for ease of detection of RTD. In this study we had developed and optimized an indirect ELISA and dot-blot assay for detection of RTD. The efficiency of both assays was evaluated by comparing the specificity and sensitivity of the assays to PCR assay using established primer sets. The indirect ELISA showed 97.5% and 96.6%, while the dot-blot assay showed 97.5% and 86.4% sensitivity and specificity, respectively, when compared to established PCR method. The high sensitivity and specificity of the two assays merit the use of both assays as alternative methods to diagnose RTD. Furthermore, the dot-blot assay is a simple, robust, and rapid diagnostic assay that is suitable for field test for it does not require any specialized equipment. This is a great advantage for diagnosing RTD in paddy fields, especially in the rural areas.
    Matched MeSH terms: Plant Diseases/genetics*
  13. Intan Sakinah MA, Suzianti IV, Latiffah Z
    Genet. Mol. Res., 2014;13(2):3627-37.
    PMID: 24854442 DOI: 10.4238/2014.May.9.5
    Anthracnose caused by Colletotrichum species is a common postharvest disease of banana fruit. We investigated and identified Colletotrichum species associated with anthracnose in several local banana cultivars based on morphological characteristics and sequencing of ITS regions and of the β-tubulin gene. Thirty-eight Colletotrichum isolates were encountered in anthracnose lesions of five local banana cultivars, 'berangan', 'mas', 'awak', 'rastali', and 'nangka'. Based on morphological characteristics, 32 isolates were identified as Colletotrichum gloeosporioides and 6 isolates as C. musae. C. gloeosporioides isolates were divided into two morphotypes, with differences in colony color, shape of the conidia and growth rate. Based on ITS regions and β-tubulin sequences, 35 of the isolates were identified as C. gloeosporioides and only 3 isolates as C. musae; the percentage of similarity from BLAST ranged from 95-100% for ITS regions and 97-100% for β-tubulin. C. gloeosporioides isolates were more prevalent compared to C. musae. This is the first record of C. gloeosporioides associated with banana anthracnose in Malaysia. In a phylogenetic analysis of the combined dataset of ITS regions and β-tubulin using a maximum likelihood method, C. gloeosporioides and C. musae isolates were clearly separated into two groups. We concluded that C. gloeosporioides and C. musae isolates are associated with anthracnose in the local banana cultivars and that C. gloeosporioides is more prevalent than C. musae.
    Matched MeSH terms: Plant Diseases/genetics
  14. Javed MA, Ali SW, Ashfaq M, Tabassam J, Ali M, IhsanUllah M, et al.
    Braz J Biol, 2022;82:e256189.
    PMID: 36541981 DOI: 10.1590/1519-6984.256189
    Bacteria blight is one of the most serious bacterial diseases of rice worldwide. The identification of genetic potential against bacterial blight in the existing rice resources is a prerequisite to develop multigenic resistance to combat the threat of climate change. This investigation was conducted to evaluate alleles variation in 38 Malaysian cultivars using thirteen Simple Sequences Repeats markers and one Sequence Tagged Sites (STS) marker which were reported to be linked with the resistance to bacterial blight. Based on molecular data, a dendrogram was constructed which classified the rice cultivars into seven major clusters at 0.0, 0.28 and 0.3 of similarity coefficient. Cluster 5 was the largest group comprised of ten rice cultivars where multiple genes were identified. However, xa13 could not be detected in the current rice germplasm, whereas xa2 was detected in 25 cultivars. Molecular analysis revealed that Malaysian rice cultivars possess multigenic resistance.
    Matched MeSH terms: Plant Diseases/genetics
  15. Khan MA, Sen PP, Bhuiyan R, Kabir E, Chowdhury AK, Fukuta Y, et al.
    C. R. Biol., 2014 May;337(5):318-24.
    PMID: 24841958 DOI: 10.1016/j.crvi.2014.02.007
    Experiments were conducted to identify blast-resistant fragrant genotypes for the development of a durable blast-resistant rice variety during years 2012-2013. The results indicate that out of 140 test materials including 114 fragrant germplasms, 25 differential varieties (DVs) harbouring 23 blast-resistant genes, only 16 fragrant rice germplasms showed comparatively better performance against a virulent isolate of blast disease. The reaction pattern of single-spore isolate of Magnaporthe oryzae to differential varieties showed that Pish, Pi9, Pita-2 and Pita are the effective blast-resistant genes against the tested blast isolates in Bangladesh. The DNA markers profiles of selected 16 rice germplasms indicated that genotype Chinigura contained Pish, Pi9 and Pita genes; on the other hand, both BRRI dhan50 and Bawaibhog contained Pish and Pita genes in their genetic background. Genotypes Jirakatari, BR5, and Gopalbhog possessed Pish gene, while Uknimodhu, Deshikatari, Radhunipagol, Kalijira (3), Chinikanai each contained the Pita gene only. There are some materials that did not contain any target gene(s) in their genetic background, but proved resistant in pathogenicity tests. This information provided valuable genetic information for breeders to develop durable blast-resistant fragrant or aromatic rice varieties in Bangladesh.
    Matched MeSH terms: Plant Diseases/genetics*
  16. Khayi S, Blin P, Pédron J, Chong TM, Chan KG, Moumni M, et al.
    BMC Genomics, 2015;16:788.
    PMID: 26467299 DOI: 10.1186/s12864-015-1997-z
    Dickeya solani is an emerging pathogen that causes soft rot and blackleg diseases in several crops including Solanum tuberosum, but little is known about its genomic diversity and evolution.
