Displaying publications 1 - 20 of 99 in total

Abstract:
Sort:
  1. Ibrahim D, Osman H
    J Ethnopharmacol, 1995 Mar;45(3):151-6.
    PMID: 7623478
    Ethanolic extract of Cassia alata leaves was investigated for its antimicrobial activities on several microorganisms including bacteria, yeast, dermatophytic fungi and non-dermatophytic fungi. In vitro, the extract exhibited high activity against various species of dermatophytic fungi but low activity against non-dermatophytic fungi. However, bacterial and yeast species showed resistance against in vitro treatment with the extract. The minimum inhibitory concentration (MIC) values of the extract revealed that Trichophyton mentagorphytes var. interdigitale, Trichophyton mentagrophytes var. mentagorophytes, Trichophyton rubrum and Microsporum gypseum had the MIC of 125 mg/ml, whereas Microsporum canis had the MIC of 62.5 mg/ml. The inhibition can be observed on the macroconidia of Microsporum gypseum which resulted in structural degeneration beyond repair. The mechanism of inhibition can be related to the cell leakage as observed by irregular, wrinkle shape and loss in rigidity of the macroconidia.
    Matched MeSH terms: Plant Leaves/metabolism
  2. Ali AM, Mackeen MM, Intan-Safinar I, Hamid M, Lajis NH, el-Sharkawy SH, et al.
    J Ethnopharmacol, 1996 Sep;53(3):165-9.
    PMID: 8887024
    Matched MeSH terms: Plant Leaves/metabolism
  3. Chong TM, Abdullah MA, Fadzillah NM, Lai OM, Lajis NH
    Plant Cell Rep, 2004 Jul;22(12):951-8.
    PMID: 15067428
    The effects of medium strategies [maintenance (M), intermediary (G), and production (P) medium] on cell growth, anthraquinone (AQ) production, hydrogen peroxide (H2O2) level, lipid peroxidation, and antioxidant vitamins in Morinda elliptica cell suspension cultures were investigated. These were compared with third-stage leaf and 1-month-old callus culture. With P medium strategy, cell growth at 49 g l(-1), intracellular AQ content at 42 mg g(-1) DW, and H2O2 level at 9 micromol g(-1) FW medium were the highest as compared to the others. However, the extent of lipid peroxidation at 40.4 nmol g(-1) FW and total carotenoids at 13.3 mg g(-1) FW for cultures in P medium were comparable to that in the leaf, which had registered sevenfold lower AQ and 2.2-fold lower H2O2 levels. Vitamin C content at 30-120 microg g(-1) FW in all culture systems was almost half the leaf content. On the other hand, vitamin E content was around 400-500 microg g(-1) FW in 7-day-old cultures from all medium strategies and reduced to 50-150 microg g(-1) FW on day 14 and 21; as compared to 60 microg g(-1) FW in callus and 200 microg g(-1) FW in the leaf. This study suggests that medium strategies and cell growth phase in cell culture could influence the competition between primary and secondary metabolism, oxidative stresses and antioxidative measures. When compared with the leaf metabolism, these activities are dynamic depending on the types and availability of antioxidants.
    Matched MeSH terms: Plant Leaves/metabolism
  4. San CT, Shah FH
    Mol Biol Rep, 2005 Dec;32(4):227-35.
    PMID: 16328884
    The mRNA differential display method was utilized to study the differential expression and regulation of genes in two species of oil palm, the commercially grown variety Elaeis guineensis, var. tenera and the South American species, Elaeis oleifera. We demonstrated the differential expression of genes in the mesocarp and kernel at the week of active oil synthesis (15 week after anthesis) during fruit development as compare to the roots and leaves and the isolation of tissue-specific and species-specific cDNA clones. A total of eight specific cDNA clones were isolated and their specificities were confirmed by Northern hybridization and classified into three groups. Group one contains four clones (KT3, KT4, KT5 and KT6) that are kernel-specific for E. guineensis, tenera and E. oleifera. The second group represents clone FST1, which is mesocarp and kernel-specific for E. guineensis, tenera and E. oleifera. The third group represents clones MLT1, MLT2 and MLO1 that are mesocarp and leaf-specific. Northern analysis showed that their expressions were developmentally regulated. Nucleotide sequencing and homology search in GenBank data revealed that clones KT3 and KT4 encode for the same maturation protein PM3. While clones MLT1 and MLT2 encode for S-ribonuclease binding protein and fibrillin, respectively. The other clones (KT5, KT6, FST1 and MLO1) did not display any significant homology to any known protein.
