Displaying publications 1 - 20 of 833 in total

Abstract:
Sort:
  1. Asdarina, Y., Abdurrahman, H.N., Amirah, N.F.S., Natrah, S.A.R., Norasmah, M.M., Zulkafli, H.
    MyJurnal
    Increasing demands in palm oil industry hence resulting the production of palm oil to increase. It is then creating a major problem in disposing the waste to be treat in appropriate ways. The governments are forced to look for alternative technology for the palm oil mill effluent (POME) treatment because the demand of oil increases with the awareness on increasing environmental issue. Therefore, a new technology must be found in order to reduce energy consumption, to meet legal requirements on emission and for cost reduction and also increased quality of water treatment. Membrane Anaerobic System (MAS) is a promising alternative way to overcome these issues. In this study, the efficiency of the MAS performance increases to 99.03% in ten days operation. The application of Monod, Contois and Chen & Hashimoto models were used to analyze the performance of MAS for treating POME. The results from the experiment show the substrate removal model is well fits for estimation of kinetics membrane anaerobic system. Amongst them, the Contois and Monod models predicted the bio-kinetic reactions of the MAS very well with coefficient of determination (R2>97%) values. The MAS bioreactor was creating to be an improvement method as well as successful biological treatment since the graph shows linearized which is good agreement with reported in literature.
    Matched MeSH terms: Plant Oils
  2. Sultan MT, Butt MS, Karim R, Ahmed W, Kaka U, Ahmad S, et al.
    PMID: 26385559 DOI: 10.1186/s12906-015-0853-7
    Nigella sativa is an important component of several traditional herbal preparations in various countries. It finds its applications in improving overall health and boosting immunity. The current study evaluated the role of fixed and essential oil of Nigella sativa against potassium bromate induced oxidative stress with special reference to modulation of glutathione redox enzymes and myeloperoxidase.
    Matched MeSH terms: Plant Oils/pharmacology
  3. Cazzolla Gatti R, Liang J, Velichevskaya A, Zhou M
    Sci Total Environ, 2019 Feb 20;652:48-51.
    PMID: 30359800 DOI: 10.1016/j.scitotenv.2018.10.222
    The globalization of the palm oil trade poses a menace to the ecosystem integrity of Southeast Asia. In this short communication, we briefly discuss why palm oil certifications may have failed as an effective means to halt forest degradation and biodiversity loss. From a comparison of multiple new datasets, we analysed recent tree loss in Indonesia, Malaysia, and Papua New Guinea, and discovered that, from 2001 to 2016, about 40% of the area located in certified concessions suffered from habitat degradation, deforestation, fires, or other tree damages. Certified concessions have been subject to more tree removals than non-certified ones. We also detect significant tree loss before and after the start of certification schemes. Beyond non-governmental organisations' concern that Roundtable on Sustainable Palm Oil (RSPO) and Palm Oil Innovation Group (POIG) certifications allow ongoing clearance of any forest not identified as of high conservation values (HCV) or high carbon stock (HCS), we suggest an alarming and previously overlooked situation, such as that current "sustainable palm oil" is often associated with recent habitat degradation and forest loss. In other words, certified palm oil production may not be so sustainable.
    Matched MeSH terms: Plant Oils
  4. Zhang Y, Yan L, Qiao X, Chi L, Niu X, Mei Z, et al.
    J Environ Sci (China), 2008;20(5):558-64.
    PMID: 18575108
    Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.
    Matched MeSH terms: Plant Oils*
  5. Balan WS, Janaun J, Chung CH, Semilin V, Zhu Z, Haywood SK, et al.
    J Hazard Mater, 2021 02 15;404(Pt B):124092.
    PMID: 33091694 DOI: 10.1016/j.jhazmat.2020.124092
    In this study, carbon-silica based acid catalysts derived from rice husks (RH) were successfully synthesised using microwave (MW) technology. The results showed that MW sulphonation produced Sulphur (S) content of 17.2-18.5 times higher than in raw RH. Fourier-transform Infrared Spectroscopy (FTIR) showed peak at 1035 cm-1 which corresponded to O˭S˭O stretching of sulphonic (-SO3H) group. XRD showed sulfonated RH catalysts (SRHCs) have amorphous structure, and through SEM, broadening of the RH voids and also formation of pores is observed. RH600 had the highest surface area of 14.52 m2/g. SRHCs showed high catalytic activity for esterification of oleic acid with methanol with RH600 had the highest initial formation rate (6.33 mmolL-1min-1) and yield (97%). The reusability of the catalyst showed gradually dropped yield of product for every recycle, which might be due to leaching of -SO3H. Finally, esterification of oil recovered from palm oil mill effluent (POME) with methanol achieved a conversion of 87.3% free fatty acids (FFA) into fatty acid methyl esters (FAME).
