Displaying publications 1 - 20 of 1122 in total

Abstract:
Sort:
  1. Blonder B, Both S, Jodra M, Xu H, Fricker M, Matos IS, et al.
    New Phytol, 2020 12;228(6):1796-1810.
    PMID: 32712991 DOI: 10.1111/nph.16830
    Leaf venation networks evolved along several functional axes, including resource transport, damage resistance, mechanical strength, and construction cost. Because functions may depend on architectural features at different scales, network architecture may vary across spatial scales to satisfy functional tradeoffs. We develop a framework for quantifying network architecture with multiscale statistics describing elongation ratios, circularity ratios, vein density, and minimum spanning tree ratios. We quantify vein networks for leaves of 260 southeast Asian tree species in samples of up to 2 cm2 , pairing multiscale statistics with traits representing axes of resource transport, damage resistance, mechanical strength, and cost. We show that these multiscale statistics clearly differentiate species' architecture and delineate a phenotype space that shifts at larger scales; functional linkages vary with scale and are weak, with vein density, minimum spanning tree ratio, and circularity ratio linked to mechanical strength (measured by force to punch) and elongation ratio and circularity ratio linked to damage resistance (measured by tannins); and phylogenetic conservatism of network architecture is low but scale-dependent. This work provides tools to quantify the function and evolution of venation networks. Future studies including primary and secondary veins may uncover additional insights.
    Matched MeSH terms: Plant Leaves*
  2. Kolivand H, Fern BM, Rahim MSM, Sulong G, Baker T, Tully D
    PLoS One, 2018;13(2):e0191447.
    PMID: 29420568 DOI: 10.1371/journal.pone.0191447
    In this paper, we present a new method to recognise the leaf type and identify plant species using phenetic parts of the leaf; lobes, apex and base detection. Most of the research in this area focuses on the popular features such as the shape, colour, vein, and texture, which consumes large amounts of computational processing and are not efficient, especially in the Acer database with a high complexity structure of the leaves. This paper is focused on phenetic parts of the leaf which increases accuracy. Detecting the local maxima and local minima are done based on Centroid Contour Distance for Every Boundary Point, using north and south region to recognise the apex and base. Digital morphology is used to measure the leaf shape and the leaf margin. Centroid Contour Gradient is presented to extract the curvature of leaf apex and base. We analyse 32 leaf images of tropical plants and evaluated with two different datasets, Flavia, and Acer. The best accuracy obtained is 94.76% and 82.6% respectively. Experimental results show the effectiveness of the proposed technique without considering the commonly used features with high computational cost.
    Matched MeSH terms: Plant Leaves/anatomy & histology*
  3. Wahyuni DK, Indriati DT, Ilham M, Murtadlo AAA, Purnobasuki H, Junairiah, et al.
    Braz J Biol, 2024;84:e278393.
    PMID: 38422290 DOI: 10.1590/1519-6984.278393
    Artemisia vulgaris L. belongs to Asteraceae, is a herbal plant that has various benefits in the medical field, so that its use in the medical field can be explored optimally, the plant must be thoroughly identified. This study aims to identify A. vulgaris both in terms of descriptive morpho-anatomy and DNA barcoding using BLAST and phylogenetic tree reconstruction. The morpho-anatomical character was observed on root, stem, and leaf. DNA barcoding analysis was carried out through amplification and alignment of the rbcL and matK genes. All studies were conducted on three samples from Taman Husada (Medicinal Plant Garden) Graha Famili Surabaya, Indonesia. The anatomical slide was prepared by the paraffin method. Morphological studies revealed that the leaves of A. vulgaris both on the lower-middle part and on the upper part of the stem have differences, especially in the character of the stipules, petioles, and incisions they have. Meanwhile, from the study of anatomy, A. vulgaris has an anomocytic type of stomata and its distribution is mostly on the ventral part of the leaves. Through the BLAST process and phylogenetic tree reconstruction, the plant sequences being studied are closely related to several species of the genus Artemisia as indicated by a percentage identity above 98% and branch proximity between taxa in the reconstructed phylogenetic tree.
    Matched MeSH terms: Plant Leaves/genetics
  4. Hazir MHM, Gloor E, Docherty E, Galbraith D
    Tree Physiol, 2024 Feb 11;44(3).
