Displaying publications 1 - 20 of 61 in total

Abstract:
Sort:
  1. Tan ES, Ying-Yuan N, Gan CY
    Food Chem, 2014;152:447-55.
    PMID: 24444960 DOI: 10.1016/j.foodchem.2013.12.008
    Optimisation of protein extraction yield from pinto bean was investigated using response surface methodology. The maximum protein yield of 54.8 mg/g was obtained with the optimal conditions of: temperature=25 °C, time=1 h and buffer-to-sample ratio=20 ml/g. PBPI was found to obtain high amount of essential amino acids such as leucine, lysine, and phenylalanine compared to SPI. The predominant proteins of PBPI were vicilin and phytohemagglutinins whereas the predominant proteins of SPI were glycinin and conglycinins. Significantly higher emulsifying capacity was found in PBPI (84.8%) compared to SPI (61.9%). Different isoelectric points were found in both PBPI (4.0-5.5) and SPI (4.0-5.0). Also, it was found that PBPI obtained a much higher denaturation temperature of 110.2 °C compared to SPI (92.5 °C). Other properties such as structural information, gelling capacity, water- and oil-holding capacities, emulsion stability as well as digestibility were also reported.
    Matched MeSH terms: Plant Proteins/chemistry*
  2. Fung WY, Yuen KH, Liong MT
    J Agric Food Chem, 2011 Aug 10;59(15):8140-7.
    PMID: 21711050 DOI: 10.1021/jf2009342
    This study explored the potential of soluble dietary fiber (SDF) from agrowastes, okara (soybean solid waste), oil palm trunk (OPT), and oil palm frond (OPF) obtained via alkali treatment, in the nanoencapsulation of Lactobacillus acidophilus . SDF solutions were amended with 8% poly(vinyl alcohol) to produce nanofibers using electrospinning technology. The spinning solution made from okara had a higher pH value at 5.39 ± 0.01 and a higher viscosity at 578.00 ± 11.02 mPa·s (P < 0.05), which resulted in finer fibers. FTIR spectra of nanofibers showed the presence of hemicellulose material in the SDF. Thermal behavior of nanofibers suggested possible thermal protection of probiotics in heat-processed foods. L. acidophilus was incorporated into the spinning solution to produce nanofiber-encapsulated probiotic, measuring 229-703 nm, visible under fluorescence microscopy. Viability studies showed good bacterial survivability of 78.6-90% under electrospinning conditions and retained viability at refrigeration temperature during the 21 day storage study.
    Matched MeSH terms: Plant Proteins/chemistry*
  3. Zarei M, Abidin NBZ, Auwal SM, Chay SY, Haiyee ZA, Sikin AM, et al.
    Biomolecules, 2019 10 04;9(10).
    PMID: 31590308 DOI: 10.3390/biom9100569
    Three novel peptide sequences identified from palm kernel cake (PKC) generated protein hydrolysate including YLLLK, WAFS and GVQEGAGHYALL were used for stability study against angiotensin-converting enzyme (ACE), ACE-inhibition kinetics and molecular docking studies. Results showed that the peptides were degraded at different cleavage degrees of 94%, 67% and 97% for YLLLK, WAFS and GVQEGAGHYALL, respectively, after 3 h of incubation with ACE. YLLLK was found to be the least stable (decreased ACE-inhibitory activity) compared to WAFS and GVQEGAGHYALL (increased ACE-inhibitory activity). YLLLK showed the lowest Ki (1.51 mM) in inhibition kinetics study when compared to WAFS and GVQEGAGHYALL with Ki of 2 mM and 3.18 mM, respectively. In addition, ACE revealed the lowest Kmapp and Vmaxapp and higher catalytic efficiency (CE) in the presence of YLLLK at different concentrations, implying that the enzyme catalysis decreased and hence the inhibition mode increased. Furthermore, YLLLK showed the lowest docking score of -8.224 and seven interactions with tACE, while peptide GVQEGAGHYALL showed the higher docking score of -7.006 and five interactions with tACE.
    Matched MeSH terms: Plant Proteins/chemistry*
  4. Lau BY, Clerens S, Morton JD, Dyer JM, Deb-Choudhury S, Ramli US
    Protein J, 2016 Apr;35(2):163-70.