    Matched MeSH terms: Plant Oils
  6. Semilin V, Janaun J, Chung CH, Touhami D, Haywood SK, Chong KP, et al.
    J Hazard Mater, 2021 02 15;404(Pt B):124144.
    PMID: 33212411 DOI: 10.1016/j.jhazmat.2020.124144
    Residual palm oil that goes into the river untreated can become detrimental to the environment. Residual oil discharge during milling process into palm oil mill effluent (POME) is unavoidable. About 1 wt% of residual oil in POME causes major problems to the mills, in terms of environment, wastewater treatment and economy losses. This paper reports the recovery of residual oil from POME by adsorption on polypropylene micro/nanofiber (PP-MNF) and desorption of oil by hands pressing, and oil extraction from the PP-MNF using solvent and supercritical-CO2 extraction techniques. The characterization of the PP-MNF and the quality of oil extracted were analyzed using analytical instruments. The reusability of the PP-MNF was also investigated. The experimental results showed the adsorption capacity of the PP-MNF was 28.65 g of oil/g of PP-MNF on average using refined palm oil, whilst recovery of oil from POME was 10.93 g of oil/g of PP-MNF. The extraction yield of oil from PP-MNF using hand pressing was 89.62%. The extraction of residual oil from the pressed PP-MNF showed comparable yield between solvent and supercritical CO2 techniques. The quality of recovered oil was similar with the quality of the crude oil, and no trace of polypropylene contamination was detected in the oil recovered. The PP-MNF showed no significant physical change after the extraction process. In conclusion, the PP-MNF has great potential to be used commercially in residual oil recovery from POME.
    Matched MeSH terms: Plant Oils
  7. Sadrolhosseini AR, Moksin MM, Nang HL, Norozi M, Yunus WM, Zakaria A
    Int J Mol Sci, 2011;12(4):2100-11.
    PMID: 21731429 DOI: 10.3390/ijms12042100
    In this study, optical and thermal properties of normal grade and winter grade palm oil biodiesel were investigated. Surface Plasmon Resonance and Photopyroelectric technique were used to evaluate the samples. The dispersion curve and thermal diffusivity were obtained. Consequently, the variation of refractive index, as a function of wavelength in normal grade biodiesel is faster than winter grade palm oil biodiesel, and the thermal diffusivity of winter grade biodiesel is higher than the thermal diffusivity of normal grade biodiesel. This is attributed to the higher palmitic acid C(16:0) content in normal grade than in winter grade palm oil biodiesel.
    Matched MeSH terms: Plant Oils/chemistry
  8. Sallehan Ismail, Zaiton Yaacob
    MyJurnal
    The development of a new, low-cost building material that is composed of non-fired, pressed laterite bricks incorporating oil palm empty fruit bunches (OPEFB) fibre was investigated in this study. The main aim of this research was to study the physical and mechanical properties of laterite brick reinforced with OPEFB fibre, including dimensions, weight, density, water absorption and compressive strength. The tests were carried out according to BS 3921:1985 for water absorption and compressive strength tests. The mix proportion of the control bricks was 70% soil, 24% sand, and 6% cement. Meanwhile, the OPEFB fibre contents ranged from 1% to 5% by weight of cement. The specimens were taken from a total of 120 bricks. The findings withdrawn from this research were: firstly, the density of laterite bricks was decreased with the increase in the OPEFB fibre content of the bricks. Secondly, it was found that the addition of the OPEFB fibres improved the compressive strength of the bricks, and the maximum compressive strength determined in this study for bricks was with 3% fibre content. Finally, the water absorption results indicated a small increase in water absorption with the increase in the OPEFB fibre content in laterite bricks.
    Matched MeSH terms: Plant Oils
  9. Lalang Buana, Ahmad Mahir Razali, Zainodin Haji Jubok
    The changes on the vegetables oil trading environment might change the foundation of palm oil pricing and induce a structural change to the price model. Failing to take it account the structural change in a data series might lead to misspecification of the actual model. This study, however, showed that structural change was not present in the monthly, January 1983 to July 1995, palm oil price, but it was present on the unconditional variance. The underlying model of this series was ARIMA (3, 1, 0) with ARCH (1). The critical change of the unconditional variance took place in April 1989.