    Matched MeSH terms: Plant Leaves/metabolism
  5. Choo TP, Lee CK, Low KS, Hishamuddin O
    Chemosphere, 2006 Feb;62(6):961-7.
    PMID: 16081131
    This study describes an investigation using tropical water lilies (Nymphaea spontanea) to remove hexavalent chromium from aqueous solutions and electroplating waste. The results show that water lilies are capable of accumulating substantial amount of Cr(VI), up to 2.119 mg g(-1) from a 10 mg l(-1) solution. The roots of the plant accumulated the highest amount of Cr(VI) followed by leaves and petioles, indicating that roots play an important role in the bioremediation process. The maturity of the plant exerts a great effect on the removal and accumulation of Cr(VI). Plants of 9 weeks old accumulated the most Cr(VI) followed by those of 6 and 3 weeks old. The results also show that removal of Cr(VI) by water lilies is more efficient when the metal is present singly than in the presence of Cu(II) or in waste solution. This may be largely associated with more pronounced phytotoxicity effect on the biochemical changes in the plants and saturation of binding sites. Significant toxicity effect on the plant was evident as shown in the reduction of chlorophyll, protein and sugar contents in plants exposed to Cr(VI) in this investigation.
    Matched MeSH terms: Plant Leaves/metabolism
  6. Kenzo T, Ichie T, Watanabe Y, Yoneda R, Ninomiya I, Koike T
    Tree Physiol, 2006 Jul;26(7):865-73.
    PMID: 16585032
    Variations in leaf photosynthetic, morphological and biochemical properties with increasing plant height from seedlings to emergent trees were investigated in five dipterocarp species in a Malaysian tropical rain forest. Canopy openness increased significantly with tree height. Photosynthetic properties, such as photosynthetic capacity at light saturation, light compensation point, maximum rate of carboxylation and maximum rate of photosynthetic electron transport, all increased significantly with tree height. Leaf morphological and biochemical traits, such as leaf mass per area, palisade layer thickness, nitrogen concentration per unit area, chlorophyll concentration per unit dry mass and chlorophyll to nitrogen ratio, also changed significantly with tree height. Leaf properties had simple and significant relationships with tree height, with few intra- and interspecies differences. Our results therefore suggest that the photosynthetic capacity of dipterocarp trees depends on tree height, and that the trees adapt to the light environment by adjusting their leaf morphological and biochemical properties. These results should aid in developing models that can accurately estimate carbon dioxide flux and biomass production in tropical rain forests.
    Matched MeSH terms: Plant Leaves/metabolism
  7. Ramin M, Alimon AR, Panandam JM, Sijam K, Javanmard A, Abdullah N
    Pak J Biol Sci, 2008 Feb 15;11(4):583-8.