    PMID: 38349811 DOI: 10.1093/treephys/tpae022
    Land surface temperature is predicted to increase by 0.2 °C per decade due to climate change, although with considerable regional variability, and heatwaves are predicted to increase markedly in the future. These changes will affect where crops can be grown in the future. Understanding the thermal limits of plant physiological functioning and how flexible such limits are is thus important. Here, we report on the measurements of a core foliar thermotolerance trait, T50, defined as the temperature at which the maximum quantum yield (Fv/Fm) of photosystem II declines by 50%, across nine different Malaysian Hevea brasiliensis clones. We explore the relative importance of interclonal versus intraclonal variation in T50 as well as its association with leaf and hydraulic traits. We find very low variation in T50 within individual clones (mean intraclonal coefficient of variation (CoV) of 1.26%) and little variation across clones (interclonal CoV of 2.1%). The interclonal variation in T50 was lower than for all other functional traits considered. The T50 was negatively related to leaf mass per area and leaf dry matter content, but it was not related to hydraulic traits such as embolism resistance (P50) or hydraulic safety margins (HSM50). The range of T50 observed (42.9-46.2 °C) is well above the current maximum air temperatures Tmax,obs (T50 - Tmax,obs >5.8 °C), suggesting that H. brasiliensis is likely thermally safe in this south-east Asian region of Malaysia.
    Matched MeSH terms: Plant Leaves/physiology
  5. Liu K, Mansor A, Ruppert N, Lee CY, Azman NM, Fadzly N
    Plant Signal Behav, 2019;14(8):1621245.
    PMID: 31132922 DOI: 10.1080/15592324.2019.1621245
    Rattan is an important climbing palm taxon in Malaysian tropical rain forests. Many rattan species have unique structures directly associated with certain ant species. In this study, four rattan species (Daemonorops lewisiana, Calamus castaneus, Daemonorops geniculata and Korthalsia scortechinii) were inspected and documented in a field survey concerning their relationships with several ant species. We noticed that two rattan species (D. lewisiana and C. castaneus) were more likely to be associated with ants compared to their neighbouring rattan (Plectomia griffithii). However, D. lewisiana and C. castaneus did not directly provide shelters for ant colonies, but possessed unique structures: upward-pointing spines and funnel-shaped leaves, which are equipped to collect more litter than P. griffithii. To test our litter collecting hypothesis, we measured the inclination of spines from the stem. Our results showed the presence of ant colonies in the litter-collecting rattans (D. lewisiana and C. castaneus), which was significantly higher compared to a non-litter-collecting rattan (P. griffithii). We propose a complex and novel type of adaptation (litter-collection and provision of nesting materials) for rattans, which promotes interactions between the rattan and ants through the arrangements of leaves, leaflets, and spines. In return, the rattan may benefit from ants' services, such as protection, nutrient enhancement, and pollination.
    Matched MeSH terms: Plant Leaves/anatomy & histology*; Plant Leaves/physiology
  6. Annegowda HV, Anwar LN, Mordi MN, Ramanathan S, Mansor SM
    Pharmacognosy Res, 2010 Nov;2(6):368-73.
    PMID: 21713141 DOI: 10.4103/0974-8490.75457
    This study was designed to evaluate the phenolic content and antioxidant activity of ethanolic extracts from T. catappa leaves obtained by different intervals of sonication.
    Matched MeSH terms: Plant Leaves
  7. Wong SK, Lim YY, Abdullah NR, Nordin FJ
    Pharmacognosy Res, 2011 Apr;3(2):100-6.
    PMID: 21772753 DOI: 10.4103/0974-8490.81957
    The anticancer properties of Apocynaceae species are well known in barks and roots but less so in leaves.
    Matched MeSH terms: Plant Leaves
  8. Ahmed QN, Hussain PZ, Othman AS
    Trop Life Sci Res, 2012 Dec;23(2):17-25.
    PMID: 24575230
    This study was conducted to examine the variabilities in the chronology of vegetative and reproductive development of weedy rice (Oryza spp.) in comparison with commercial varieties. Data at different growth stages of 14 weedy rice morphotypes and 4 commercial rice varieties were recorded and analysed. Plant height of all weedy rice morphotypes were observed to be significantly higher compared to the commercial varieties at every growth stages; increase in height was between 10-37 cm for weedy rice morphotype, for every 2 weeks. Initial tillering ability at 14 days after planting (DAP) was higher in weedy morphotypes, however all the commercial rice varieties produced significantly higher number of tillers throughout the rest of the vegetative phases. Correlation between plant height and tiller number detected that taller plants produce fewer tillers than shorter plants. Higher leaf area index (LAI) of all weedy morphotypes except PWR01 at early growth stages indicated the vigorous growth of the morphotypes. Weedy rice morphotypes showed a wide range of anthesis and maturity duration. Accessions from the same weedy rice morphotypes were more heterogeneous in the flowering, anthesis and maturity period than the commercial varieties. These traits enables identification of weedy rice morphotypes at their different growth stages in the field.
