Displaying publications 1 - 20 of 88 in total

Abstract:
Sort:
  1. Britton S, Cheng Q, Grigg MJ, William T, Anstey NM, McCarthy JS
    Am J Trop Med Hyg, 2016 07 06;95(1):120-2.
    PMID: 27162264 DOI: 10.4269/ajtmh.15-0670
    The simian parasite Plasmodium knowlesi is now the commonest cause of malaria in Malaysia and can rapidly cause severe and fatal malaria. However, microscopic misdiagnosis of Plasmodium species is common, rapid antigen detection tests remain insufficiently sensitive and confirmation of P. knowlesi requires polymerase chain reaction (PCR). Thus available point-of-care diagnostic tests are inadequate. This study reports the development of a simple, sensitive, colorimetric, high-throughput loop-mediated isothermal amplification assay (HtLAMP) diagnostic test using novel primers for the detection of P. knowlesi. This assay is able to detect 0.2 parasites/μL, and compared with PCR has a sensitivity of 96% for the detection of P. knowlesi, making it a potentially field-applicable point-of-care diagnostic tool.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  2. Divis PC, Shokoples SE, Singh B, Yanow SK
    Malar J, 2010 Nov 30;9:344.
    PMID: 21114872 DOI: 10.1186/1475-2875-9-344
    BACKGROUND: The misdiagnosis of Plasmodium knowlesi by microscopy has prompted a re-evaluation of the geographic distribution, prevalence and pathogenesis of this species using molecular diagnostic tools. In this report, a specific probe for P. knowlesi, that can be used in a previously described TaqMan real-time PCR assay for detection of Plasmodium spp., and Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale, was designed and validated against clinical samples.

    METHODS: A hydrolysis probe for a real-time PCR assay was designed to recognize a specific DNA sequence within the P. knowlesi small subunit ribosomal RNA gene. The sensitivity, linearity and specificity of the assay were determined using plasmids containing P. knowlesi DNA and genomic DNA of P. falciparum, P. knowlesi, P. malariae, P. ovale and P. vivax isolated from clinical samples. DNA samples of the simian malaria parasites Plasmodium cynomolgi and Plasmodium inui that can infect humans under experimental conditions were also examined together with human DNA samples.

    RESULTS: Analytical sensitivity of the P. knowlesi-specific assay was 10 copies/μL and quantitation was linear over a range of 10-106 copies. The sensitivity of the assay is equivalent to nested PCR and P. knowlesi DNA was detected from all 40 clinical P. knowlesi specimens, including one from a patient with a parasitaemia of three parasites/μL of blood. No cross-reactivity was observed with 67 Plasmodium DNA samples (31 P. falciparum, 23 P. vivax, six P. ovale, three P. malariae, one P. malariae/P. ovale, one P. falciparum/P. malariae, one P. inui and one P. cynomolgi) and four samples of human DNA.

    CONCLUSIONS: This test demonstrated excellent sensitivity and specificity, and adds P. knowlesi to the repertoire of Plasmodium targets for the clinical diagnosis of malaria by real-time PCR assays. Furthermore, quantitation of DNA copy number provides a useful advantage over other molecular assays to investigate the correlation between levels of infection and the spectrum of disease.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  3. Hu TH, Rosli N, Mohamad DSA, Kadir KA, Ching ZH, Chai YH, et al.
    Sci Rep, 2021 10 11;11(1):20117.
    PMID: 34635723 DOI: 10.1038/s41598-021-99644-8
    Plasmodium knowlesi, a simian malaria parasite responsible for all recent indigenous cases of malaria in Malaysia, infects humans throughout Southeast Asia. There are two genetically distinct subpopulations of Plasmodium knowlesi in Malaysian Borneo, one associated with long-tailed macaques (termed cluster 1) and the other with pig-tailed macaques (cluster 2). A prospective study was conducted to determine whether there were any between-subpopulation differences in clinical and laboratory features, as well as in epidemiological characteristics. Over 2 years, 420 adults admitted to Kapit Hospital, Malaysian Borneo with knowlesi malaria were studied. Infections with each subpopulation resulted in mostly uncomplicated malaria. Severe disease was observed in 35/298 (11.7%) of single cluster 1 and 8/115 (7.0%) of single cluster 2 infections (p = 0.208). There was no clinically significant difference in outcome between the two subpopulations. Cluster 1 infections were more likely to be associated with peri-domestic activities while cluster 2 were associated with interior forest activities consistent with the preferred habitats of the respective macaque hosts. Infections with both P. knowlesi subpopulations cause a wide spectrum of disease including potentially life-threatening complications, with no implications for differential patient management.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  4. Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, et al.
    Lancet, 2004 Mar 27;363(9414):1017-24.
    PMID: 15051281
    About a fifth of malaria cases in 1999 for the Kapit division of Malaysian Borneo had routinely been identified by microscopy as Plasmodium malariae, although these infections appeared atypical and a nested PCR assay failed to identify P malariae DNA. We aimed to investigate whether such infections could be attributable to a variant form of P malariae or a newly emergent Plasmodium species.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  5. Barber BE, William T, Grigg MJ, Menon J, Auburn S, Marfurt J, et al.
    Clin Infect Dis, 2013 Feb;56(3):383-97.
    PMID: 23087389 DOI: 10.1093/cid/cis902
    Plasmodium knowlesi commonly causes severe malaria in Malaysian Borneo, with high case-fatality rates reported. We compared risk, spectrum, and outcome of severe disease from P. knowlesi, Plasmodium falciparum, and Plasmodium vivax and outcomes following introduction of protocols for early referral and intravenous artesunate for all severe malaria.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  6. Siner A, Liew ST, Kadir KA, Mohamad DSA, Thomas FK, Zulkarnaen M, et al.
    Malar J, 2017 Oct 17;16(1):417.
    PMID: 29041929 DOI: 10.1186/s12936-017-2064-9
    BACKGROUND: Plasmodium knowlesi, a simian malaria parasite, has become the main cause of malaria in Sarawak, Malaysian Borneo. Epidemiological data on malaria for Sarawak has been derived solely from hospitalized patients, and more accurate epidemiological data on malaria is necessary. Therefore, a longitudinal study of communities affected by knowlesi malaria was undertaken.

