Displaying publications 1 - 20 of 99 in total

Abstract:
Sort:
  1. Naher L, Tan SG, Ho CL, Yusuf UK, Ahmad SH, Abdullah F
    ScientificWorldJournal, 2012;2012:647504.
    PMID: 22919345 DOI: 10.1100/2012/647504
    Basal stem rot (BSR) disease caused by the fungus Ganoderma boninense is the most serious disease affecting the oil palm; this is because the disease escapes the early disease detection. The biocontrol agent Trichoderma harzianum can protect the disease only at the early stage of the disease. In the present study, the expression levels of three oil palm (Elaeis guineensis Jacq.) chitinases encoding EgCHI1, EgCHI2, and EgCHI3 at 2, 5, and 8 weeks inoculation were measured in oil palm leaves from plants treated with G. boninense or T. harzianum alone or both.
    Matched MeSH terms: Plant Leaves/metabolism*
  2. Sasidharan S, Logeswaran S, Latha LY
    Int J Mol Sci, 2012;13(1):336-47.
    PMID: 22312255 DOI: 10.3390/ijms13010336
    Elaeis guineensis of the Arecaceae family is widely used in the traditional medicine of societies in West Africa for treating various ailments. To validate the ethnotherapeutic claims of the plant in skin diseases, wound healing activity was studied. The results showed that E. guineensis leaf extract had potent wound healing capacity as evident from the better wound closure (P < 0.05), improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Matrix metalloproteinases expression correlated well with the results thus confirming efficacy of E. guineensis in the treatment of the wound. E. guineensis accelerated wound healing in rats, thus supporting its traditional use. The result of this study suggested that, used efficiently, oil palm leaf extract is a renewable resource with wound healing properties.
    Matched MeSH terms: Plant Leaves/metabolism
  3. Kosugi Y, Takanashi S, Yokoyama N, Philip E, Kamakura M
    J Plant Res, 2012 Nov;125(6):735-48.
    PMID: 22644315 DOI: 10.1007/s10265-012-0495-5
    Vertical variation in leaf gas exchange characteristics of trees grown in a lowland dipterocarp forest in Peninsular Malaysia was investigated. Maximum net photosynthetic rate, stomatal conductance, and electron transport rate of leaves at the upper canopy, lower canopy, and forest floor were studied in situ with saturated condition photosynthetic photon flux density. The dark respiration rate of leaves at the various heights was also studied. Relationships among gas exchange characteristics, and also with nitrogen content per unit leaf area and leaf dry matter per area were clearly detected, forming general equations representing the vertical profile of several important parameters related to gas exchange. Numerical analysis revealed that the vertical distribution of gas exchange parameters was well determined showing both larger carbon gain for the whole canopy and at the same time positive carbon gain for the leaves of the lowest layer. For correct estimation of gas exchange at both leaf and canopy scales using multi-layer models, it is essential to consider the vertical distribution of gas exchange parameters with proper scaling coefficients.
    Matched MeSH terms: Plant Leaves/metabolism*
  4. Wan-Nadilah WA, Akhtar MT, Shaari K, Khatib A, Hamid AA, Hamid M
    BMC Complement Altern Med, 2019 Sep 05;19(1):245.
    PMID: 31488132 DOI: 10.1186/s12906-019-2655-9
    BACKGROUND: Cosmos caudatus is an annual plant known for its medicinal value in treating several health conditions, such as high blood pressure, arthritis, and diabetes mellitus. The α-glucosidase inhibitory activity and total phenolic content of the leaf aqueous ethanolic extracts of the plant at different growth stages (6, 8. 10, 12 and 14 weeks) were determined in an effort to ascertain the best time to harvest the plant for maximum medicinal quality with respect to its glucose-lowering effects.

    METHODS: The aqueous ethanolic leaf extracts of C. caudatus were characterized by NMR and LC-MS/MS. The total phenolic content and α-glucosidase inhibitory activity were evaluated by the Folin-Ciocalteu method and α-glucosidase inhibitory assay, respectively. The statistical significance of the results was evaluated using one-way ANOVA with Duncan's post hoc test, and correlation among the different activities was performed by Pearson's correlation test. NMR spectroscopy along with multivariate data analysis was used to identify the metabolites correlated with total phenolic content and α-glucosidase inhibitory activity of the C. caudatus leaf extracts.