    Matched MeSH terms: Plant Leaves
  9. Nashriyah Mat, Nurrul Akmar Rosni, Nor Zaimah Ab Rashid, Norhaslinda Haron, Zanariah Mohd Nor, Nur Fatihah Hasan Nudin, et al.
    Sains Malaysiana, 2012;41:527-538.
    Six varieties of Ficus deltoidea Jack (Moraceae) showed leaf morphological variations through quantitative measurement on different plant parts. There were significant differences among six varieties studied by plant parts. The varieties studied include var. deltoidea Corner, var. angustifolia (Miq.) Corner, var. trengganuensis Corner, var. bilobata Corner, var. intermedia Corner, and var. kunstleri (King) Corner. The upper, middle and lower plant parts showed morphological variations in terms of leaf length, leaf width, leaf area and petiole length. Qualitative parameters also showed trends in morphological variations in terms of leaf shape, leaf base, leaf apex and leaf attachment. However, some qualitative parameters were not the recommended parameters to differentiate among varieties. On the other hand, leaf heterophylly has occurred in F. deltoidea because foliage of the young plant was different from the mature plant. Leaf heterophylly was observed in leaf shape and leaf apex parameters, whereby leaves from the lower plant parts were different from the upper and middle parts. The heterophylly in leaf shape was detected in varieties angustifolia, bilobata, intermedia and trengganuensis, whilst six varieties of F. deltoidea showed leaf apex heterophylly
    Matched MeSH terms: Plant Leaves
  10. Klomp DA, Stuart-Fox D, Das I, Ord TJ
    Biol Lett, 2014 Dec;10(12):20140776.
    PMID: 25540157 DOI: 10.1098/rsbl.2014.0776
    Populations of the Bornean gliding lizard, Draco cornutus, differ markedly in the colour of their gliding membranes. They also differ in local vegetation type (mangrove forest versus lowland rainforest) and consequently, the colour of falling leaves (red and brown/black in mangrove versus green, brown and black in rainforest). We show that the gliding membranes of these lizards closely match the colours of freshly fallen leaves in the local habitat as they appear to the visual system of birds (their probable predators). Furthermore, gliding membranes more closely resembled colours of local fallen leaves than standing foliage or fallen leaves in the other population's habitat. This suggests that the two populations have diverged in gliding membrane coloration to match the colours of their local falling leaves, and that mimicking falling leaves is an adaptation that functions to reduce predation by birds.
    Matched MeSH terms: Plant Leaves*
  11. Ravee R, Baharin A, Cho WT, Ting TY, Goh HH
    Physiol Plant, 2021 Dec;173(4):1967-1978.
    PMID: 34455610 DOI: 10.1111/ppl.13540
    Nepenthes ampullaria is a unique carnivorous tropical pitcher plant with the detritivorous capability of sequestering nutrients from leaf litter apart from being insectivorous. The changes in the protein composition and protease activity of its pitcher fluids during the early opening of pitchers (D0 and D3C) were investigated via a proteomics approach and a controlled protein depletion experiment (D3L). A total of 193 proteins were identified. Common proteins such as pathogenesis-related protein, proteases (Nep [EC:3.4.23.12], SCP [EC:3.4.16.-]), peroxidase [EC:1.11.1.7], GDSL esterase/lipase [EC:3.1.1.-], and purple acid phosphatase [EC:3.1.3.2] were found in high abundance in the D0 pitchers and were replenished in D3L samples. This reflects their importance for biological processes upon pitcher opening. Meanwhile, prey-inducible chitinases [EC:3.2.1.14] were found in D0 but not in D3C and D3L samples, which suggests their degradation in the absence of prey. Protease activity assays demonstrated the replenishment of proteases in D3L with similar levels of proteolytic activities to that of D3C samples. This supports a feedback mechanism and signaling in the molecular regulation of endogenous protein secretion, turnover, and activity in Nepenthes pitcher fluids. Furthermore, we also discovered several new enzymes (XTH [EC:2.4.1.207], PAE [EC:3.1.1.98]) with possible functions in cell wall degradation that could contribute to the detritivory habit of N. ampullaria.
