Displaying publications 1 - 20 of 502 in total

Abstract:
Sort:
  1. Akinboro A, Bin Mohamed K, Asmawi MZ, Yekeen TA
    Acta Biochim. Pol., 2014;61(4):779-85.
    PMID: 25520963
    Natural plant extracts offer a promising hope in the prevention/treatment of cancer arising from genetic mutations. This study evaluated in vitro and in vivo mutagenic and antimutagenic effects of aqueous fraction of Myristica fragrans (AFMF) leaves on TA100 strain of Salmonella typhimurium and Mus musculus (Male Swiss albino mice), respectively. The antioxidant activity of AFMF against 2,2-diphenyl-1-picrylhydrazyl (DPPH), total phenolic and flavonoid contents were determined, followed by its phytochemical elucidation using the Ultra Performance Liquid Chromatography technique (UPLC). The mutagenicity of AFMF at 4, 20, 50, 100, 200, 500, and 1000 µg/well was <2.0 in S. typhimurium and the induced micronucleated polychromatic and normochromatic erythrocytes at 500, 1000, 2000, and 4000 mg/kg were not significantly different from the negative control (p≥0.05). The mutagenic activity of benzo[a]pyrene and cyclophosphamide was significantly suppressed above 50.0% throughout the tested concentrations. Fifty percent of the free radicals from DPPH were scavenged by AFMF at 0.11 mg/ml. Total phenolic and flavonoid contents of AFMF were 51.0 mg GAE/g and 27 mg QE/g, respectively. Rutin was elucidated by the UPLC technique, and thereby suspected to be the phytochemical responsible for the observed antimutagenic activity. Thus far, AFMF seems to contain a promising chemotherapeutic agent for the prevention of genetic damage that is crucial for cancer development.
    Matched MeSH terms: Plant Leaves/chemistry*
  2. Shu YH, Yuan HH, Xu MT, Hong YT, Gao CC, Wu ZP, et al.
    Acta Pharmacol Sin, 2021 May;42(5):780-790.
    PMID: 32814819 DOI: 10.1038/s41401-020-0492-5
    Guangsangon E (GSE) is a novel Diels-Alder adduct isolated from leaves of Morus alba L, a traditional Chinese medicine widely applied in respiratory diseases. It is reported that GSE has cytotoxic effect on cancer cells. In our research, we investigated its anticancer effect on respiratory cancer and revealed that GSE induces autophagy and apoptosis in lung and nasopharyngeal cancer cells. We first observed that GSE inhibits cell proliferation and induces apoptosis in A549 and CNE1 cells. Meanwhile, the upregulation of autophagosome marker LC3 and increased formation of GFP-LC3 puncta demonstrates the induction of autophagy in GSE-treated cells. Moreover, GSE increases the autophagy flux by enhancing lysosomal activity and the fusion of autophagosomes and lysosomes. Next, we investigated that endoplasmic reticulum (ER) stress is involved in autophagy induction by GSE. GSE activates the ER stress through reactive oxygen species (ROS) accumulation, which can be blocked by ROS scavenger NAC. Finally, inhibition of autophagy attenuates GSE-caused cell death, termed as "autophagy-mediated cell death." Taken together, we revealed the molecular mechanism of GSE against respiratory cancer, which demonstrates great potential of GSE in the treatment of representative cancer.
    Matched MeSH terms: Plant Leaves/chemistry
  3. Nadri MH, Salim Y, Basar N, Yahya A, Zulkifli RM
    PMID: 25371571
    BACKGROUND: The ethyl acetate and chloroform extracts of stems, leaves and fruits of Phaleria macrocarpa were screened for their antioxidant capacity and tyrosinase inhibition properties.

    MATERIAL AND METHOD: The total phenolic content (TPC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and ferric-ion reducing power (FRAP) were used to evaluate their antioxidant capacity. Tyrosinase inhibition effect was measured using mushroom tyrosinase inhibition assay.