    RESULTS: It was found that the α-glucosidase inhibitory activity and total phenolic content of the optimized ethanol:water (80:20) leaf extract of the plant increased significantly as the plant matured, reaching a maximum at the 10th week. The IC50 value for α-glucosidase inhibitory activity (39.18 μg mL- 1) at the 10th week showed greater potency than the positive standard, quercetin (110.50 μg mL- 1). Through an 1H NMR-based metabolomics approach, the 10-week-old samples were shown to be correlated with a high total phenolic content and α-glucosidase inhibitory activity. From the partial least squares biplot, rutin and flavonoid glycosides, consisting of quercetin 3-O-arabinofuranoside, quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, and quercetin 3-O-xyloside, were identified as the major bioactive metabolites. The metabolites were identified by NMR spectroscopy (J-resolve, HSQC and HMBC experiments) and further supported by dereplication via LC-MS/MS.

    CONCLUSION: For high phytomedicinal quality, the 10th week is recommended as the best time to harvest C. caudatus leaves with respect to its glucose lowering potential.

    Matched MeSH terms: Plant Leaves/metabolism
  5. Pariyani R, Ismail IS, Azam A, Khatib A, Abas F, Shaari K, et al.
    J Pharm Biomed Anal, 2017 Feb 20;135:20-30.
    PMID: 27987392 DOI: 10.1016/j.jpba.2016.12.010
    Orthosiphon stamineus (OS) is a popular medicinal herb used in traditional Chinese medicine as a diuretic agent and for renal system disorders. This study employed 1H NMR based metabolomics approach to investigate the possible protective activity of OS in cisplatin induced nephrotoxicity owing to its diuretic and antioxidant activities. Aqueous (OSAE) and 50% aqueous ethanolic (OSFE) extracts of OS leaves were orally administered at 400mg/kg BW doses to rats which were then intraperitoneally injected with cisplatin at 5mg/kg BW dose. The 1H NMR profile of the urine samples collected on day 5 after cisplatin administration were analyzed by multivariate pattern recognition techniques, whereby 19 marker metabolites suggestive in the involvement of TCA cycle, disturbed energy metabolism, altered gut microflora and BCAA metabolism pathways were identified. It was observed that OSFE caused significant changes (p<0.05) in the levels of 8 markers namely leucine, acetate, hippurate, lysine, valine, 2-oxoglutarate, 3-HBT and acetoacetate resulting in a moderate ameliorative effect, however, it did not completely protect from nephrotoxicity. OSAE did not demonstrate significant down regulatory effects on any markers, albeit, it potentiated the cisplatin nephrotoxicity by inducing significant increase in glucose, glycine, creatinine, citrate, TMAO, acetate and creatine levels. A Principal Component Analysis (PCA) of the 1H NMR spectra of OS extracts identified that OSFE had higher concentrations of the secondary metabolites such as caffeic acid, chlorogenic acid, protocatechuic acid and orthosiphol, among others. Whereas, OSAE was characterized by higher concentrations of acetate, lactate, succinic acid, valine and phosphatidylcholine. This research denotes the first comprehensive analysis to identify the effects of OS extracts on cisplatin nephrotoxicity.
    Matched MeSH terms: Plant Leaves/metabolism
  6. Chua LS
    Plant Physiol Biochem, 2016 Sep;106:16-22.
    PMID: 27135814 DOI: 10.1016/j.plaphy.2016.04.040
    The identification of plant metabolites is very important for the understanding of plant physiology including plant growth, development and defense mechanism, particularly for herbal medicinal plants. The metabolite profile could possibly be used for future drug discovery since the pharmacological activities of the indigenous herbs have been proven for centuries. An untargeted mass spectrometric approach was used to identify metabolites from the leaves and stems of Impatiens balsamina using LC-DAD-MS/MS. The putative compounds are mostly from the groups of phenolic, organic and amino acids which are essential for plant growth and as intermediates for other compounds. Alanine appeared to be the main amino acid in the plant because many alanine derived metabolites were detected. There are also several secondary metabolites from the groups of benzopyrones, benzofuranones, naphthoquinones, alkaloids and flavonoids. The widely reported bioactive components such as kaempferol, quercetin and their glycosylated, lawsone and its derivatives were detected in this study. The results also revealed that aqueous methanol could extract flavonoids better than water, and mostly, flavonoids were detected from the leaf samples. The score plots of component analysis show that there is a minor variance in the metabolite profiles of water and aqueous methanolic extracts with 21.5 and 30.5% of the total variance for the first principal component at the positive and negative ion modes, respectively.