    PMID: 18817130
    The digestion and Volatile Fatty Acid (VFA) production from rice straw and oil palm fronds by cellulolytic bacteria isolated from the termite Coptotermes curvignathus were investigated. The bacteria were Acinetobacter strain Raminalimon, Enterobacter aerogenes strain Razmin C, Enterobacter cloacae strain Razmin B, Bacillus cereus strain Razmin A and Chryseobacterium kwangyangense strain Cb. Acinetobacter strain Raminalimon is an aerobic bacterium, while the other species are facultative anaerobes. There were significant differences (p<0.05) among the bacteria for Dry Matter (DM) lost and acetic acid production from rice straw and Acinetobacter strain Raminalimon showed the highest activity. The facultative bacteria C. kwangyangense strain Cb (cfu mL(-1) 231 x 10(-6), OD: 0.5), E. cloacae (cfu mL(-1) 68 x 10(-7), OD: 0.5) and E. aerogenes (cfu mL(-1) 33 x 10(-7), OD: 0.5) were used for digestion study with the rumen fluid microflora. The in vitro gas production technique was applied for the comparative study and the parameters measured were pH, gas (volume), dry matter lost, acetic acid, propionic acid and butyric acid concentrations. pH was not significantly (p<0.05) different among the five treatments. The bacterium C. kwangyangense strain Cb showed the highest activity (p<0.05) for DM lost, acetic acid, propionic acid and butyric acid production from rice straw when compared to the other bacterial activities. There was no significance (p<0.05) difference between the three bacteria for the dry matter lost of oil palm fronds but the production of Volatile Fatty Acids (VFA) was significantly (p<0.05) high in the treatment which was inoculated with C. kwangyangense strain Cb. The Gen Bank NCBI/EMBL accession numbers for the bacterial strains are EU332791, EU305608, EU305609, EU294508 and EU169201.
    Matched MeSH terms: Plant Leaves/metabolism*
  8. Kurokawa H, Nakashizuka T
    Ecology, 2008 Sep;89(9):2645-56.
    PMID: 18831185
    There is accumulating evidence that similar suites of plant traits may affect leaf palatability and leaf litter decomposability. However, the possible association between leaf herbivory and litter decomposition rates across species in species-diverse natural ecosystems such as tropical rain forests remains unexplored, despite its importance in estimating the herbivory effects on carbon and nutrient cycling of ecosystems. We found no strong association between leaf herbivory and litter decomposition rates across 40 tree species in a Malaysian tropical rain forest, even though the leaf and litter traits were tightly correlated. This is because the leaf and litter traits related to herbivory and decomposition rates in the field were inconsistent. Leaf toughness accounted for only a small part of the variation in the herbivory rate, whereas a number of litter traits (the leaf mass per area, lignin to nitrogen ratio, and condensed tannin concentration) accurately predicted the decomposition rate across species. These results suggest that herbivory rate across species may not be strongly related to single leaf traits, probably because plant-herbivore interactions in tropical rain forests are highly diverse; on the other hand, plant-decomposer interactions are less specific and can be governed by litter chemicals. We also investigated two factors, phylogeny and tree functional types, that could affect the relationship between herbivory and decomposition across species. Phylogenetic relatedness among the species did not affect the relationship between herbivory and decomposition. In contrast, when the plants were segregated according to their leaf emergence pattern, we found a significant positive relationship between herbivory and decomposition rates for continuous-leafing species. In these species, the condensed tannin to N ratios in leaves and litter were related to herbivory and decomposition rates, respectively. However, we did not observe a similar trend for synchronous-leafing species. These results suggest that the relationship between herbivory and decomposition may be more greatly affected by functional types than by phylogenetic relatedness among species. In conclusion, our results suggest that well-defended leaves are not necessarily less decomposable litter in a tropical rain forest community, implying that herbivory may not generate positive feedback for carbon and nutrient cycling in this type of ecosystem.
    Matched MeSH terms: Plant Leaves/metabolism*
  9. Wan Ngah WS, Hanafiah MA
    J Environ Sci (China), 2008;20(10):1168-76.