    RESULT: Ethyl acetate extract of P. macrocarpa's stem exhibited highest total phenolic content, DPPH free radical scavenging and ferric reducing power. Meanwhile, chloroform extracts of leaves and fruits demonstrated potent anti-tyrosinase activities as compared to a well-known tyrosinase inhibitor, kojic acid.

    CONCLUSION: Since chloroform extracts of leaves and fruits have low antioxidant capacities, the tyrosinase inhibition effect observed are antioxidant independent. This study suggests direct tyrosinase inhibition by chloroform extracts of Phaleria macrocarpa.

    Matched MeSH terms: Plant Leaves/chemistry
  4. Rahim SM, Taha EM, Al-janabi MS, Al-douri BI, Simon KD, Mazlan AG
    PMID: 25435631
    BACKGROUND: Cymbopogon citratus (Poaceae) a tropical perennial herb plant that is widely cultivated to be eaten either fresh with food or dried in tea or soft drink has been reported to possess a number of medicinal and aromatic properties. This study aimed at evaluating the protective effects of C. citratus aqueous extract against liver injury induced by hydrogen peroxide (H2O2), in male rats.

    MATERIALS AND METHODS: Twenty-five rats were randomly divided into five different groups of five animals in each group; (1) Control. (2) Received H2O2 (0.5%) with drinking water. (3), and (4) received H2O2 and C. citratus (100 mg·kg(-1) b wt), vitamin C (250 mg·kg(-1) b wt) respectively. (5), was given C. citratus alone. The treatments were administered for 30 days. Blood samples were collected and serum was used for biochemical assay including liver enzymes activities, total protein, total bilirubin and malonaldehyde, glutathione in serum and liver homogenates. Liver was excised and routinely processed for histological examinations.

    RESULTS: C. citratus attenuated liver damage due to H2O2 administration as indicated by the significant reduction (p<0.05), in the elevated levels of ALT, AST, ALP, LDH, TB, and MDA in serum and liver homogenates; increase in TP and GSH levels in serum and liver homogenates; and improvement of liver histo-pathological changes. These effects of the extract were similar to that of vitamin C which used as antioxidant reference.

    CONCLUSION: C. citratus could effectively ameliorate H2O2-induced oxidative stress and prevent liver injury in male rats.