    PMID: 26993480 DOI: 10.1007/s10930-016-9655-0
    The details of plant lipid metabolism are relatively well known but the regulation of fatty acid production at the protein level is still not understood. Hence this study explores the importance of phosphorylation as a mechanism to control the activity of fatty acid biosynthetic enzymes using low and high oleic acid mesocarps of oil palm fruit (Elaeis guineensis variety of Tenera). Adaptation of neutral loss-triggered tandem mass spectrometry and selected reaction monitoring to detect the neutral loss of phosphoric acid successfully found several phosphoamino acid-containing peptides. These peptides corresponded to the peptides from acetyl-CoA carboxylase and 3-enoyl-acyl carrier protein reductase as identified by their precursor ion masses. These findings suggest that these enzymes were phosphorylated at 20th week after anthesis. Phosphorylation could have reduce their activities towards the end of fatty acid biosynthesis at ripening stage. Implication of phosphorylation in the regulation of fatty acid biosynthesis at protein level has never been reported.
    Matched MeSH terms: Plant Proteins/chemistry
  5. Zakaria II, Rahman RN, Salleh AB, Basri M
    Appl Biochem Biotechnol, 2011 Sep;165(2):737-47.
    PMID: 21633820 DOI: 10.1007/s12010-011-9292-1
    Flavonoids are secondary metabolites synthesized by plants shown to exhibit health benefits such as anti-inflammatory, antioxidant, and anti-tumor effects. Thus, due to the importance of this compound, several enzymes involved in the flavonoid pathway have been cloned and characterized in Escherichia coli. However, the formation of inclusion bodies has become a major disadvantage of this approach. As an alternative, chalcone synthase from Physcomitrella patens was secreted into the medium using a bacteriocin release protein expression vector. Secretion of P. patens chalcone synthase into the culture media was achieved by co-expression with a psW1 plasmid encoding bacteriocin release protein in E. coli Tuner (DE3) plysS. The optimized conditions, which include the incubation of cells for 20 h with 40 ng/ml mitomycin C at OD(600) induction time of 0.5 was found to be the best condition for chalcone synthase secretion.
    Matched MeSH terms: Plant Proteins/chemistry
  6. Poobathy R, Sinniah UR, Xavier R, Subramaniam S
    Appl Biochem Biotechnol, 2013 Jul;170(5):1066-79.
    PMID: 23640259 DOI: 10.1007/s12010-013-0241-z
    Dendrobium sonia-28 is an important ornamental orchid in the Malaysian flower industry. However, the genus faces both low germination rates and the risk of producing heterozygous progenies. Cryopreservation is currently the favoured long-term storage method for orchids with propagation problems. Vitrification, a frequently used cryopreservation technique, involves the application of pretreatments and cryoprotectants to protect and recover explants during and after storage in liquid nitrogen. However, cryopreservation may cause osmotic injuries and toxicity to cryopreserved explants from the use of highly concentrated additives, and cellular injuries from thawing, devitrification and ice formation. Reactive oxygen species (ROS), occurring during dehydration and cryopreservation, may also cause membrane damage. Plants possess efficient antioxidant systems such as the superoxide dismutase (SOD) and catalase (CAT) enzymes to scavenge ROS during low temperature stress. In this study, protocorm-like bodies (PLBs) of Dendrobium sonia-28 were assayed for the total protein content, and both SOD and CAT activities, at each stage of a vitrification exercise to observe for deleterious stages in the protocol. The results indicated that cryopreserved PLBs of Dendrobium sonia-28 underwent excessive post-thawing oxidative stress due to decreased levels of the CAT enzyme at the post-thawing recovery stage, which contributed to the poor survival rates of the cryopreserved PLBs.
    Matched MeSH terms: Plant Proteins/chemistry*
  7. Liew YJM, Lee YK, Khalid N, Rahman NA, Tan BC
    Mol Biotechnol, 2021 Apr;63(4):316-326.