    Matched MeSH terms: Plant Leaves/metabolism*
  7. Hamid HA, Ramli ANM, Zamri N, Yusoff MM
    Food Chem, 2018 Nov 01;265:253-259.
    PMID: 29884381 DOI: 10.1016/j.foodchem.2018.05.033
    Eleven compounds were identified during profiling of polyphenols by UPLC-QTOF/MS. In abundance was quercetin-3-O-α-l-arabinofuranoside in M. malabathricum ethanolic leaves extract while 6-hydroxykaempferol-3-O-glucoside was present in the leaves extract of M. decenfidum (its rare variety). TPC and TFC were significantly higher in M. decemfidum extract than M. malabathricum extract. During DPPH, FRAF and β-carotene bleaching assays, M. decemfidum extract exhibited greater antioxidant activity compared to M. malabathricum extract. Effect of M. malabathricum and M. decemfidum extracts on viability of MDA-MB-231 cell at concentrations 6.25-100 μg/mL were evaluated for 24, 48 and 72 h. After 48 and 72 h treatment, M. malabathricum and M. decemfidum leaves extracts exhibited significant activity in inhibiting MDA-MB-231 cancer cell line with M. malabathricum extract being more cytotoxic. M. malabathricum and M. imbricatum serves as potential daily dietary source of natural phenolics and to improve chemotherapeutic effectiveness.
    Matched MeSH terms: Plant Leaves/metabolism
  8. Goh HH, Baharin A, Mohd Salleh F', Ravee R, Wan Zakaria WNA, Mohd Noor N
    Sci Rep, 2020 04 20;10(1):6575.
    PMID: 32313042 DOI: 10.1038/s41598-020-63696-z
    Carnivorous pitcher plants produce specialised pitcher organs containing secretory glands, which secrete acidic fluids with hydrolytic enzymes for prey digestion and nutrient absorption. The content of pitcher fluids has been the focus of many fluid protein profiling studies. These studies suggest an evolutionary convergence of a conserved group of similar enzymes in diverse families of pitcher plants. A recent study showed that endogenous proteins were replenished in the pitcher fluid, which indicates a feedback mechanism in protein secretion. This poses an interesting question on the physiological effect of plant protein loss. However, there is no study to date that describes the pitcher response to endogenous protein depletion. To address this gap of knowledge, we previously performed a comparative RNA-sequencing experiment of newly opened pitchers (D0) against pitchers after 3 days of opening (D3C) and pitchers with filtered endogenous proteins (>10 kDa) upon pitcher opening (D3L). Nepenthes ampullaria was chosen as a model study species due to their abundance and unique feeding behaviour on leaf litters. The analysis of unigenes with top 1% abundance found protein translation and stress response to be overrepresented in D0, compared to cell wall related, transport, and signalling for D3L. Differentially expressed gene (DEG) analysis identified DEGs with functional enrichment in protein regulation, secondary metabolism, intracellular trafficking, secretion, and vesicular transport. The transcriptomic landscape of the pitcher dramatically shifted towards intracellular transport and defence response at the expense of energy metabolism and photosynthesis upon endogenous protein depletion. This is supported by secretome, transportome, and transcription factor analysis with RT-qPCR validation based on independent samples. This study provides the first glimpse into the molecular responses of pitchers to protein loss with implications to future cost/benefit analysis of carnivorous pitcher plant energetics and resource allocation for adaptation in stochastic environments.
    Matched MeSH terms: Plant Leaves/metabolism
  9. Wu J, Zhang H, Wang S, Yuan L, Grünhofer P, Schreiber L, et al.
    J Plant Res, 2019 Jul;132(4):531-540.