    Matched MeSH terms: Plant Leaves/chemistry
  5. Ngaha Njila MI, Massoma Lembè D, Koloko BL, Yong Meng G, Ebrahimi M, Awad EA, et al.
    Andrologia, 2019 Oct;51(9):e13359.
    PMID: 31353623 DOI: 10.1111/and.13359
    The effect of the methanolic extract of Alchornea cordifolia leaves on the fertility of senescent male rats was assessed in this study. 40 rats received daily distilled water, testosterone, 200 and 400 mg/kg of extract of Alchornea cordifolia. The reproductive organs weight, the gonadotropins, testosterone and cholesterol level, the sperm parameters, histology of the testes and epididymis were assessed. The weight of testes and prostate (400 mg/kg) significantly increased (p 
    Matched MeSH terms: Plant Leaves/chemistry
  6. Kirton LG
    Ann Trop Med Parasitol, 2005 Oct;99(7):695-714.
    PMID: 16212803
    Citridiol is an extract of the leaves of Corymbia citriodora (Myrtaceae), the lemon eucalyptus, and mostly consists of p-menthane-3,8-diol isomers. The effectiveness of this extract as a repellent against land leeches of the genus Haemadipsa (Haemadipsidae), primarily H. sylvestris, was tested in the laboratory and field, in Peninsular Malaysia. The formulation tested, Mosi-guard Natural spray, contained 40% (w/w) Citridiol in a base of ethanol, water and isopropanol. In the laboratory test, specimens of H. sylvestris that were placed within moist, untreated arenas enclosed by treated paper rings made numerous attempts to cross the rings but were prevented or delayed from crossing over, in a dose-dependent manner. Mortality was high among the leeches that attempted to cross over the paper rings that had been sprayed to saturation point but low among the leeches that attempted to cross over paper rings that had only been partially treated, with a droplet-spray. The field study was carried out using indices that were formulated to reflect the severity of leech attack and the degree of repellency. Heavy or moderate spraying of footwear and trouser legs (tucked into socks) not only gave complete protection against bites by H. sylvestris and H. picta but also provided high enough repellency to keep the treated footwear virtually free of leeches. Even a light spray greatly reduced the numbers of leeches on footwear and delayed their progression toward biting the test subjects, although it failed to prevent bites completely. There was no decline in the repellency of the Citridiol when hourly assessments were made over a 6-h test period in the field. The results of the study show that Citridiol is highly repellent as well as toxic to leeches, and can be effectively used to prevent leech bites in the field.
    Matched MeSH terms: Plant Leaves/chemistry
  7. Strout G, Russell SD, Pulsifer DP, Erten S, Lakhtakia A, Lee DW
    Ann Bot, 2013 Oct;112(6):1141-8.
    PMID: 23960046 DOI: 10.1093/aob/mct172
    BACKGROUND AND AIMS: Blue-green iridescence in the tropical rainforest understorey sedge Mapania caudata creates structural coloration in its leaves through a novel photonic mechanism. Known structures in plants producing iridescent blues consist of altered cellulose layering within cell walls and in special bodies, and thylakoid membranes in specialized plastids. This study was undertaken in order to determine the origin of leaf iridescence in this plant with particular attention to nano-scale components contributing to this coloration.

    METHODS: Adaxial walls of leaf epidermal cells were characterized using high-pressure-frozen freeze-substituted specimens, which retain their native dimensions during observations using transmission and scanning microscopy, accompanied by energy-dispersive X-ray spectroscopy to identify the role of biogenic silica in wall-based iridescence. Biogenic silica was experimentally removed using aqueous Na2CO3 and optical properties were compared using spectral reflectance.

    KEY RESULTS AND CONCLUSIONS: Blue iridescence is produced in the adaxial epidermal cell wall, which contains helicoid lamellae. The blue iridescence from cell surfaces is left-circularly polarized. The position of the silica granules is entrained by the helicoid microfibrillar layers, and granules accumulate at a uniform position within the helicoids, contributing to the structure that produces the blue iridescence, as part of the unit cell responsible for 2 ° Bragg scatter. Removal of silica from the walls eliminated the blue colour. Addition of silica nanoparticles on existing cellulosic lamellae is a novel mechanism for adding structural colour in organisms.