    PMID: 33565047 DOI: 10.1007/s12033-021-00304-z
    Prenylation of aromatic natural products by membrane-bound prenyltransferases (PTs) is an important biosynthesis step of many bioactive compounds. At present, only a few plant flavonoid-related PT genes have been functionally characterized, mainly due to the difficulties of expressing these membrane proteins. Rapid and effective methods to produce functional plant membrane proteins are thus indispensable. Here, we evaluated expression systems through cell-based and cell-free approaches to express Boesenbergia rotunda BrPT2 encoding a membrane-bound prenyltransferase. We attempted to express BrPT2 in Escherichia coli and tobacco plants but failed to detect this protein using the Western-blot technique, whereas an intact single band of 43 kDa was detected when BrPT2 was expressed using a cell-free protein synthesis system (PURE). Under in vitro enzymatic condition, the synthesized BrPT2 successfully catalyzed pinostrobin chalcone to pinostrobin. Molecular docking analysis showed that pinostrobin chalcone interacts with BrPT2 at two cavities: (1) the main binding site at the central cavity and (2) the allosteric binding site located away from the central cavity. Our findings suggest that cell-free protein synthesis could be an alternative for rapid production of valuable difficult-to-express membrane proteins.
    Matched MeSH terms: Plant Proteins/chemistry
  8. Tam SM, Samipak S, Britt A, Chetelat RT
    Genetica, 2009 Dec;137(3):341-54.
    PMID: 19690966 DOI: 10.1007/s10709-009-9398-3
    DNA mismatch repair proteins play an essential role in maintaining genomic integrity during replication and genetic recombination. We successfully isolated a full length MSH2 and partial MSH7 cDNAs from tomato, based on sequence similarity between MutS and plant MSH homologues. Semi-quantitative RT-PCR reveals higher levels of mRNA expression of both genes in young leaves and floral buds. Genetic mapping placed MSH2 and MSH7 on chromosomes 6 and 7, respectively, and indicates that these genes exist as single copies in the tomato genome. Analysis of protein sequences and phylogeny of the plant MSH gene family show that these proteins are evolutionarily conserved, and follow the classical model of asymmetric protein evolution. Genetic manipulation of the expression of these MSH genes in tomato will provide a potentially useful tool for modifying genetic recombination and hybrid fertility between wide crosses.
    Matched MeSH terms: Plant Proteins/chemistry
  9. Teh OK, Ramli US
    Mol Biotechnol, 2011 Jun;48(2):97-108.
    PMID: 21113689 DOI: 10.1007/s12033-010-9350-x
    As the world population grows, the demand for food increases. Although vegetable oils provide an affordable and rich source of energy, the supply of vegetable oils available for human consumption is limited by the "fuel vs food" debate. To increase the nutritional value of vegetable oil, metabolic engineering may be used to produce oil crops of desirable fatty acid composition. We have isolated and characterized β-ketoacyl ACP-synthase II (KASII) cDNA from a high-oleic acid palm, Jessenia bataua. Jessenia KASII (JbKASII) encodes a 488-amino acid polypeptide that possesses conserved domains that are necessary for condensing activities. When overexpressed in E. coli, recombinant His-tagged JbKASII was insoluble and non-functional. However, Arabidopsis plants expressing GFP-JbKASII fusions had elevated levels of arachidic acid (C20:0) and erucic acid (C22:1) at the expense of stearic acid (C18:0) and oleic acid (C18:1). Furthermore, JbKASII failed to complement the Arabidopsis KASII mutant, fab1-2. This suggests that the substrate specificity of JbKASII is similar to that of ketoacyl-CoA synthase (KCS), which preferentially elongates stearic and oleic acids, and not palmitic acid. Our results suggest that the KCS-like JbKASII may elongate C18:0 and C18:1 to yield C20:0 and C22:1, respectively. JbKASII may, therefore, be an interesting candidate gene for promoting the production of very long chain fatty acids in transgenic oil crops.
    Matched MeSH terms: Plant Proteins/chemistry*
  10. Kuan YH, Liong MT
    J Agric Food Chem, 2008 Oct 8;56(19):9252-7.