    PMID: 19143339
    The efficiency of sodium hydroxide treated rubber (Hevea brasiliensis) leaves powder (NHBL) for removing copper ions from aqueous solutions has been investigated. The effects of physicochemical parameters on biosorption capacities such as stirring speed, pH, biosorbent dose, initial concentrations of copper, and ionic strength were studied. The biosorption capacities of NHBL increased with increase in pH, stirring speed and copper concentration but decreased with increase in biosorbent dose and ionic strength. The isotherm study indicated that NHBL fitted well with Langmuir model compared to Freundlich and Dubinin-Radushkevich models. The maximum biosorption capacity determined from Langmuir isotherm was 14.97 mg/g at 27 degrees C. The kinetic study revealed that pseudosecond order model fitted well the kinetic data, while Boyd kinetic model indicated that film diffusion was the main rate determining step in biosorption process. Based on surface area analysis, NHBL has low surface area and categorized as macroporous. Fourier transform infrared (FT-IR) analyses revealed that hydroxyl, carboxyl, and amino are the main functional groups involved in the binding of copper ions. Complexation was one of the main mechanisms for the removal of copper ions as indicated by FT-IR spectra. Ion exchange was another possible mechanism since the ratio of adsorbed cations (Cu2+ and H+) to the released cations (Na+, Ca2+, and Mg2+) from NHBL was almost unity. Copper ions bound on NHBL were able to be desorbed at > 99% using 0.05 mol/L HCl, 0.01 mol/L HNO3, and 0.01 mol/L EDTA solutions.
    Matched MeSH terms: Plant Leaves/metabolism*
  10. Hameed BH
    J Hazard Mater, 2009 Jan 30;161(2-3):753-9.
    PMID: 18499346 DOI: 10.1016/j.jhazmat.2008.04.019
    In the present study, spent tea leaves (STL) were used as a new non-conventional and low-cost adsorbent for the cationic dye (methylene blue) adsorption in a batch process at 30 degrees C. Equilibrium sorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The adsorption isotherm data were fitted well to the Langmuir isotherm and the monolayer adsorption capacity was found to be 300.052mg/g at 30 degrees C. The kinetic data obtained at different initial concentrations were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The results revealed that the spent tea leaves, being waste, have the potential to be used as a low-cost adsorbent for the removal of methylene blue from aqueous solutions.
    Matched MeSH terms: Plant Leaves/metabolism*
  11. Hussin M, Hamid AA, Mohamad S, Saari N, Bakar F, Dek SP
    J Food Sci, 2009 Mar;74(2):H72-8.
    PMID: 19323754 DOI: 10.1111/j.1750-3841.2009.01045.x
    A study was carried out to investigate the effects of Centella asiatica leaf on lipid metabolism of oxidative stress rats. The rats were fed 0.1% hydrogen peroxide (H(2)O(2)) with either 0.3% (w/w) C. asiatica extract, 5%C. asiatica powder (w/w), or 0.3% (w/w) alpha-tocopherol for 25 wk. Results of the study showed that C. asiatica powder significantly (P < 0.05) lowered serum low-density lipoprotein compared to that of control rats (rats fed H(2)O(2) only). At the end of the study C. asiatica-fed rats were also found to have significantly (P < 0.05) higher high-density lipoprotein and lower triglyceride level compared to rats fed only normal diet. However, cholesterol level of rats fed both C. asiatica extract and powder was found to be significantly (P < 0.05) higher compared to that of control rats. It was interesting to note that consumption of C. asiatica significantly decreased body and liver weights of the rats. Histological examinations revealed no obvious changes in all rats studied. Quantitative analysis of C. asiatica leaf revealed high concentration of total phenolic compounds, in particular, catechin, quercetin, and rutin.
    Matched MeSH terms: Plant Leaves/metabolism
  12. Kosugi Y, Takanashi S, Matsuo N, Nik AR
    Tree Physiol, 2009 Apr;29(4):505-15.