    Matched MeSH terms: Plant Leaves/chemistry
  8. Mohamad Rosdi MN, Mohd Arif S, Abu Bakar MH, Razali SA, Mohamed Zulkifli R, Ya'akob H
    Apoptosis, 2018 01;23(1):27-40.
    PMID: 29204721 DOI: 10.1007/s10495-017-1434-7
    Annona muricata Linn or usually identified as soursop is a potential anticancer plant that has been widely reported to contain valuable chemopreventive agents known as annonaceous acetogenins. The antiproliferative and anticancer activities of this tropical and subtropical plant have been demonstrated in cell culture and animal studies. A. muricata L. exerts inhibition against numerous types of cancer cells, involving multiple mechanism of actions such as apoptosis, a programmed cell death that are mainly regulated by Bcl-2 family of proteins. Nonetheless, the binding mode and the molecular interactions of the plant's bioactive constituents have not yet been unveiled for most of these mechanisms. In the current study, we aim to elucidate the binding interaction of ten bioactive phytochemicals of A. muricata L. to three Bcl-2 family of antiapoptotic proteins viz. Bcl-2, Bcl-w and Mcl-1 using an in silico molecular docking analysis software, Autodock 4.2. The stability of the complex with highest affinity was evaluated using MD simulation. We compared the docking analysis of these substances with pre-clinical Bcl-2 inhibitor namely obatoclax. The study identified the potential chemopreventive agent among the bioactive compounds. We also characterized the important interacting residues of protein targets which involve in the binding interaction. Results displayed that anonaine, a benzylisoquinoline alkaloid, showed a high affinity towards the Bcl-2, thus indicating that this compound is a potent inhibitor of the Bcl-2 antiapoptotic family of proteins.
    Matched MeSH terms: Plant Leaves/chemistry
  9. Hew CS, Gam LH
    Appl Biochem Biotechnol, 2011 Dec;165(7-8):1577-86.
    PMID: 21938418 DOI: 10.1007/s12010-011-9377-x
    Gynura procumbens (Lour.) Merr. is a traditionally used medicinal plant to decrease cholesterol level, reduce high blood pressure, control diabetics, and for treatment of cancer. In our present study, a proteomic approach was applied to study the proteome of the plant that had never analyzed before. We have identified 92 abundantly expressed proteins from the leaves of G. procumbens (Lour.) Merr. Amongst the identified proteins was miraculin, a taste-masking agent with high commercial value. Miraculin made up ∼0.1% of the total protein extracted; the finding of miraculin gave a great commercial value to G. procumbens (Lour.) Merr. as miraculin's natural source is limited while the production of recombinant miraculin faced challenges of not being able to exhibit the taste-masking effect as in the natural miraculin. We believe the discovery of miraculin in G. procumbens (Lour.) Merr., provides commercial feasibility of miraculin in view of the availability of G. procumbens (Lour.) Merr. that grow wildly and easily in tropical climate.
    Matched MeSH terms: Plant Leaves/chemistry
  10. Onoja E, Wahab RA
    Appl Biochem Biotechnol, 2020 Oct;192(2):585-599.
    PMID: 32495234 DOI: 10.1007/s12010-020-03348-0
    Strategies to immobilize the individual enzymes are crucial for enhancing catalytic applicability and require a controlled immobilization process. Herein, protocol for immobilizing Candida rugosa lipase (CRL) onto modified magnetic silica derived from oil palm leaves ash (OPLA) was optimized for the effects of concentration of CRL, immobilization time, and temperature, monitored by titrimetric and spectrometric methods. XRD and TGA-DTG spectrometric observations indicated that OPLA-silica was well coated over magnetite (SiO2-MNPs) and CRLs were uniformly bound by covalent bonds to SiO2-MNPs (CRL/Gl-A-SiO2-MNPs). The optimized immobilization protocol showed that in the preparation of CRL/Gl-A-SiO2-MNPs, CRL with 68.3 mg/g protein loading and 74.6 U/g specific activity was achieved using 5 mg/mL of CRL, with an immobilization time of 12 h at 25 °C. The present work also demonstrated that acid-pretreated OPLA is a potential source of renewable silica, envisioning its applicability for practical use in enzymatic catalysis on solid support.