    PMID: 18788708 DOI: 10.1021/jf802011j
    The objective of this study was to evaluate the chemical, physicochemical, and functional properties of agrowastes derived from okara ( Glycine max), corn cob ( Zea mays sp.), wheat straw ( Triticum sp.), and rice husk ( Oryza sativa) for potential applications in foods. The fibrous materials (FM) were treated with alkali to yield fibrous residues (FR). Rice husk contained the highest ash content (FM, 8.56%; FR, 9.04%) and lowest lightness in color (FM, 67.63; FR, 63.46), possibly due to the abundance of mineral constituents. Corn cob contained the highest amount of soluble dietary fiber (SDF), whereas okara had the highest total dietary fiber (TDF). The high dietary fiber fractions of corn cob and okara also contributed to the highest water- and oil-holding capacities, emulsifying activities, and emulsion stabilities for both FM and FR samples. These results indicate that these agrowastes could be utilized as functional ingredients in foods.
    Matched MeSH terms: Plant Proteins/chemistry
  11. Kalhori N, Nulit R, Go R
    Protein J, 2013 Oct;32(7):551-9.
    PMID: 24132392 DOI: 10.1007/s10930-013-9516-z
    Pentose phosphate pathway (PPP) composed of two functionally-connected phases, the oxidative and non-oxidative phase. Both phases catalysed by a series of enzymes. Transketolase is one of key enzymes of non-oxidative phase in which transfer two carbon units from fructose-6-phosphate to erythrose-4-phosphate and convert glyceraldehyde-3-phosphate to xylulose-5-phosphate. In plant, erythrose-4-phosphate enters the shikimate pathway which is produces many secondary metabolites such as aromatic amino acids, flavonoids, lignin. Although transketolase in plant system is important, study of this enzyme is still limited. Until to date, TKT genes had been isolated only from seven plants species, thus, the aim of present study to isolate, study the similarity and phylogeny of transketolase from sugarcane. Unlike bacteria, fungal and animal, PPP is complete in the cytosol and all enzymes are found cytosolic. However, in plant, the oxidative phase found localised in the cytosol but the sub localisation for non-oxidative phase might be restricted to plastid. Thus, this study was conducted to determine subcellular localization of sugarcane transketolase. The isolation of sugarcane TKT was done by reverse transcription polymerase chain reaction, followed by cloning into pJET1.2 vector and sequencing. This study has isolated 2,327 bp length of sugarcane TKT. The molecular phylogenetic tree analysis found that transketolase from sugarcane and Zea mays in one group. Classification analysis found that both plants showed closer relationship due to both plants in the same taxon i.e. family Poaceae. Target P 1.1 and Chloro P predicted that the compartmentation of sugarcane transketolase is localised in the chloroplast which is 85 amino acids are plant plastid target sequence. This led to conclusion that the PPP is incomplete in the cytosol of sugarcane. This study also found that the similarity sequence of sugarcane TKT closely related with the taxonomy plants.
    Matched MeSH terms: Plant Proteins/chemistry*
  12. Tan TC, Cheng LH, Bhat R, Rusul G, Easa AM
    Food Chem, 2014 Jan 1;142:121-8.
    PMID: 24001821 DOI: 10.1016/j.foodchem.2013.07.040
    Composition, physicochemical properties and enzyme inactivation kinetics of coconut water were compared between immature (IMC), mature (MC) and overly-mature coconuts (OMC). Among the samples studied, pH, turbidity and mineral contents for OMC water was the highest, whereas water volume, titratable acidity, total soluble solids and total phenolics content for OMC water were the lowest. Maturity was found to affect sugar contents. Sucrose content was found to increase with maturity, and the reverse trend was observed for fructose and glucose. Enzyme activity assessment showed that polyphenol oxidase (PPO) in all samples was more heat resistant than peroxidase (POD). Compared to IMC and MC, PPO and POD from OMC water showed the lowest thermal resistance, with D83.3°C=243.9s (z=27.9°C), and D83.3°C=129.9s (z=19.5°C), respectively.
    Matched MeSH terms: Plant Proteins/chemistry*
  13. Kurimoto E, Suzuki M, Amemiya E, Yamaguchi Y, Nirasawa S, Shimba N, et al.
    J Biol Chem, 2007 Nov 16;282(46):33252-33256.