    Matched MeSH terms: Plant Diseases/genetics
  17. Kwan YM, Meon S, Ho CL, Wong MY
    J Plant Physiol, 2015 Feb 01;174:131-6.
    PMID: 25462975 DOI: 10.1016/j.jplph.2014.10.003
    Nitric oxide associated 1 (NOA1) protein is implicated in plant disease resistance and nitric oxide (NO) biosynthesis. A full-length cDNA encoding of NOA1 protein from oil palm (Elaeis guineensis) was isolated and designated as EgNOA1. Sequence analysis suggested that EgNOA1 was a circular permutated GTPase with high similarity to the bacterial YqeH protein of the YawG/YlqF family. The gene expression of EgNOA1 and NO production in oil palm root tissues treated with Ganoderma boninense, the causal agent of basal stem rot (BSR) disease were profiled to investigate the involvement of EgNOA1 during fungal infection and association with NO biosynthesis. Real-time PCR (qPCR) analysis revealed that the transcript abundance of EgNOA1 in root tissues was increased by G. boninense treatment. NO burst in Ganoderma-treated root tissue was detected using Griess reagent, in advance of the up-regulation of the EgNOA1 transcript. This indicates that NO production was independent of EgNOA1. However, the induced expression of EgNOA1 in Ganoderma-treated root tissues implies that it might be involved in plant defense responses against pathogen infection.
    Matched MeSH terms: Plant Diseases/genetics*
  18. Latif MA, Rahman MM, Ali ME, Ashkani S, Rafii MY
    C. R. Biol., 2013 Mar;336(3):125-33.
    PMID: 23643394 DOI: 10.1016/j.crvi.2012.12.002
    Multivariate analyses were performed using 13 morphological traits and 13 molecular markers (10 SSRs and three ISSRs) to assess the phylogenetic relationship among tungro resistant genotypes. For morphological traits, the genotypes were grouped into six clusters, according to D(2) statistic and Canonical vector analysis. Plant height, days to flowering, days to maturity, panicle length, number of spikelet per panicle, number of unfilled grain per panicle and yield were important contributors to genetic divergence in 14 rice genotypes. Based on Nei's genetic distance for molecular studies, seven clusters were formed among the tungro resistant and susceptible genotypes. Mantel's test revealed a significant correlation (r = 0.834*) between the morphological and molecular data. To develop high yielding tungro resistant varieties based on both morphological and molecular analyses, crosses could be made with susceptible (BR10 and BR11) genotypes with low yielding but highly resistant genotypes, Sonahidemota, Kumragoir, Nakuchimota, Khaiyamota, Khairymota and Kachamota. The chi-square analysis for seven alleles (RM11, RM17, RM20, RM23, RM80, RM108 and RM531) of SSR and five loci (RY1, MR1, MR2, MR4 and GF5) of three ISSR markers in F2 population of cross, BR11×Sonahidemota, showed a good fit to the expected segregation ratio (1:2:1) for a single gene model.
    Matched MeSH terms: Plant Diseases/genetics*
  19. Latif MA, Rafii Yusop M, Motiur Rahman M, Bashar Talukdar MR
    C. R. Biol., 2011 Apr;334(4):282-9.
    PMID: 21513897 DOI: 10.1016/j.crvi.2011.02.003
    A total of 78 alleles and 29 loci were detected from nine microsatellite and three minisatellite markers, respectively across 26 blast and ufra disease resistant genotypes. For blast resistant genotypes, the Polymorphic Information Content (PIC) values ranged from 0.280 to 0.726 and RM21 was considered as the best marker. PIC values ranged from 0.5953 to 0.8296 for ufra resistant genotypes and RM23 was the best marker for characterization of ufra resistant genotypes. The genetic similarity analysis using UPGMA clustering generated nine clusters with coefficient of 0.66 for blast resistant genotypes while five genetic clusters with similarity coefficient of 0.42 for ufra resistant genotypes. In order to develop resistant varieties of two major diseases of rice, hybridisation should be made using the parents, BR29 and NJ70507, BR36 and NJ70507 for blast, while BR11 and Aokazi, BR3 and Aokazi, Rayda and BR3 and Rayda and BR11 for ufra.
    Matched MeSH terms: Plant Diseases/genetics*
  20. Lau ET, Khew CY, Hwang SS
    J Biotechnol, 2020 May 20;314-315:53-62.
    PMID: 32302654 DOI: 10.1016/j.jbiotec.2020.03.014
    Black pepper is an important commodity crop in Malaysia that generates millions of annual revenue for the country. However, black pepper yield is affected by slow decline disease caused by a soil-borne fungus Fusarium solani. RNA sequencing transcriptomics approach has been employed in this study to explore the differential gene expression in susceptible Piper nigrum L. and resistant Piper colubrinum Link. Gene expression comparative analysis of the two pepper species has yielded 2,361 differentially expressed genes (DEGs). Among them, higher expression of 1,426 DEGs was detected in resistant plant. These DEGs practically demonstrated the major branches of plant-pathogen interaction pathway (Path: ko04626). We selected five groups of defence-related DEGs for downstream qRT-PCR analysis. Cf-9, the gene responsible for recognizing fungal avirulence protein activity was found inexpressible in susceptible plant. However, this gene exhibited promising expression in resistant plant. Inactivation of Cf-9 could be the factor that causes susceptible plant fail in recognition of F. solani and subsequently delay activation of adaptive response to fungal invasion. This vital study advance the understanding of pepper plant defence in response to F. solani and aid in identifying potential solution to manage slow decline disease in black pepper cultivation.
    Matched MeSH terms: Plant Diseases/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links