    Matched MeSH terms: Plant Leaves/chemistry*
  11. Mohammad Noor HS, Ismail NH, Kasim N, Mediani A, Mohd Zohdi R, Ali AM, et al.
    Appl Biochem Biotechnol, 2020 Sep;192(1):1-21.
    PMID: 32215848 DOI: 10.1007/s12010-020-03304-y
    Patients are turning into herbs for the management of diabetes, which cause increasing in the demand of plant-based alternative medicines. Ficus deltoidea or locally known as "Mas Cotek" in Malaysia is a famous herbal plant. However, many varieties of F. deltoidea existed with varied antidiabetic activities inspire us to evaluate in vivo antidiabetic activity of the most available varieties of F. deltoidea. Therefore, antihyperglycemic effect of different varieties of F. deltoidea at dose 250 mg/kg was evaluated on streptozotocin-nicotinamide-induced diabetic rats and further assessed their urinary metabolites using proton nuclear magnetic resonance (1H-NMR). The hyperglycemic blood level improved towards normoglycemic state after 30 days of treatment with standardized extracts of F. deltoidea var. trengganuensis, var. kunstleri, and var. intermedia. The extracts also significantly managed the biochemical parameters in diabetic rats. Metabolomics results showed these varieties were able to manage the altered metabolites of diabetic rats by shifting some of the metabolites back to their normal state. This knowledge might be very important in suggesting the use of these herbs in long-term treatment for diabetes. The most potential variety can be recommended, which may be useful for further pharmacological studies and herbal authentication processes.
    Matched MeSH terms: Plant Leaves/chemistry
  12. Abdul Ghani ZDF, Ab Rashid AH, Shaari K, Chik Z
    Appl Biochem Biotechnol, 2019 Oct;189(2):690-708.
    PMID: 31111377 DOI: 10.1007/s12010-019-03042-w
    The present studies are to evaluate the ability of PB to induce weight loss and urine metabolite profile of Piper betle L. (PB) leaf extracts using metabolomics approach. Dried PB leaves were extracted with ethanol 70% and the studies were performed in different groups of rats fed with high fat (HFD) and normal diet (ND). Then, fed with the PB extract with 100, 300, and 500 mg/kg and two negative control groups given water (WTR). The body weights were monitored and evaluated. Urine was collected and 1H NMR-based metabolomics approach was used to detect the metabolite changes. Results showed that PB-treated group demonstrated inhibition of body weight gain. The trajectory of urine metabolites showed that PB-treated group gave the different distribution from week 12 to 16 compared with the control groups. In 1H NMR metabolomic approach analysis, the urine metabolites gave the best separation in principle component 1 and 3, with 40.0% and 9.56% of the total variation. Shared and unique structures (SUS) plot model showed that higher concentration PB-treated group was characterized by high level of indole-3-acetate, aspartate, methanol, histidine, and creatine, thus caused an increased the metabolic function and maintaining the body weight of the animals treated.
    Matched MeSH terms: Plant Leaves/chemistry*
  13. R R
    Appl Biochem Biotechnol, 2022 Jan;194(1):176-186.
    PMID: 34762268 DOI: 10.1007/s12010-021-03742-2
    Hellenia speciosa (J.Koenig) S.R. Dutta is a plant species belonging to the family Costaceae. It is widely distributed in China, India, Malaysia, Indonesia, tropical, and subtropical Asia. In Ayurveda, the rhizome of this plant has been extensively used to treat fever, rash, asthma, bronchitis, and intestinal worms. The objective of the present study was to investigate the phytochemical constituents of the leaf of Hellenia speciosa using gas chromatography and mass spectroscopy analysis (GC-MS). The GC-MS analysis revealed the presence of 17 phytochemical components in the ethanolic leaf extract of Hellenia speciosa. The prevailing bioactive compounds present in Hellenia speciosa were thymol (RT-10.019; 3.59%), caryophyllene (RT-11.854; 