    PMID: 17895249 DOI: 10.1074/jbc.C700174200
    Curculin isolated from Curculigo latifolia, a plant grown in Malaysia, has an intriguing property of modifying sour taste into sweet taste. In addition to this taste-modifying activity, curculin itself elicits a sweet taste. Although these activities have been attributed to the heterodimeric isoform and not homodimers of curculin, the underlying mechanisms for the dual action of this protein have been largely unknown. To identify critical sites for these activities, we performed a mutational and structural study of recombinant curculin. Based on the comparison of crystal structures of curculin homo- and heterodimers, a series of mutants was designed and subjected to tasting assays. Mapping of amino acid residues on the three-dimensional structure according to their mutational effects revealed that the curculin heterodimer exhibits sweet-tasting and taste-modifying activities through its partially overlapping but distinct molecular surfaces. These findings suggest that the two activities of the curculin heterodimer are expressed through its two different modes of interactions with the T1R2-T1R3 heterodimeric sweet taste receptor.
    Matched MeSH terms: Plant Proteins/chemistry*
  14. Hassan H, Amiruddin MD, Weckwerth W, Ramli US
    Electrophoresis, 2019 01;40(2):254-265.
    PMID: 30370930 DOI: 10.1002/elps.201800232
    Palm oil is an edible vegetable oil derived from lipid-rich fleshy mesocarp tissue of oil palm (Elaeis guineensis Jacq.) fruit and is of global economic and nutritional relevance. While the understanding of oil biosynthesis in plants is improving, the fundamentals of oil biosynthesis in oil palm still require further investigations. To gain insight into the systemic mechanisms that govern oil synthesis during oil palm fruit ripening, the proteomics approach combining gel-based electrophoresis and mass spectrometry was used to profile protein changes and classify the patterns of protein accumulation during these complex physiological processes. Protein profiles from different stages of fruit ripening at 10, 12, 14, 15, 16, 18 and 20 weeks after anthesis (WAA) were analysed by two-dimensional gel electrophoresis (2DE). The proteome data were then visualised using a multivariate statistical analysis of principal component analysis (PCA) to get an overview of the proteome changes during the development of oil palm mesocarp. A total of 68 differentially expressed protein spots were successfully identified by matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF/TOF) and functionally classified using ontology analysis. Proteins related to lipid production, energy, secondary metabolites and amino acid metabolism are the most significantly changed proteins during fruit development representing potential candidates for oil yield improvement endeavors. Data are available via ProteomeXchange with identifier PXD009579. This study provides important proteome information for protein regulation during oil palm fruit ripening and oil synthesis.
    Matched MeSH terms: Plant Proteins/chemistry
  15. Suwito H, Jumina, Mustofa, Pudjiastuti P, Fanani MZ, Kimata-Ariga Y, et al.
    Molecules, 2014 Dec 19;19(12):21473-88.
    PMID: 25532844 DOI: 10.3390/molecules191221473
    Some chalcones have been designed and synthesized using Claisen-Schmidt reactions as inhibitors of the ferredoxin and ferredoxin-NADP+ reductase interaction to pursue a new selective antimalaria agent. The synthesized compounds exhibited inhibition interactions between PfFd-PfFNR in the range of 10.94%-50%. The three strongest inhibition activities were shown by (E)-1-(4-aminophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (50%), (E)-1-(4-aminophenyl)-3-(2,4-dimethoxyphenyl)prop-2-en-1-one (38.16%), and (E)-1-(4-aminophenyl)-3-(2,3-dimethoxyphenyl)prop-2-en-1-one (31.58%). From the docking experiments we established that the amino group of the methoxyamino chlacone derivatives plays an important role in the inhibition activity by electrostatic interaction through salt bridges and that it forms more stable and better affinity complexes with FNR than with Fd.
    Matched MeSH terms: Plant Proteins/chemistry
  16. Amid BT, Mirhosseini H
    Molecules, 2012 Sep 10;17(9):10875-92.