    Perubahan dalam suasana perdagangan minyak sayuran boleh mengubah asas harga minyak kelapa sawit. Seterusnya ia merangsang perubahan dalam struktur model harga minyak tersebut. Kegagalan untuk mengambil kira perubahan struktur dalam siri data menjadikan model itu tidak menepati spesifikasi daripada model sebenar. Kajian ini mendapati bahawa perubahan struktur tidak berlaku bagi data harga minyak sawit dari Januari 1983 hingga Julai 1995. Tetapi perubahan berlaku pada varians tidak bersyaratnya. Model asas bagi siri ini adalah ARIMA (3,1,0) dengan ARCH(1). Didapati juga bahawa perubahan yang kritikal bagi varians tidak bersyarat berlaku pada bulan April 1989.
    Matched MeSH terms: Plant Oils
  10. Norhafiz Azis, Yee Von Thien, Robiah Yunus, Zaini Yaakub
    MyJurnal
    In recent years, vegetable oil such as Palm Oil (PO) has been identified as a potential alternative dielectric insulating fluid for transformers. It is biodegradable, non-toxic and has high flash and fire points. In this paper, a study on the positive lightning impulse breakdown voltages of PO under non-uniform field is carried out. The testing was carried out using needle-plane electrodes configuration at gap distances of 25 mm and 50 mm. Rising voltage, 1 and 3 shots per step testing methods were used and 3 types of Refined Bleach and Deodorized Palm Oil (RBDPO) and Mineral Oil (MO) were examined. It was found there is no significant effect on the breakdown voltages of all samples. The breakdown voltages of all RBDPO at 50% probability are comparable with MO. At 1% probability and gap distance of 50 mm, the breakdown voltages of all RBDPO are lower than MO.
    Matched MeSH terms: Plant Oils
  11. Faez Sharif, Muhajir Hamid, Amin Ismail, Zainah Adam
    MyJurnal
    Hypoglycaemic and antihyperglycemic activity of oil palm Elaeis guineensis fruit extract on normal and Streptozotocininduced
    diabetic rats was studied. The oil palm fruit extract (OPF) were administered orally at different concentrations (100,
    200 and 500 mg kg-1 b.w.) in fasting and post-prandial rats. Hypoglycaemia was not observed in the group of normal rats
    treated with OPF. In fasting rats, OPF (500 mg kg-1 b.w.) has caused the blood glucose level (BGL) to reduce significantly.
    For post-prandial diabetic rats, the antihyperglycemic activity was observed after OPF treatment at concentrations 200
    and 500 mg kg-1. Chronic OPF treatments (for 28 days) had increased the diabetic rat’s body weight and reduced BGL as
    well as improved plasma insulin secretion. The result of this study suggests E. guineensis palm fruit extract show evidence
    of antihyperglycemic properties from the reduction of the BGL in diabetic rats.
    Matched MeSH terms: Plant Oils
  12. Jahurul MHA, Shian OK, Sharifudin MS, Hasmadi M, Lee JS, Mansoor AH, et al.
    J Food Sci Technol, 2021 Mar;58(3):902-910.
    PMID: 33678873 DOI: 10.1007/s13197-020-04604-1
    The objective of this study was to optimize the extraction of oil from pre-dried roselle seeds using response surface methodology (RSM). We also determined the oxidative stability of oil extracted from oven and freeze-dried roselle seed in terms of iodine value (IV), free fatty acid (FFA) value, peroxide value (PV), P-anisidine and total oxidation values (TOTOX value). The RSM was designated based on the central composite design with the usage of three optimum parameters ranged from 8 to 16 g of sample weight, 250-350 mL of solvent volume, and 6-8 h of extraction time. The highest oil yielded from roselle seed using the optimization process was 22.11% with the parameters at sample weight of 14.4 g, solvent volume of 329.70 mL, and extraction time of 7.6 h. Besides, the oil extracted from the oven dried roselle seed had the values of 89.04, 2.11, 4.13, 3.76 and 12.03 for IV, FFA, PV, P-anisidine, and TOTOX values, respectively. While for the oil extracted from freeze-dried roselle seed showed IV of 90.31, FFA of 1.64, PV of 2.47, P-anisidine value of 3.48, and TOTOX value of 8.42. PV and TOTOX values showed significant differences whereas; IV, FFA, and P-anisidine values showed no significant differences between the oven and freeze-dried roselle seed oils.