0.62%), caryophyllene oxide (RT-13.919; 1.34%), artumerone (RT-14.795; 1.35%), hexadecanoic acid methyl ester (RT-17.536; 2.77%), 9,12-octadecanoic acid methyl ester (RT-19.163; 1.35%), squalene (RT-24.980; 1.19%), piperine (RT-25.745; 3.11%), beta tocopherol (RT-26.681; 2.88%), vitamin E (RT-27.290; 2.64%), progesterone (RT-29.608; 3.18%), caparratriene (RT-29.861; 9.72%), and testosterone (RT-30.73; 5.81%). The compounds were identified by comparing their retention time and peak area with that of the literature and by interpretation of mass spectra. The results and findings of the present study suggest that the plant leaf can be used as a valuable source in the field of herbal drug discovery. The presence of bioactive compounds justifies the use of plant leaves for treating various diseases with fewer side effects and recommended the plant of pharmaceutical importance. However, further studies are needed to undertake its bioactivity and toxicity profile.
    Matched MeSH terms: Plant Leaves/chemistry*
  14. Luthfi AAI, Manaf SFA, Illias RM, Harun S, Mohammad AW, Jahim JM
    Appl Microbiol Biotechnol, 2017 Apr;101(8):3055-3075.
    PMID: 28280869 DOI: 10.1007/s00253-017-8210-z
    Due to the world's dwindling energy supplies, greater thrust has been placed on the utilization of renewable resources for global succinate production. Exploration of such biotechnological route could be seen as an act of counterbalance to the continued fossil fuel dominance. Malaysia being a tropical country stands out among many other nations for its plenty of resources in the form of lignocellulosic biomass. To date, oil palm frond (OPF) contributes to the largest fraction of agricultural residues in Malaysia, while kenaf, a newly introduced fiber crop with relatively high growth rate, holds great potential for developing sustainable succinate production, apart from OPF. Utilization of non-food, inexhaustible, and low-cost derived biomass in the form of OPF and kenaf for bio-based succinate production remains largely untapped. Owing to the richness of carbohydrates in OPF and kenaf, bio-succinate commercialization using these sources appears as an attractive proposition for future sustainable developments. The aim of this paper was to review some research efforts in developing a biorefinery system based on OPF and kenaf as processing inputs. It presents the importance of the current progress in bio-succinate commercialization, in addition to describing the potential use of different succinate production hosts and various pretreatments-saccharifications under development for OPF and kenaf. Evaluations on the feasibility of OPF and kenaf as fermentation substrates are also discussed.
    Matched MeSH terms: Plant Leaves/chemistry
  15. Siti HN, Kamisah Y, Mohamed S, Jaarin K
    Appl Physiol Nutr Metab, 2019 04;44(4):373-380.
    PMID: 30216735 DOI: 10.1139/apnm-2018-0175
    The prolonged intake of diet containing repeatedly heated vegetable oil can cause hypertension in the long run.
    In this study, the effects of citrus leaf extract (CLE) supplementation on vascular reactivity, plasma nitrite, and aortic structure in hypertensive rats were investigated by the consumption of repeatedly heated vegetable oil [corrected]. Male Sprague Dawley rats (n = 56) were divided into 7 groups corresponding to the respective diets. For 16 weeks, 1 group was given standard rat chow (control) while other groups were given diets containing 15% w/w of palm oil, fresh palm oil (FPO), palm oil heated 5 times (5HPO), and palm oil heated 10 times (10HPO), with or without the incorporation of 0.15% w/w CLE (FPO+CLE, 5HPO+CLE, or 10HPO+CLE). Plasma nitrite levels were measured before and at 16 weeks of treatment. After 16 weeks, the rats were sacrificed and aortae were harvested for measuring vascular reactivity and for microscopic study. CLE supplementation had significantly reduced the loss of plasma nitrite and attenuated the vasoconstriction response to phenylephrine in the 5HPO group but not in the 10HPO group. However, CLE had no significant effect on the vasorelaxation response to acetylcholine and sodium nitroprusside. The elastic lamellae of tunica media in 5HPO, 10HPO, and 10HPO+CLE groups appeared disorganised and disrupted. Obtained findings suggested that CLE was able to enhance nitric oxide bioavailability that might dampen the vasoconstriction effect of phenylephrine.