    PMID: 19203974 DOI: 10.1093/treephys/tpn041
    We observed diurnal and seasonal patterns of leaf-scale gas exchange within the crown of a Dipterocarpus sublamellatus Foxw. tree growing in a lowland dipterocarp forest at Pasoh, Peninsular Malaysia. Observations were carried out nine times over 6 years, from September 2002 to December 2007. Observation periods included both wet and mild-dry periods, and natural and saturated photosynthetic photon flux density (PPFD) light conditions. In situ measurements of the diurnal change in net photosynthetic rate and in stomatal conductance were carried out on canopy leaves of a 40-m-tall D. sublamellatus tree, which was accessed from a canopy corridor. A diurnal change in electron transport rate was observed under saturated PPFD conditions. The maximum net assimilation rate was approximately 10 micromol m(-2) s(-1). There was a clear inhibition of the net assimilation rate coupled with stomatal closure after late morning and this inhibition occurred year-round. Although the electron transport rate decreased alongside this inhibition, it sometimes followed on. Numerical analysis showed that the main factor in the inhibition of the net assimilation rate was patchy bimodal stomatal closure, which occurred in both mild-dry and wet periods. The midday depression occurred year-round, though there are fluctuations in soil moisture during the mild-dry and wet periods. The magnitude of the inhibition was not related to soil water content but was related to vapor pressure deficit (VPD): that is, whether the days were sunny and hot or cloudy and cool. On cloudy, cool days in the wet period, the net photosynthesis was only moderately inhibited, but it still decreased in the afternoon and was coupled with patchy stomatal closure, even in quite moderate VPD, leaf temperature and PPFD conditions. Our results suggest that patchy stomatal closure signaled by the increase in VPD, in transpiration and by circadian rhythms, was the key factor in constraining midday leaf gas exchange of the D. sublamellatus canopy leaves.
    Matched MeSH terms: Plant Leaves/metabolism
  13. Kamaruzzaman BY, Ong MC, Jalal KC, Shahbudin S, Nor OM
    J Environ Biol, 2009 Sep;30(5 Suppl):821-4.
    PMID: 20143712
    The accumulative partitioning of Pb and Cu in the Rhizophora apiculata was studied randomly in the Setiu mangrove forest, Terengganu. Samples of leaves, barks and roots were collected randomly from the selected studied species. Sediments between the roots of the sampled mangrove plants were also collected. The results from analysis for Rhizophora apiculata shows that the concentration of Pb and Cu were accumulated higher in root tissue compared to bark and leaf tissue but lower than surrounding sediment level. The average concentration of Cu for Rhizophora apiculata in leaf, bark, root and sediment was 2.73, 3.94, 5.21 and 9.42 mg I(-1), respectively. Meanwhile, the average concentration of Pb in leaf, bark, root and sediment was 1.43, 1.38, 2.05 and 11.66 mg l(-1), respectively. Results of concentration factors (CF) show that the overall the concentration of Pb and Cu were accumulated much higher in roots system of Rhizophora apiculata.
    Matched MeSH terms: Plant Leaves/metabolism
  14. Masani MY, Parveez GK, Izawati AM, Lan CP, Siti Nor Akmar A
    Plasmid, 2009 Nov;62(3):191-200.
    PMID: 19699761 DOI: 10.1016/j.plasmid.2009.08.002
    One of the targets in oil palm genetic engineering programme is the production of polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-valerate (PHBV) in the oil palm leaf tissues. Production of PHB requires the use of phbA (beta-ketothiolase type A), phbB (acetoacetyl-CoA reductase) and phbC (PHB synthase) genes of Ralstonia eutropha, whereas bktB (beta-ketothiolase type B), phbB, phbC genes of R. eutropha and tdcB (threonine dehydratase) gene of Escherichia coli were used for PHBV production. Each of these genes was fused with a transit peptide (Tp) of oil palm acyl-carrier-protein (ACP) gene, driven by an oil palm leaf-specific promoter (LSP1) to genetically engineer the PHB/PHBV pathway to the plastids of the leaf tissues. In total, four transformation vectors, designated pLSP15 (PHB) and pLSP20 (PHBV), and pLSP13 (PHB) and pLSP23 (PHBV), were constructed for transformation in Arabidopsis thaliana and oil palm, respectively. The phosphinothricin acetyltransferase gene (bar) driven by CaMV35S promoter in pLSP15 and pLSP20, and ubiquitin promoter in pLSP13 and pLSP23 were used as the plant selectable markers. Matrix attachment region of tobacco (RB7MAR) was also included in the vectors to stabilize the transgene expression and to minimize silencing due to positional effect. Restriction digestion, PCR amplification and/or sequencing were carried out to ensure sequence integrity and orientation.
    Matched MeSH terms: Plant Leaves/metabolism
  15. Omidvar V, Abdullah SN, Izadfard A, Ho CL, Mahmood M
    Planta, 2010 Sep;232(4):925-36.