    PMID: 22964503 DOI: 10.3390/molecules170910875
    Natural biopolymers from plant sources contain many impurities (e.g., fat, protein, fiber, natural pigment and endogenous enzymes), therefore, an efficient purification process is recommended to minimize these impurities and consequently improve the functional properties of the biopolymer. The main objective of the present study was to investigate the effect of different purification techniques on the yield, protein content, solubility, water- and oil-holding capacity of a heteropolysaccharide-protein biopolymer obtained from durian seed. Four different purification methods using different chemicals and solvents (i.e., A (isopropanol and ethanol), B (isopropanol and acetone), C (saturated barium hydroxide), and D (Fehling solution)] to liberate the purified biopolymer from its crude form were compared. In most cases, the purification process significantly (p < 0.05) improved the physicochemical properties of heteropolysaccharide-protein biopolymer from durian fruit seed. The present work showed that the precipitation using isopropanol and acetone (Method B) resulted in the highest purification yield among all the tested purification techniques. The precipitation using saturated barium hydroxide (Method C) led to induce the highest solubility and relatively high capacity of water absorption. The current study reveals that the precipitation using Fehling solution (Method D) most efficiently eliminates the protein fraction, thus providing more pure biopolymer suitable for biological applications.
    Matched MeSH terms: Plant Proteins/chemistry*
  17. Ibrahim MH, Jaafar HZ, Rahmat A, Rahman ZA
    Int J Mol Sci, 2011;12(8):5238-54.
    PMID: 21954355 DOI: 10.3390/ijms12085238
    A split plot 3 by 4 experiment was designed to examine the impact of 15-week variable levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) on the characteristics of total flavonoids (TF), total phenolics (TP), total non structurable carbohydrate (TNC), net assimilation rate, leaf chlorophyll content, carbon to nitrogen ratio (C/N), phenyl alanine lyase activity (PAL) and protein content, and their relationships, in three varieties of Labisia pumila Blume (alata, pumila and lanceolata). The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effect observed. As nitrogen levels increased from 0 to 270 kg N/ha, the production of TNC was found to decrease steadily. Production of TF and TP reached their peaks under 0 followed by 90, 180 and 270 kg N/ha treatment. However, net assimilation rate was enhanced as nitrogen fertilization increased from 0 to 270 kg N/ha. The increase in production of TP and TF under low nitrogen levels (0 and 90 kg N/ha) was found to be correlated with enhanced PAL activity. The enhancement in PAL activity was followed by reduction in production of soluble protein under low nitrogen fertilization indicating more availability of amino acid phenyl alanine (phe) under low nitrogen content that stimulate the production of carbon based secondary metabolites (CBSM). The latter was manifested by high C/N ratio in L. pumila plants.
    Matched MeSH terms: Plant Proteins/chemistry
  18. Azri FA, Selamat J, Sukor R, Yusof NA, Ahmad Raston NH, Nordin N, et al.
    Molecules, 2019 Aug 29;24(17).
    PMID: 31470528 DOI: 10.3390/molecules24173141
    This work presents a simple green synthesis of gold nanoparticles (AuNPs) by using an aqueous extract of Etlingera elatior (torch ginger). The metabolites present in E. elatior, including sugars, proteins, polyphenols, and flavonoids, were known to play important roles in reducing metal ions and supporting the subsequent stability of nanoparticles. The present work aimed to investigate the ability of the E. elatior extract to synthesise AuNPs via the reduction of gold (III) chloride hydrate and characterise the properties of the nanoparticles produced. The antioxidant properties of the E. elatior extract were evaluated by analysing the total phenolic and total flavonoid contents. To ascertain the formation of AuNPs, the synthesised particles were characterised using the ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) microscopy, and dynamic light scattering (DLS) measurement. The properties of the green synthesised AuNPs were shown to be comparable to the AuNPs produced using a conventional reducing agent, sodium citrate. The UV-Vis measured the surface plasmon resonance of the AuNPs, and a band centered at 529 nm was obtained. The FTIR results proved that the extract contained the O-H functional group that is responsible for capping the nanoparticles. The HRTEM images showed that the green synthesized AuNPs were of various shapes and the average of the nanoparticles' hydrodynamic diameter was 31.5 ± 0.5 nm. Meanwhile, the zeta potential of -32.0 ± 0.4 mV indicates the high stability and negative charge of the AuNPs. We further successfully demonstrated that using the green synthesised AuNPs as the nanocomposite to modify the working surface of screen-printed carbon electrode (SPCE/Cs/AuNPs) enhanced the rate of electron transfer and provided a sensitive platform for the detection of Cu(II) ions.