    Matched MeSH terms: Plant Leaves/chemistry*
  16. Qian L, Su W, Wang Y, Dang M, Zhang W, Wang C
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):1173-1180.
    PMID: 30942109 DOI: 10.1080/21691401.2018.1549064
    Cervical cancer is the third most common highest mortality in women worldwide. The use of standard chemotherapeutic drugs against cervical cancer patients received several side effects. Therefore, we focused phytoconsituents-mediated synthesis of gold nanoparticles (AuNPs) considered as greatest attention in the treatment of cervical cancer. In this present study, we reported that green synthesis of AuNPs by using with Alternanthera Sessilis aqueous extract. Synthesis of AuNPs were characterized by UV visible spectroscopy, energy dispersive X-ray (EDX), selected area diffraction pattern (SAED), Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM) and atomic force microscope. Synthesized AuNPs confirmed by the UV absorption maximum at 535 and crystal structure of gold AuNPs was further confirmed by EDX and SAED. TEM and atomic force microscopy images show the size and morphological distribution of nanoparticles. FTIR analysis was confirmed the hydroxyl groups, amine and alkaline groups of biomolecules are present in the AuNPs. Moreover, AuNPs induce cytotoxicity in cervical cancer cells and also induce apoptosis through modulating intrinsic apoptotic mechanisms in cervical cancer cells. This green synthesis of AuNPs from Alternanthera sessilis approach was easy, large scaled up and eco-friendly.
    Matched MeSH terms: Plant Leaves/chemistry*
  17. Zhang X, Tan Z, Jia K, Zhang W, Dang M
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):2171-2178.
    PMID: 31159596 DOI: 10.1080/21691401.2019.1620249
    Nanomedicine is a rapidly emerging field and is reported to be a promising tool for treating various diseases. Green synthesized nanoparticles are documented to possess a potent anticancer effect. Rabdosia rubescens is a Chinese plant which is also one of the components of PC-SPES and used to treat prostate cancer. In the present study, we synthesized the gold nanoparticles from R. rubescens (RR-AuNP) and analyzed its anticancer activity against the lung carcinoma A549 cell lines. Since lung cancer is reported to be with increased morbidity and decreased survival rate. The biosynthesized RR-AuNP were confirmed using UV-Visible spectrophotometer, size and shape of RR-AuNP were assessed by DLS, TEM and EDX. The biomolecules present in RR-AuNP and its topographical structure were detected using FTIR, SAED and AFM analysis. MTT assay was performed to detect the IC50 dose of RR-AuNP and its apoptotic effect was assessed by detecting the caspases activation, ROS generation. The anticancer effect of RR-AuNP was confirmed by DAPI staining, TUNEL assay and its molecular mechanism were confirmed by assessing the apoptotic signalling molecules protein expression. Our results illustrate that RR-AuNP showed a strong absorption peak at 550 nm and the RRAuNP were polydispersed nanospheres with size of 130 nm. RR-AuNP IC50 dose against A549 lung carcinoma cell line was detected to be at 25 µg/ml. The results of DAPI staining, TUNEL and immunoblotting analysis confirms both the 25 µg/ml and 50 µg/ml of RR-AuNP possess potent anticancer and apoptotic effect, suggesting that RR-AuNP that it may be a persuasive molecule to treat lung cancer.
    Matched MeSH terms: Plant Leaves/chemistry
  18. Yakop F, Abd Ghafar SA, Yong YK, Saiful Yazan L, Mohamad Hanafiah R, Lim V, et al.
    Artif Cells Nanomed Biotechnol, 2018;46(sup2):131-139.
    PMID: 29561182 DOI: 10.1080/21691401.2018.1452750
    PURPOSE: The purpose of this study was to investigate apoptotic activity of silver nanoparticle Clinacanthus nutans (AgNps-CN) towards HSC-4 cell lines (oral squamous cell carcinoma cell lines).