    PMID: 20635097 DOI: 10.1007/s00425-010-1220-z
    The 1,053-bp promoter of the oil palm metallothionein gene (so-called MSP1) and its 5' deletions were fused to the GUS reporter gene, and analysed in transiently transformed oil palm tissues. The full length promoter showed sevenfold higher activity in the mesocarp than in leaves and 1.5-fold more activity than the CaMV35S promoter in the mesocarp. The 1,053-bp region containing the 5' untranslated region (UTR) gave the highest activity in the mesocarp, while the 148-bp region was required for minimal promoter activity. Two positive regulatory regions were identified at nucleotides (nt) -953 to -619 and -420 to -256 regions. Fine-tune deletion of the -619 to -420 nt region led to the identification of a 21-bp negative regulatory sequence in the -598 to -577 nt region, which is involved in mesocarp-specific expression. Gel mobility shift assay revealed a strong interaction of the leaf nuclear extract with the 21-bp region. An AGTTAGG core-sequence within this region was identified as a novel negative regulatory element controlling fruit-specificity of the MSP1 promoter. Abscisic acid (ABA) and copper (Cu(2+)) induced the activity of the promoter and its 5' deletions more effectively than methyl jasmonate (MeJa) and ethylene. In the mesocarp, the full length promoter showed stronger inducibility in response to ABA and Cu(2+) than its 5' deletions, while in leaves, the -420 nt fragment was the most inducible by ABA and Cu(2+). These results suggest that the MSP1 promoter and its regulatory regions are potentially useful for engineering fruit-specific and inducible gene expression in oil palm.
    Matched MeSH terms: Plant Leaves/metabolism
  16. Sabiha-Hanim S, Noor MA, Rosma A
    Bioresour Technol, 2011 Jan;102(2):1234-9.
    PMID: 20797853 DOI: 10.1016/j.biortech.2010.08.017
    Oil palm (Elaeis guineensis Jacq.) is one of the most important commercial crops for the production of palm oil, which generates 10.88 tons of oil palm fronds per hectare of plantation as a by-product. In this study, oil palm frond fibres were subjected to an autohydrolysis treatment using an autoclave, operated at 121 °C for 20-80 min, to facilitate the separation of hemicelluloses. The hemicellulose-rich solution (autohydrolysate) was subjected to further hydrolysis with 4-16 U of mixed Trichoderma viride endo-(1,4)-β-xylanases (EC 3.2.1.8) per 100 mg of autohydrolysate. Autoclaving of palm fronds at 121°C for 60 min (a severity factor of 2.40) recovered 75% of the solid residue, containing 57.9% cellulose and 18% Klason lignin, and an autohydrolysate containing 14.94% hemicellulose, with a fractionation efficiency of 49.20%. Subsequent enzymatic hydrolysis of the autohydrolysate with 8 U of endoxylanase at 40 °C for 24 h produced a solution containing 17.5% xylooligosaccharides and 25.6% xylose. The results clearly indicate the potential utilization of oil palm frond, an abundantly available lignocellulosic biomass for the production of xylose and xylooligosaccharides which can serve as functional food ingredients.
    Matched MeSH terms: Plant Leaves/metabolism*
  17. Kamakura M, Kosugi Y, Takanashi S, Matsumoto K, Okumura M, Philip E
    Tree Physiol, 2011 Feb;31(2):160-8.