    PMID: 31127431 DOI: 10.1007/s10265-019-01115-9
    Areca nuts (seeds of Areca catechu L.) are a traditional and popular masticatory in India, Bangladesh, Malaysia, certain parts of China, and some other countries. Four related pyridine alkaloids (arecoline, arecaidine, guvacoline, and guvacine) are considered being the main functional ingredients in areca nut. Until now, A. catechu is the only known species producing these alkaloids in the Arecaceae family. In the present study, we investigated alkaloid contents in 12 Arecaceae species and found that only Areca triandra Roxb. contained these pyridine alkaloids. We further analyzed in more detail tissue-specific and development-related distribution of these alkaloids in leaves, male and female flowers and fruits in different stages of maturity in A. triandra by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Results revealed that the alkaloids were most abundant in young leaves, the pericarp of ripe fruits and the endosperm of unripe fruits in developmental stage 2. Abundance of the 4 different alkaloids in A. triandra fruits varied during maturation. Pericarps of ripe fruits had the highest arecaidine concentration (4.45 mg g-1) and the lowest guvacoline concentration (0.0175 mg g-1), whereas the endosperm of unripe fruits of developmental stage 2 contained the highest guvacoline concentration (3.39 mg g-1) and the lowest guvacine concentration (0.245 mg g-1). We conclude that A. triandra is useful in future as a further valuable source of Areca alkaloids.
    Matched MeSH terms: Plant Leaves/metabolism
  10. Omidvar V, Abdullah SN, Izadfard A, Ho CL, Mahmood M
    Planta, 2010 Sep;232(4):925-36.
    PMID: 20635097 DOI: 10.1007/s00425-010-1220-z
    The 1,053-bp promoter of the oil palm metallothionein gene (so-called MSP1) and its 5' deletions were fused to the GUS reporter gene, and analysed in transiently transformed oil palm tissues. The full length promoter showed sevenfold higher activity in the mesocarp than in leaves and 1.5-fold more activity than the CaMV35S promoter in the mesocarp. The 1,053-bp region containing the 5' untranslated region (UTR) gave the highest activity in the mesocarp, while the 148-bp region was required for minimal promoter activity. Two positive regulatory regions were identified at nucleotides (nt) -953 to -619 and -420 to -256 regions. Fine-tune deletion of the -619 to -420 nt region led to the identification of a 21-bp negative regulatory sequence in the -598 to -577 nt region, which is involved in mesocarp-specific expression. Gel mobility shift assay revealed a strong interaction of the leaf nuclear extract with the 21-bp region. An AGTTAGG core-sequence within this region was identified as a novel negative regulatory element controlling fruit-specificity of the MSP1 promoter. Abscisic acid (ABA) and copper (Cu(2+)) induced the activity of the promoter and its 5' deletions more effectively than methyl jasmonate (MeJa) and ethylene. In the mesocarp, the full length promoter showed stronger inducibility in response to ABA and Cu(2+) than its 5' deletions, while in leaves, the -420 nt fragment was the most inducible by ABA and Cu(2+). These results suggest that the MSP1 promoter and its regulatory regions are potentially useful for engineering fruit-specific and inducible gene expression in oil palm.
    Matched MeSH terms: Plant Leaves/metabolism
  11. Külheim C, Yeoh SH, Wallis IR, Laffan S, Moran GF, Foley WJ
    New Phytol, 2011 Sep;191(4):1041-1053.
    PMID: 21609332 DOI: 10.1111/j.1469-8137.2011.03769.x
    Eucalyptus is characterized by high foliar concentrations of plant secondary metabolites with marked qualitative and quantitative variation within a single species. Secondary metabolites in eucalypts are important mediators of a diverse community of herbivores. We used a candidate gene approach to investigate genetic associations between 195 single nucleotide polymorphisms (SNPs) from 24 candidate genes and 33 traits related to secondary metabolites in the Tasmanian Blue Gum (Eucalyptus globulus). We discovered 37 significant associations (false discovery rate (FDR) Q < 0.05) across 11 candidate genes and 19 traits. The effects of SNPs on phenotypic variation were within the expected range (0.018 < r(2) < 0.061) for forest trees. Whereas most marker effects were nonadditive, two alleles from two consecutive genes in the methylerythritol phosphate pathway (MEP) showed additive effects. This study successfully links allelic variants to ecologically important phenotypes which can have a large impact on the entire community. It is one of very few studies to identify the genetic variants of a foundation tree that influences ecosystem function.