    Matched MeSH terms: Plant Leaves*
  12. Rosli SZ, Mohd Adzahan N, Karim R, Mahmud Ab Rashid NK
    Molecules, 2022 Dec 30;28(1).
    PMID: 36615505 DOI: 10.3390/molecules28010311
    Pennywort (Centella asiatica) is a herbaceous vegetable that is usually served in the form of fresh-cut vegetables and consumed raw. Fresh-cut vegetables are in high demand as they offer convenience, have fresh-like quality and are potentially great for therapeutic applications. However, it could be the cause of foodborne outbreaks. Pulsed light is known as a decontamination method for minimally processed products. The aim of this study was to determine the influence of pulsed light in combination with acidic electrolysed water on the sensory, morphological changes and bioactive components in the leaves of pennywort during storage. A combination of soaking with acidic electrolysed water (AEW) at pH 2.5 and pulsed light (PL) treatment (1.5 J/cm2) was tested on the leaves of pennywort. After treatment, these leaves were refrigerated (4 ± 1 °C) for two weeks and evaluated on the basis of sensory acceptance, the visual appearance of the epidermal cell and bioactive compounds. In terms of sensorial properties, samples treated with the combined treatment were preferred over untreated samples. The combination of AEW and PL 1.5 J/cm2 was the most preferred in terms of purchasing and consumption criteria. Observations of the epidermal cells illustrated that PL treatment kept the cell structure intact. The bioactive phytocompounds found in the leaves of pennywort are mainly from the triterpene glycosides (asiaticoside, madecassoside, asiatic acid and madecassic acid) and are efficiently preserved by the combined treatment applied. In conclusion, the combination of acidic electrolysed water and pulsed light treatment is beneficial in retaining the sensory quality and bioactive compounds in the leaves of Pennywort during storage at 4 ± 1 °C.
    Matched MeSH terms: Plant Leaves/chemistry
  13. Jeffery Daim LD, Ooi TE, Ithnin N, Mohd Yusof H, Kulaveerasingam H, Abdul Majid N, et al.
    Electrophoresis, 2015 Aug;36(15):1699-710.
    PMID: 25930948 DOI: 10.1002/elps.201400608
    The basidiomycete fungal pathogen Ganoderma boninense is the causative agent for the incurable basal stem rot (BSR) disease in oil palm. This disease causes significant annual crop losses in the oil palm industry. Currently, there is no effective method for disease control and elimination, nor is any molecular marker for early detection of the disease available. An understanding of how BSR affects protein expression in plants may help identify and/or assist in the development of an early detection protocol. Although the mode of infection of BSR disease is primarily via the root system, defense-related genes have been shown to be expressed in both the root and leafs. Thus, to provide an insight into the changes in the global protein expression profile in infected plants, comparative 2DE was performed on leaf tissues sampled from palms with and without artificial inoculation of the Ganoderma fungus. Comparative 2DE revealed that 54 protein spots changed in abundance. A total of 51 protein spots were successfully identified by LC-QTOF MS/MS. The majority of these proteins were those involved in photosynthesis, carbohydrate metabolism as well as immunity and defense.
    Matched MeSH terms: Plant Leaves/microbiology; Plant Leaves/physiology
  14. Ahmadi F, Akmar Abdullah SN, Kadkhodaei S, Ijab SM, Hamzah L, Aziz MA, et al.
    Plant Physiol Biochem, 2018 Jun;127:320-335.