    PMID: 21383025 DOI: 10.1093/treephys/tpq102
    We investigated effects of heterogeneous stomatal behavior on diurnal patterns of leaf gas exchange in 10 tree species. Observations were made in middle and upper canopy layers of potted tropical rainforest trees in a nursery at the Forest Research Institute Malaysia. Measurements were taken from 29 January to 3 February 2010. We measured in situ diurnal changes in net photosynthetic rate and stomatal conductance in three leaves of each species under natural light. In both top-canopy and sub-canopy species, midday depression of net assimilation rate occurred in late morning. Numerical analysis showed that patchy bimodal stomatal behavior occurred only during midday depression, suggesting that the distribution pattern of stomatal apertures (either uniform or non-uniform stomatal behavior) varies flexibly within single days. Direct observation of stomatal aperture using Suzuki's Universal Micro-Printing (SUMP) method demonstrated midday patchy stomatal closure that fits a bimodal pattern in Shorea leprosula Miq., Shorea macrantha Brandis. and Dipterocarpus tempehes V.Sl. Inhibition of net assimilation rate and stomatal conductance appears to be a response to changes in vapor pressure deficit (VPD). Variable stomatal closure with increasing VPD is a mechanism used by a range of species to prevent excess water loss from leaves through evapotranspiration (viz., inhibition of midday leaf gas exchange). Bimodal stomatal closure may occur among adjacent stomata within a single patch, rather than among patches on a single leaf. Our results suggest the occurrence of patches at several scales within single leaves. Further analysis should consider variable spatial scales in heterogeneous stomatal behavior between and within patches and within single leaves.
    Matched MeSH terms: Plant Leaves/metabolism
  18. Ghasemzadeh A, Jaafar HZ
    Int J Mol Sci, 2011 Feb 10;12(2):1101-14.
    PMID: 21541046 DOI: 10.3390/ijms12021101
    The effect of two different CO(2) concentrations (400 and 800 μmol mol(-1)) on the photosynthesis rate, primary and secondary metabolite syntheses and the antioxidant activities of the leaves, stems and rhizomes of two Zingiber officinale varieties (Halia Bentong and Halia Bara) were assessed in an effort to compare and validate the medicinal potential of the subterranean part of the young ginger. High photosynthesis rate (10.05 μmol CO(2) m(-2)s(-1) in Halia Bara) and plant biomass (83.4 g in Halia Bentong) were observed at 800 μmol mol(-1) CO(2). Stomatal conductance decreased and water use efficiency increased with elevated CO(2) concentration. Total flavonoids (TF), total phenolics (TP), total soluble carbohydrates (TSC), starch and plant biomass increased significantly (P ≤ 0.05) in all parts of the ginger varieties under elevated CO(2) (800 μmol mol(-1)). The order of the TF and TP increment in the parts of the plant was rhizomes > stems > leaves. More specifically, Halia Bara had a greater increase of TF (2.05 mg/g dry weight) and TP (14.31 mg/g dry weight) compared to Halia Bentong (TF: 1.42 mg/g dry weight; TP: 9.11 mg/g dry weight) in average over the whole plant. Furthermore, plants with the highest rate of photosynthesis had the highest TSC and phenolics content. Significant differences between treatments and species were observed for TF and TP production. Correlation coefficient showed that TSC and TP content are positively correlated in both varieties. The antioxidant activity, as determined by the ferric reducing/antioxidant potential (FRAP) activity, increased in young ginger grown under elevated CO(2). The FRAP values for the leaves, rhizomes and stems extracts of both varieties grown under two different CO(2) concentrations (400 and 800 μmol mol(-1)) were significantly lower than those of vitamin C (3107.28 μmol Fe (II)/g) and α-tocopherol (953 μmol Fe (II)/g), but higher than that of BHT (74.31 μmol Fe (II)/g). These results indicate that the plant biomass, primary and secondary metabolite synthesis, and following that, antioxidant activities of Malaysian young ginger varieties can be enhanced through controlled environment (CE) and CO(2) enrichment.
    Matched MeSH terms: Plant Leaves/metabolism
  19. Ibrahim MH, Jaafar HZ
    Molecules, 2011 May 04;16(5):3761-77.