    Matched MeSH terms: Plant Proteins/chemistry
  19. Lau BYC, Othman A
    PLoS One, 2019;14(8):e0221052.
    PMID: 31415606 DOI: 10.1371/journal.pone.0221052
    Protein solubility is a critical prerequisite to any proteomics analysis. Combination of urea/thiourea and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) have been routinely used to enhance protein solubilization for oil palm proteomics studies in recent years. The goals of these proteomics analysis are essentially to complement the knowledge regarding the regulation networks and mechanisms of the oil palm fatty acid biosynthesis. Through omics integration, the information is able to build a regulatory model to support efforts in improving the economic value and sustainability of palm oil in the global oil and vegetable market. Our study evaluated the utilization of sodium deoxycholate as an alternative solubilization buffer/additive to urea/thiourea and CHAPS. Efficiency of urea/thiourea/CHAPS, urea/CHAPS, urea/sodium deoxycholate and sodium deoxycholate buffers in solubilizing the oil palm (Elaeis guineensis var. Tenera) mesocarp proteins were compared. Based on the protein yields and electrophoretic profile, combination of urea/thiourea/CHAPS were shown to remain a better solubilization buffer and additive, but the differences with sodium deoxycholate buffer was insignificant. A deeper mass spectrometric and statistical analyses on the identified proteins and peptides from all the evaluated solubilization buffers revealed that sodium deoxycholate had increased the number of identified proteins from oil palm mesocarps, enriched their gene ontologies and reduced the number of carbamylated lysine residues by more than 67.0%, compared to urea/thiourea/CHAPS buffer. Although only 62.0% of the total identified proteins were shared between the urea/thiourea/CHAPS and sodium deoxycholate buffers, the importance of the remaining 38.0% proteins depends on the applications. The only observed limitations to the application of sodium deoxycholate in protein solubilization were the interference with protein quantitation and but it could be easily rectified through a 4-fold dilution. All the proteomics data are available via ProteomeXchange with identifier PXD013255. In conclusion, sodium deoxycholate is applicable in the solubilization of proteins extracted from oil palm mesocarps with higher efficiency compared to urea/thiourea/CHAPS buffer. The sodium deoxycholate buffer is more favorable for proteomics analysis due to its proven advantages over urea/thiourea/CHAPS buffer.
    Matched MeSH terms: Plant Proteins/chemistry
  20. Ee SF, Mohamed-Hussein ZA, Othman R, Shaharuddin NA, Ismail I, Zainal Z
    ScientificWorldJournal, 2014;2014:840592.
    PMID: 24678279 DOI: 10.1155/2014/840592
    Polygonum minus is an aromatic plant, which contains high abundance of terpenoids, especially the sesquiterpenes C15H24. Sesquiterpenes were believed to contribute to the many useful biological properties in plants. This study aimed to functionally characterize a full length sesquiterpene synthase gene from P. minus. P. minus sesquiterpene synthase (PmSTS) has a complete open reading frame (ORF) of 1689 base pairs encoding a 562 amino acid protein. Similar to other sesquiterpene synthases, PmSTS has two large domains: the N-terminal domain and the C-terminal metal-binding domain. It also consists of three conserved motifs: the DDXXD, NSE/DTE, and RXR. A three-dimensional protein model for PmSTS built clearly distinguished the two main domains, where conserved motifs were highlighted. We also constructed a phylogenetic tree, which showed that PmSTS belongs to the angiosperm sesquiterpene synthase subfamily Tps-a. To examine the function of PmSTS, we expressed this gene in Arabidopsis thaliana. Two transgenic lines, designated as OE3 and OE7, were further characterized, both molecularly and functionally. The transgenic plants demonstrated smaller basal rosette leaves, shorter and fewer flowering stems, and fewer seeds compared to wild type plants. Gas chromatography-mass spectrometry analysis of the transgenic plants showed that PmSTS was responsible for the production of β -sesquiphellandrene.
    Matched MeSH terms: Plant Proteins/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links