    PMID: 29653435 DOI: 10.1016/j.plaphy.2018.04.004
    Oil palm is grown in tropical soils with low bioavailability of Pi. A cDNA clone specifically expressed under phosphate-starvation condition in oil palm roots was identified as a high-affinity phosphate transporter (EgPHT1). The deduced amino acid sequence has 6 transmembrane domains each at the N- and C-termini separated by a hydrophilic linker. Comparison of promoter motifs within 1500 bp upstream of ATG of 10 promoters from high- and low-affinity phosphate transporter from both dicots and monocots including EgPHT1 was performed. The EgPHT1 promoter was fused to β-glucuronidase (GUS) reporter gene and its activity was analysed by histochemical and fluorometric GUS assays in transiently transformed oil palm tissues and T3 homozygous transgenic Arabidopsis plants. In response to Pi-starvation, no GUS activity was detected in oil palm leaves, but a strong inducible activity was observed in the roots (1.4 times higher than the CaMV35S promoter). GUS was specifically expressed in transgenic Arabidopsis roots under Pi deficiency and starvation of the other macronutrients (N and K) did not induce GUS activity. Eight motifs including ABRERATCAL (abscisic-acid responsive), RHERPATEXPA7 (root hair-specific), SURECOREATSULTR11 (sulfur-deficiency response), LTRECOREATCOR15 (temperature-stress response), MYB2CONSENSUSAT and ACGTATERD1 (water-stress response) as well as two novel motifs, 3 (TAAAAAAA) and 26 (TTTTATGT) identified through pattern discovery, occur at significantly higher frequency (p 
    Matched MeSH terms: Plant Leaves/genetics; Plant Leaves/metabolism
  15. Fadzly N, Zuharah WF, Mansor A, Zakaria R
    Plant Signal Behav, 2016 07 02;11(7):e1197466.
    PMID: 27315145 DOI: 10.1080/15592324.2016.1197466
    Macaranga bancana is considered as a successful pioneer plant species. Usually found in disturbed and open areas, most of the current research focused on its relations with ants. One of the unique feature of the plants is that the seedling leaves are red, resembling and almost matching the background. Using a portable spectrometer, we measured the color reflectance of M. bancana seedlings (less than 20 cm in height). We also measured the leaf litter reflectance, adult M. bancana leaves and also seedlings of several other species found in the vicinity of M. bancana seedlings. The reflectances of M. bancana seedlings are very similar to that of the leaf litter background. We suggest that this cryptic coloration is crucial during the early stages of the plant when it still cannot rely on the protection of ants.
    Matched MeSH terms: Plant Leaves/metabolism; Plant Leaves/physiology
  16. Ahmad Loti NN, Mohd Noor MR, Chang SW
    J Sci Food Agric, 2021 Jul;101(9):3582-3594.
    PMID: 33275806 DOI: 10.1002/jsfa.10987
    BACKGROUND: Chili is one of the most important and high-value vegetable crops worldwide. However, pest and disease infections are among the main limiting factors in chili cultivation. These diseases cannot be eradicated but can be handled and monitored to mitigate the damage. Hence, the use of an automated identification system based on images will promote quick identification of chili disease. The features extracted from the images are of utmost importance to develop such an accurate identification system.

    RESULTS: In this research, chili pest and disease features extracted using the traditional approach were compared with features extracted using a deep-learning-based approach. A total of 974 chili leaf images were collected, which consisted of five types of diseases, two types of pest infestations, and a healthy type. Six traditional feature-based approaches and six deep-learning feature-based approaches were used to extract significant pests and disease features from the chili leaf images. The extracted features were fed into three machine learning classifiers, namely a support vector machine (SVM), a random forest (RF), and an artificial neural network (ANN) for the identification task. The results showed that deep learning feature-based approaches performed better than the traditional feature-based approaches. The best accuracy of 92.10% was obtained with the SVM classifier.

    CONCLUSION: A deep-learning feature-based approach could capture the details and characteristics between different types of chili pests and diseases even though they possessed similar visual patterns and symptoms. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Plant Leaves/parasitology; Plant Leaves/chemistry*
  17. Poobathy R, Zakaria R, Murugaiyah V, Subramaniam S
    PLoS One, 2018;13(4):e0195642.
    PMID: 29649288 DOI: 10.1371/journal.pone.0195642
    Anoectochilus sp. and Ludisia discolor are known as Jewel orchids. Both species are terrestrial wild orchids that grow in shaded areas of forests. The Jewel orchids are renowned for the beauty of their leaves, which are dark-green laced with silvery or golden veins. The orchids are used as a cure in various parts of Asia. Overharvesting and anthropogenic disturbances threaten the existence of the Jewel orchids in the wild, necessitating human intervention in their survival. An understanding of the structure and adaptations of a plant may assist in its survival when propagated outside of its habitat. In this study, ex vitro leaves of Anoectochilus sp. and L. discolor were subjected to freehand sectioning, and then inspected through brightfield and fluorescence microscopy. The study indicated that all parts of both plants presented typical monocotyledonous characteristics except the leaves. The leaves displayed dorsiventrality with distinct palisade and spongy mesophyll layers. The spongy mesophyll layer contained cells which fluoresced a bright red when exposed to ultraviolet, blue, and green light wavelengths, hinting at the presence of anthocyanins for photoprotection. Cyanidin was detected in the leaves of L. discolor, as enumerated through high performance liquid chromatography (HPLC). The observations indicated that Anoectochilus sp. and L. discolor are well-adapted to live under shaded conditions with minimal exposure to light.