    METHODS: Methods involved were MTT assay (cytotoxic activity), morphological cells analysis, flow cytometry and cell cycle analysis and western blot.

    RESULTS: MTT assay revealed IC50 concentration was 1.61 µg/mL, 3T3-L1 cell lines were used to determine whether AgNps-CN is cytotoxic to normal cells. At the highest concentration (3 µg/mL), no cytotoxic activity has been observed. Flow cytometry assay revealed AgNps-CN caused apoptosis effects towards HSC-4 cell lines with significant changes were observed at G1 phase when compared with untreated cells. Morphological cells analysis revealed that most of the cells exhibit apoptosis characteristics rather than necrosis. Protein study revealed that ratio of Bax/Bcl-2 increased mainly due to down-regulation of Bcl-2 expression.

    CONCLUSION: AgNps-CN have shown potential in inhibiting HSC-4 cell lines. IC50 was low compared to few studies involving biosynthesized of silver nanoparticles. Apoptosis effects were shown towards HSC-4 cell lines by the increased in Bax/Bcl-2 protein ratio. Further study such as PCR or in vivo studies are required.

    Matched MeSH terms: Plant Leaves/chemistry*
  19. Amid A, Wan Chik WD, Jamal P, Hashim YZ
    Asian Pac J Cancer Prev, 2012;13(12):6319-25.
    PMID: 23464452
    We previously found cytotoxic effects of tomato leaf extract (TLE) on the MCF-7 breast cancer cell line. The aim of this study was to ascertain the molecular mechanisms associated with the usage of TLE as an anticancer agent by microarray analysis using mRNA from MCF-7 breast cancer cells after treatment with TLE for 1 hr and 48 hrs. Approximately 991 genes out of the 30,000 genes in the human genome were significantly (p<0.05) changed after the treatment. Within this gene set, 88 were significantly changed between the TLE treated cells and the untreated MCF-7 cells (control cells) with a cut-off fold change >2.00. In order to focus on genes that were involved in cancer cell growth, only twenty-nine genes were selected, either down-regulated or up-regulated after treatment with TLE. Microarray assay results were confirmed by analyzing 10 of the most up and down regulated genes related to cancer cells progression using real-time PCR. Treatment with TLE induced significant up-regulation in the expression of the CRYAB, PIM1, BTG1, CYR61, HIF1-α and CEBP-β genes after 1 hr and 48 hrs, whereas the TXNIP and THBS1 genes were up-regulated after 1 hr of treatment but down-regulated after 48 hrs. In addition both the HMG1L1 and HIST2H3D genes were down-regulated after 1 hr and 48 hrs of treatment. These results demonstrate the potent activity of TLE as an anticancer agent.
    Matched MeSH terms: Plant Leaves/chemistry*
  20. Haron NH, Md Toha Z, Abas R, Hamdan MR, Azman N, Khairuddean M, et al.
    Asian Pac J Cancer Prev, 2019 Feb 26;20(2):601-609.
    PMID: 30806066
    Objective: This study was conducted to investigate the antiproliferative activity of extracts of Clinacanthus nutans
    leaves against human cervical cancer (HeLa) cells. Methods: C. nutans leaves were subjected to extraction using 80%
    methanol or water. The methanol extract was further extracted to obtain hexane, dichloromethane (DCM), and aqueous
    fractions. The antiproliferative activity of the extracts against HeLa cells was determined. The most cytotoxic extract
    was furthered analyzed by apoptosis and cell cycle assays, and the phytochemical constituents were screened by gas
    chromatography-mass spectrometry (GC-MS). Results: All of the extracts were antiproliferative against HeLa cells, and
    the DCM fraction had the lowest IC50 value of 70 μg/mL at 48 h. Microscopic studies showed that HeLa cells exposed
    to the DCM fraction exhibited marked morphological features of apoptosis. The flow cytometry study also confirmed
    that the DCM fraction induced apoptosis in HeLa cells, with cell cycle arrest at the S phase. GC-MS analysis revealed
    the presence of at least 28 compounds in the DCM fraction, most of which were fatty acids. Conclusion: The DCM
    fraction obtained using the extraction method described herein had a lower IC50 value than those reported in previous
    studies that characterized the anticancer activity of C. nutans against HeLa cells.
    Matched MeSH terms: Plant Leaves/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links