    Matched MeSH terms: Plant Leaves/metabolism
  12. Khandaker MM, Boyce AN, Osman N
    Plant Physiol Biochem, 2012 Apr;53:101-10.
    PMID: 22349652 DOI: 10.1016/j.plaphy.2012.01.016
    The present study represents the first report of the effect of hydrogen peroxide (H(2)O(2)) on the growth, development and quality of the wax apple fruit, a widely cultivated fruit tree in South East Asia. The wax apple trees were spray treated with 0, 5, 20 and 50 mM H(2)O(2) under field conditions. Photosynthetic rates, stomatal conductance, transpiration, chlorophyll and dry matter content of the leaves and total soluble solids and total sugar content of the fruits of wax apple (Syzygium samarangense, var. jambu madu) were significantly increased after treatment with 5 mM H(2)O(2). The application of 20 mM H(2)O(2) significantly reduced bud drop and enhanced fruit growth, resulting in larger fruit size, increased fruit set, fruit number, fruit biomass and yield compared to the control. In addition, the endogenous level of H(2)O(2) in wax apple leaves increased significantly with H(2)O(2) treatments. With regard to fruit quality, 20 mM H(2)O(2) treatment increased the K(+), anthocyanin and carotene contents of the fruits by 65%, 67%, and 41%, respectively. In addition, higher flavonoid, phenol and soluble protein content, sucrose phosphate synthase (SPS), phenylalanine ammonia lyase (PAL) and antioxidant activities were recorded in the treated fruits. There was a positive correlation between peel colour (hue) and TSS, between net photosynthesis and SPS activity and between phenol and flavonoid content with antioxidant activity in H(2)O(2)-treated fruits. It is concluded that spraying with 5 and 20 mM H(2)O(2) once a week produced better fruit growth, maximising the yield and quality of wax apple fruits under field conditions.
    Matched MeSH terms: Plant Leaves/metabolism
  13. Ma H, Crowther TW, Mo L, Maynard DS, Renner SS, van den Hoogen J, et al.
    Nat Plants, 2023 Nov;9(11):1795-1809.
    PMID: 37872262 DOI: 10.1038/s41477-023-01543-5
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
    Matched MeSH terms: Plant Leaves/metabolism
  14. Liu K, Fadzly N, Mansor A, Zakaria R, Ruppert N, Lee CY
    Plant Signal Behav, 2017 Oct 03;12(10):e1371890.
    PMID: 28841358 DOI: 10.1080/15592324.2017.1371890
    Amorphophallus bufo is a rarely studied plant in Malaysian tropical rainforests. We measured the spectral reflectance of different developmental stages of A. bufo (seedlings, juveniles and adults), background soil/ debris and leaves from other neighboring plant species. Results show that the leaves of A. bufo seedling have a similar reflectance curve as the background soil and debris. Adults and juveniles of A. bufo are similar to other neighboring plants' leaf colors. We hypothesize that the cryptic coloration of A. bufo seedlings plays an important role in camouflage and that the numerous black spots on the surface of the petioles and rachises, may serve as a defensive mimicry against herbivores.
    Matched MeSH terms: Plant Leaves/metabolism*
  15. Ling Q, Sadali NM, Soufi Z, Zhou Y, Huang B, Zeng Y, et al.
    Nat Plants, 2021 05;7(5):655-666.
    PMID: 34007040 DOI: 10.1038/s41477-021-00916-y
    The maturation of green fleshy fruit to become colourful and flavoursome is an important strategy for plant reproduction and dispersal. In tomato (Solanum lycopersicum) and many other species, fruit ripening is intimately linked to the biogenesis of chromoplasts, the plastids that are abundant in ripe fruit and specialized for the accumulation of carotenoid pigments. Chromoplasts develop from pre-existing chloroplasts in the fruit, but the mechanisms underlying this transition are poorly understood. Here, we reveal a role for the chloroplast-associated protein degradation (CHLORAD) proteolytic pathway in chromoplast differentiation. Knockdown of the plastid ubiquitin E3 ligase SP1, or its homologue SPL2, delays tomato fruit ripening, whereas overexpression of SP1 accelerates ripening, as judged by colour changes. We demonstrate that SP1 triggers broader effects on fruit ripening, including fruit softening, and gene expression and metabolism changes, by promoting the chloroplast-to-chromoplast transition. Moreover, we show that tomato SP1 and SPL2 regulate leaf senescence, revealing conserved functions of CHLORAD in plants. We conclude that SP1 homologues control plastid transitions during fruit ripening and leaf senescence by enabling reconfiguration of the plastid protein import machinery to effect proteome reorganization. The work highlights the critical role of chromoplasts in fruit ripening, and provides a theoretical basis for engineering crop improvements.