    PMID: 21544039 DOI: 10.3390/molecules16053761
    A split plot 3 by 3 experiment was designed to investigate and distinguish the relationships among production of primary metabolites (soluble sugar and starch), secondary metabolites (total phenolics, TP; total flavonoids, TF) and leaf gas exchange of three varieties of the Malaysian medicinal herb Labisia pumila Blume, namely the varieties alata, pumila and lanceolata, under three levels of CO₂ enrichment (400, 800 and 1,200 µmol mol⁻¹) for 15 weeks. The treatment effects were solely contributed by CO₂ enrichment levels; no varietal differences were observed. As CO₂ levels increased from 400 to 1,200 µmol mol⁻¹, the production of carbohydrates also increased steadily, especially for starch more than soluble sugar (sucrose). TF and TP content, simultaneously, reached their peaks under 1,200 µmol exposure, followed by 800 and 400 µmol mol⁻¹. Net photosynthesis (A) and quantum efficiency of photosystem II (f(v)/f(m)) were also enhanced as CO₂ increased from 400 to 1,200 µmol mol⁻¹. Leaf gas exchange characteristics displayed a significant positive relationship with the production of secondary metabolites and carbohydrate contents. The increase in production of TP and TFs were manifested by high C/N ratio and low protein content in L. pumila seedlings, and accompanied by reduction in cholorophyll content that exhibited very significant negative relationships with total soluble sugar, starch and total non structural carbohydrate.
    Matched MeSH terms: Plant Leaves/metabolism*
  20. Moghaddam SS, Jaafar H, Ibrahim R, Rahmat A, Aziz MA, Philip E
    Molecules, 2011 Jun 17;16(6):4994-5007.
    PMID: 21694666 DOI: 10.3390/molecules16064994
    In the present study, two accessions of Centella asiatica (CA03 and CA23) were subjected to gamma radiation to examine the response of these accessions in terms of survival rate, flavonoid contents, leaf gas exchange and leaf mass. Radiation Sensitivity Tests revealed that based on the survival rate, the LD(50) (gamma doses that killed 50% of the plantlets) of the plantlets were achieved at 60 Gy for CA03 and 40 Gy for CA23. The nodal segments were irradiated with gamma rays at does of 30 and 40 Gy for Centella asiatica accession 'CA03' and 20 and 30 Gy for accession 'CA23. The nodal segment response to the radiation was evaluated by recording the flavonoid content, leaf gas exchange and leaf biomass. The experiment was designed as RCBD with five replications. Results demonstrated that the irradiated plantlets exhibited greater total flavonoid contents (in eight weeks) significantly than the control where the control also exhibited the highest total flavonoid contents in the sixth week of growth; 2.64 ± 0.02 mg/g DW in CA03 and 8.94 ± 0.04 mg/g DW in CA23. The total flavonoid content was found to be highest after eight weeks of growth, and this, accordingly, stands as the best time for leaf harvest. Biochemical differentiation based on total flavonoid content revealed that irradiated plantlets in CA23 at 20 and 30 Gy after eight weeks contained the highest total flavonoid concentrations (16.827 ± 0.02; 16.837 ± 0.008 mg/g DW, respectively) whereas in CA03 exposed to 30 and 40 Gy was found to have the lowest total flavonid content (5.83 ± 0.11; 5.75 ± 0.03 mg/g DW). Based on the results gathered in this study, significant differences were found between irradiated accessions and control ones in relation to the leaf gas. The highest PN and gs were detected in CA23 as control followed by CA23 irradiated to 20Gy (CA23G20) and CA23G30 and the lowest PN and gs were observed in CA03 irradiated to 40Gy (CA03G40). Moreover, there were no significant differences in terms of PN and gs among the irradiated plants in each accession. The WUE of both irradiated accessions of Centella asiatica were reduced as compared with the control plants (p < 0.01) while Ci and E were enhanced. There were no significant differences in the gas exchange parameters among radiated plants in each accession. Moreover, malondialdehyde (MDA) of accessions after gamma treatments were significantly higher than the control, however, flavonoids which were higher concentration in irradiated plants can scavenge surplus free radicals. Therefore, the findings of this study have proven an efficient method of in vitro mutagenesis through gamma radiation based on the pharmaceutical demand to create economically superior mutants of C. asiatica. In other words, the results of this study suggest that gamma irradiation on C. asiatica can produce mutants of agricultural and economical importance.
    Matched MeSH terms: Plant Leaves/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links