    Matched MeSH terms: Plant Oils
  13. Tamrin KF, Zahrim AY
    Environ Sci Pollut Res Int, 2017 Jul;24(19):15863-15869.
    PMID: 28013466 DOI: 10.1007/s11356-016-8235-3
    The main limitation of a conventional palm oil mill effluent (POME) ponding system lies in its inability to completely decolourise effluent. Decolourisation of effluent is aesthetically and environmentally crucial. However, determination of the optimum process parameters is becoming more complex with the increase of the number of coagulants and responses. The primary objective of this study is to determine the optimum polymeric coagulant in the coagulation-flocculation process of palm oil mill effluent by considering all output responses, namely lignin-tannin, low molecular mass coloured compounds (LMMCC), chemical oxygen demand (COD), ammonia nitrogen (NH3-N), pH and conductivity. Here, multiple-objective optimisation on the basis of ratio analysis (MOORA) is employed to discretely measure multiple response characteristics of five different types of coagulants as a function of assessment value. The optimum coagulant is determined based on the highest assessment value and was identified as QF25610 (cationic polyacrylamide). On the other hand, the lowest assessment value was represented by AN1800 (anionic polyacrylamide). This study highlights the simplicity of MOORA approach in handling various input and output parameters, and it may be useful in other wastewater treatment processes as well.
    Matched MeSH terms: Plant Oils*
  14. Mohd Ridzuan J, Aziah BD, Zahiruddin WM
    Int J Occup Environ Med, 2016 07;7(3):156-63.
    PMID: 27393322 DOI: 10.15171/ijoem.2016.699
    BACKGROUND: Leptospirosis is a zoonotic disease that is recognized as a re-emerging global public health issue, especially in tropical and subtropical countries. Malaysia, for example, has increasingly registered leptospirosis cases, outbreaks, and fatalities over the past decade. One of the major industries in the country is the palm oil sector, which employs numerous agricultural workers. These laborers are at a particularly high risk of contracting the disease.

    OBJECTIVE: To identify the work environment-related risk factors for leptospirosis infection among oil palm plantation workers in Malaysia.

    METHODS: A cross-sectional study involving 350 workers was conducted. The participants were interviewed and administered a microscopic agglutination test. Seropositivity was determined using a cut-off titer of ≥1:100.

    RESULTS: 100 of 350 workers tested positive for leptospiral antibodies, hence, a seroprevalence of 28.6% (95% CI 23.8% to 33.3%). The workplace environment-related risk factors significantly associated with seropositive leptospirosis were the presence of cows in plantations (adjusted OR 4.78, 95% CI 2.76 to 8.26) and the presence of a landfill in plantations (adjusted OR 2.04, 95% CI 1.22 to 3.40).

    CONCLUSION: Preventing leptospirosis incidence among oil palm plantation workers necessitates changes in policy on work environments. Identifying modifiable factors may also contribute to the reduction of the infection.

    Matched MeSH terms: Plant Oils
  15. Munir M, Ahmad M, Rehan M, Saeed M, Lam SS, Nizami AS, et al.
    Environ Res, 2021 02;193:110398.
    PMID: 33127396 DOI: 10.1016/j.envres.2020.110398
    This study focused on producing high quality and yield of biodiesel from novel non-edible seed oil of abundantly available wild Raphnus raphanistrum L. using an efficient, recyclable and eco-friendly copper modified montmorillonite (MMT) clay catalyst. The maximum biodiesel yield of 83% was obtained by base catalyzed transesterification process under optimum operating conditions of methanol to oil ratio of 15:1, reaction temperature of 150 °C, reaction time of 5 h and catalyst loading of 3.5%. The synthesized catalyst and biodiesel were characterized for their structural features and chemical compositions using various state-of-the-art techniques, including x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance (1H, 13C) and gas chromatography-mass spectroscopy. The fuel properties of the biodiesel were estimated including kinematic viscosity (4.36 cSt), density (0.8312 kg/L), flash point (72 °C), acid value (0.172 mgKOH/g) and sulphur content (0.0002 wt.%). These properties were compared and found in good agreement with the International Biodiesel Standards of American (ASTM-951, 6751), European Committee (EN-14214) and China GB/T 20828 (2007). The catalyst was re-used in five consecutive transesterification reactions without losing much catalytic efficiency. Overall, non-edible Raphnus raphanistrum L.. seed oil and Cu doped MMT clay catalyst appeared to be highly active, stable, and cheap contenders for future biofuel industry. However, detailed life cycle assessment (LCA) studies of Raphnus raphanistrum L. seed oil biodiesel are highly recommended to assess the technical, ecological, social and economic challenges.