    Matched MeSH terms: Plant Leaves/metabolism
  16. Zorofchian Moghadamtousi S, Rouhollahi E, Karimian H, Fadaeinasab M, Firoozinia M, Ameen Abdulla M, et al.
    PLoS One, 2015;10(4):e0122288.
    PMID: 25860620 DOI: 10.1371/journal.pone.0122288
    Annona muricata has been used in folk medicine for the treatment of cancer and tumors. This study evaluated the chemopreventive properties of an ethyl acetate extract of A. muricata leaves (EEAML) on azoxymethane-induced colonic aberrant crypt foci (ACF) in rats. Moreover, the cytotoxic compound of EEAML (Annomuricin E) was isolated, and its apoptosis-inducing effect was investigated against HT-29 colon cancer cell line using a bioassay-guided approach. This experiment was performed on five groups of rats: negative control, cancer control, EEAML (250 mg/kg), EEAML (500 mg/kg) and positive control (5-fluorouracil). Methylene blue staining of colorectal specimens showed that application of EEAML at both doses significantly reduced the colonic ACF formation compared with the cancer control group. Immunohistochemistry analysis showed the down-regulation of PCNA and Bcl-2 proteins and the up-regulation of Bax protein after administration of EEAML compared with the cancer control group. In addition, an increase in the levels of enzymatic antioxidants and a decrease in the malondialdehyde level of the colon tissue homogenates were observed, suggesting the suppression of lipid peroxidation. Annomuricin E inhibited the growth of HT-29 cells with an IC50 value of 1.62 ± 0.24 μg/ml after 48 h. The cytotoxic effect of annomuricin E was further substantiated by G1 cell cycle arrest and early apoptosis induction in HT-29 cells. Annomuricin E triggered mitochondria-initiated events, including the dissipation of the mitochondrial membrane potential and the leakage of cytochrome c from the mitochondria. Prior to these events, annomuricin E activated caspase 3/7 and caspase 9. Upstream, annomuricin E induced a time-dependent upregulation of Bax and downregulation of Bcl-2 at the mRNA and protein levels. In conclusion, these findings substantiate the usage of A. muricata leaves in ethnomedicine against cancer and highlight annomuricin E as one of the contributing compounds in the anticancer activity of A. muricata leaves.
    Matched MeSH terms: Plant Leaves/metabolism
  17. Jinggut T, Yule CM, Boyero L
    Sci Total Environ, 2012 Oct 15;437:83-90.
    PMID: 22922133 DOI: 10.1016/j.scitotenv.2012.07.062
    In common with most of Borneo, the Bakun region of Sarawak is currently subject to heavy deforestation mainly due to logging and, to a lesser extent, traditional slash-and-burn farming practices. This has the potential to affect stream ecosystems, which are integrators of environmental change in the surrounding terrestrial landscape. This study evaluated the effects of both types of deforestation by using functional and structural indicators (leaf litter decomposition rates and associated detritivores or 'shredders', respectively) to compare a fundamental ecosystem process, leaf litter decomposition, within logged, farmed and pristine streams. Slash-and-burn agricultural practices increased the overall rate of decomposition despite a decrease in shredder species richness (but not shredder abundance) due to increased microbial decomposition. In contrast, decomposition by microbes and invertebrates was slowed down in the logged streams, where shredders were less abundant and less species rich. This study suggests that shredder communities are less affected by traditional agricultural farming practices, while modern mechanized deforestation has an adverse effect on both shredder communities and leaf breakdown.