    Matched MeSH terms: Plant Leaves/metabolism; Plant Leaves/chemistry
  18. Liu K, Mansor A, Ruppert N, Fadzly N
    Plant Signal Behav, 2020 10 02;15(10):1795393.
    PMID: 32693670 DOI: 10.1080/15592324.2020.1795393
    Rattan spines are most often regarded as an identification trait and perhaps as a physical protection structure. In this study, we study the spinescence traits from five different species rattan: Daemonorops lewisiana, Daemonorops geniculata, Calamus castaneus, Plectomia griffithii, and Korthalsia scortechinii. We tested length, width, angle, strength, spine density, cross-section surface, spine color, and leaf trichomes (only for D. lewisiana, C. castaneus and D. geniculata). We also tested whether the spines were capable of deterring small climbing mammals (for Plectomia griffithii and Calamus castaneus) by using a choice selection experiment. Due to a variety of spine traits, we could not categorize whether any species is more or less spinescent than the others. We suggest that spines have a much more significant role than merely as a physical defense and work together with other rattan characteristics. This is also evidenced by our choice selection experiment, in which the spines on a single stem donot deter small climbing mammals. However, this is a work in progress, and we have outlined several alternative methods to be used in future work.
    Matched MeSH terms: Plant Leaves/anatomy & histology; Plant Leaves/physiology
  19. Kenzo T, Ichie T, Yoneda R, Kitahashi Y, Watanabe Y, Ninomiya I, et al.
    Tree Physiol, 2004 Oct;24(10):1187-92.
    PMID: 15294766
    Photosynthetic rate, nitrogen concentration and morphological properties of canopy leaves were studied in 18 trees, comprising five dipterocarp species, in a tropical rain forest in Sarawak, Malaysia. Photosynthetic rate at light saturation (Pmax) differed significantly across species, varying from 7 to 18 micro mol m(-2) s(-1). Leaf nitrogen concentration and morphological properties, such as leaf blade and palisade layer thickness, leaf mass per area (LMA) and surface area of mesophyll cells per unit leaf area (Ames/A), also varied significantly across species. Among the relationships with leaf characteristics, Pmax had the strongest correlation with leaf mesophyll parameters, such as palisade cell layer thickness (r2 = 0.76, P < 0.001) and Ames/A (r2 = 0.73, P < 0.001). Leaf nitrogen concentration and Pmax per unit area also had a significant but weaker correlation (r2 = 0.46, P < 0.01), whereas Pmax had no correlation, or only weakly significant correlations, with leaf blade thickness and LMA. Shorea beccariana Burck, which had the highest P(max) of the species studied, also had the thickest palisade layer, with up to five or more layers. We conclude that interspecific variation in photosynthetic capacity in tropical rain forest canopies is influenced more by leaf mesophyll structure than by leaf thickness, LMA or leaf nitrogen concentration.
    Matched MeSH terms: Plant Leaves/anatomy & histology; Plant Leaves/physiology*
  20. Liu K, Fadzly N, Mansor A, Zakaria R, Ruppert N, Lee CY
    Plant Signal Behav, 2017 Oct 03;12(10):e1371890.
    PMID: 28841358 DOI: 10.1080/15592324.2017.1371890
    Amorphophallus bufo is a rarely studied plant in Malaysian tropical rainforests. We measured the spectral reflectance of different developmental stages of A. bufo (seedlings, juveniles and adults), background soil/ debris and leaves from other neighboring plant species. Results show that the leaves of A. bufo seedling have a similar reflectance curve as the background soil and debris. Adults and juveniles of A. bufo are similar to other neighboring plants' leaf colors. We hypothesize that the cryptic coloration of A. bufo seedlings plays an important role in camouflage and that the numerous black spots on the surface of the petioles and rachises, may serve as a defensive mimicry against herbivores.
    Matched MeSH terms: Plant Leaves/metabolism*; Plant Leaves/parasitology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links