    Matched MeSH terms: Plant Oils
  16. Aljuboori AH, Uemura Y, Osman NB, Yusup S
    Bioresour Technol, 2014 Nov;171:66-70.
    PMID: 25189510 DOI: 10.1016/j.biortech.2014.08.038
    This study evaluated the potential of bioflocculant production from Aspergillus niger using palm oil mill effluent (POME) as carbon source. The bioflocculant named PM-5 produced by A. niger showed a good flocculating capability and flocculating rate of 76.8% to kaolin suspension could be achieved at 60 h of culture time. Glutamic acid was the most favorable nitrogen source for A. niger in bioflocculant production at pH 6 and temperature 35 °C. The chemical composition of purified PM-5 was mainly carbohydrate and protein with 66.8% and 31.4%, respectively. Results showed the novel bioflocculant (PM-5) had high potential to treat river water from colloids and 63% of turbidity removal with the present of Ca(2+) ion.
    Matched MeSH terms: Plant Oils/chemistry*
  17. Rashid JI, Samat N, Yusoff WM
    Pak J Biol Sci, 2013 Sep 15;16(18):933-8.
    PMID: 24502150
    Microbial mannanases have become biotechnologically important in industry but their application is limited due to high production cost. In presents study, the extraction of mannanase from fermented Palm Kernel Cake (PKC) in the Solid State Fermentation (SSF) was optimized. Local isolate of Aspergillus terreus SUK-1 was grown on PKC in (SSF) using column bioreactor. The optimum condition were achieved after two washes of fermented PKC by adding of 10% glycerol (v/v) soaked for 10 h at the room temperature with solvent to ratio, 1:5 (w/v).
    Matched MeSH terms: Plant Oils/metabolism*
  18. Chuen OC, Yusoff S
    J Air Waste Manag Assoc, 2012 Mar;62(3):299-306.
    PMID: 22482288
    This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.
    Matched MeSH terms: Plant Oils/chemistry*
  19. Yaacof N, Qamaruz Zaman N, Yusup Y, Yusoff S
    Environ Sci Pollut Res Int, 2019 Aug;26(23):24286-24299.
    PMID: 31214886 DOI: 10.1007/s11356-019-05517-z
    Malaysia is the second-largest producer and exporter of palm oil amounting to 39% of world palm oil production and 44% of world exports (MPOB, 2014). An enormous amount of palm oil mill effluent is released during palm oil milling, and the effluent causes a major odor problem. Many methods, such as biofiltering, can be adopted to manage the malodor. However, these methods are expensive and require high maintenance. The separation distance method can be used as an alternative due to its low cost and effectiveness. This research was conducted to verify the performance of three different methods, namely, in-field monitoring by using an olfactometer, CALPUFF model, and Gaussian plume model. Given that no research has compared the three methods, this study examined the effectiveness of the methods and determined which among them is suitable for use in Malaysia. The appropriate separation distances were 1.3 km for in-field monitoring, 1.2 km for the CALPUFF model, and 0.5 for the Gaussian plume model. These different values of separation distance were due to the various approaches involved in each method. This research determined an appropriate means to establish a proper separation distance for reducing odor nuisance in areas around palm oil mills.
    Matched MeSH terms: Plant Oils
  20. Shahla S, Ngoh GC, Yusoff R
    Bioresour Technol, 2012 Jan;104:1-5.
    PMID: 22154586 DOI: 10.1016/j.biortech.2011.11.010
    In this paper, the kinetics of palm oil ethanolysis with various models have been investigated in a temperature range of 25-55 °C. The highest yield was achieved when the conversion to ethyl ester was 97.5±0.5% in the stated temperature range, using ethanol:oil molar ratio of 12:1, and 1.0 wt.% sodium ethoxide. The level of conformity of the reaction with reversible second order, irreversible second order and first order kinetic models were evaluated by means of the R(2) values of the linear curves. The ethanolysis showed the best conformity with irreversible second order kinetic model with 92-98% level of confidence. The reaction rate constants were within 0.018-0.088 dm(3)/mol min and the activation energy of the reaction was 42.36 kJ/mol.
    Matched MeSH terms: Plant Oils/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links