    Matched MeSH terms: Plant Leaves/metabolism
  18. Hameed BH
    J Hazard Mater, 2009 Jan 30;161(2-3):753-9.
    PMID: 18499346 DOI: 10.1016/j.jhazmat.2008.04.019
    In the present study, spent tea leaves (STL) were used as a new non-conventional and low-cost adsorbent for the cationic dye (methylene blue) adsorption in a batch process at 30 degrees C. Equilibrium sorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The adsorption isotherm data were fitted well to the Langmuir isotherm and the monolayer adsorption capacity was found to be 300.052mg/g at 30 degrees C. The kinetic data obtained at different initial concentrations were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The results revealed that the spent tea leaves, being waste, have the potential to be used as a low-cost adsorbent for the removal of methylene blue from aqueous solutions.
    Matched MeSH terms: Plant Leaves/metabolism*
  19. Strout G, Russell SD, Pulsifer DP, Erten S, Lakhtakia A, Lee DW
    Ann Bot, 2013 Oct;112(6):1141-8.
    PMID: 23960046 DOI: 10.1093/aob/mct172
    BACKGROUND AND AIMS: Blue-green iridescence in the tropical rainforest understorey sedge Mapania caudata creates structural coloration in its leaves through a novel photonic mechanism. Known structures in plants producing iridescent blues consist of altered cellulose layering within cell walls and in special bodies, and thylakoid membranes in specialized plastids. This study was undertaken in order to determine the origin of leaf iridescence in this plant with particular attention to nano-scale components contributing to this coloration.

    METHODS: Adaxial walls of leaf epidermal cells were characterized using high-pressure-frozen freeze-substituted specimens, which retain their native dimensions during observations using transmission and scanning microscopy, accompanied by energy-dispersive X-ray spectroscopy to identify the role of biogenic silica in wall-based iridescence. Biogenic silica was experimentally removed using aqueous Na2CO3 and optical properties were compared using spectral reflectance.

    KEY RESULTS AND CONCLUSIONS: Blue iridescence is produced in the adaxial epidermal cell wall, which contains helicoid lamellae. The blue iridescence from cell surfaces is left-circularly polarized. The position of the silica granules is entrained by the helicoid microfibrillar layers, and granules accumulate at a uniform position within the helicoids, contributing to the structure that produces the blue iridescence, as part of the unit cell responsible for 2 ° Bragg scatter. Removal of silica from the walls eliminated the blue colour. Addition of silica nanoparticles on existing cellulosic lamellae is a novel mechanism for adding structural colour in organisms.

    Matched MeSH terms: Plant Leaves/metabolism
  20. Sahebi M, Hanafi MM, Siti Nor Akmar A, Rafii MY, Azizi P, Idris AS
    Gene, 2015 Feb 10;556(2):170-81.
    PMID: 25479011 DOI: 10.1016/j.gene.2014.11.055
    Silicon (Si) plays an important role in reducing plant susceptibility against a variety of different biotic and abiotic stresses; and also has an important regulatory role in soil to avoid heavy metal toxicity and providing suitable growing conditions for plants. A full-length cDNAs of 696bp of serine-rich protein was cloned from mangrove plant (Rhizophora apiculata) by amplification of cDNA ends from an expressed sequence tag homologous to groundnut (Arachis hypogaea), submitted to NCBI (KF211374). This serine-rich protein gene encodes a deduced protein of 223 amino acids. The transcript titre of the serine-rich protein was found to be strongly enriched in roots compared with the leaves of two month old mangrove plants and expression level of this serine-rich protein was found to be strongly induced when the mangrove seedlings were exposed to SiO2. Expression of the serine-rich protein transgenic was detected in transgenic Arabidopsis thaliana, where the amount of serine increased from 1.02 to 37.8mg/g. The same trend was also seen in Si content in the roots (14.3%) and leaves (7.4%) of the transgenic A. thaliana compared to the wild-type plants under Si treatment. The biological results demonstrated that the accumulation of the serine amino acid in the vegetative tissues of the transgenic plants enhanced their ability to absorb and accumulate more Si in the roots and leaves and suggests that the serine-rich protein gene has potential for use in genetic engineering of different stress tolerance characteristics.
    Matched MeSH terms: Plant Leaves/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links