    METHODS: A total of 3002 blood samples on filter paper were collected from 555 inhabitants of 8 longhouses with recently reported knowlesi malaria cases in the Betong Division of Sarawak, Malaysian Borneo. Each longhouse was visited bimonthly for a total of 10 times during a 21-month study period (Jan 2014-Oct 2015). DNA extracted from blood spots were examined by a nested PCR assay for Plasmodium and positive samples were then examined by nested PCR assays for Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, Plasmodium knowlesi, Plasmodium cynomolgi and Plasmodium inui. Blood films of samples positive by PCR were also examined by microscopy.

    RESULTS: Genus-specific PCR assay detected Plasmodium DNA in 9 out of 3002 samples. Species-specific PCR identified 7 P. knowlesi and one P. vivax. Malaria parasites were observed in 5 thick blood films of the PCR positive samples. No parasites were observed in blood films from one knowlesi-, one vivax- and the genus-positive samples. Only one of 7 P. knowlesi-infected individual was febrile and had sought medical treatment at Betong Hospital the day after sampling. The 6 knowlesi-, one vivax- and one Plasmodium-infected individuals were afebrile and did not seek any medical treatment.

    CONCLUSIONS: Asymptomatic human P. knowlesi and P. vivax malaria infections, but not P. cynomolgi and P. inui infections, are occurring within communities affected with malaria.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification
  7. Divis PC, Singh B, Anderios F, Hisam S, Matusop A, Kocken CH, et al.
    PLoS Pathog, 2015 May;11(5):e1004888.
    PMID: 26020959 DOI: 10.1371/journal.ppat.1004888
    Human malaria parasite species were originally acquired from other primate hosts and subsequently became endemic, then spread throughout large parts of the world. A major zoonosis is now occurring with Plasmodium knowlesi from macaques in Southeast Asia, with a recent acceleration in numbers of reported cases particularly in Malaysia. To investigate the parasite population genetics, we developed sensitive and species-specific microsatellite genotyping protocols and applied these to analysis of samples from 10 sites covering a range of >1,600 km within which most cases have occurred. Genotypic analyses of 599 P. knowlesi infections (552 in humans and 47 in wild macaques) at 10 highly polymorphic loci provide radical new insights on the emergence. Parasites from sympatric long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (M. nemestrina) were very highly differentiated (FST = 0.22, and K-means clustering confirmed two host-associated subpopulations). Approximately two thirds of human P. knowlesi infections were of the long-tailed macaque type (Cluster 1), and one third were of the pig-tailed-macaque type (Cluster 2), with relative proportions varying across the different sites. Among the samples from humans, there was significant indication of genetic isolation by geographical distance overall and within Cluster 1 alone. Across the different sites, the level of multi-locus linkage disequilibrium correlated with the degree of local admixture of the two different clusters. The widespread occurrence of both types of P. knowlesi in humans enhances the potential for parasite adaptation in this zoonotic system.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  8. Grigg MJ, William T, Barber BE, Rajahram GS, Menon J, Schimann E, et al.
    Clin Infect Dis, 2018 07 18;67(3):350-359.
    PMID: 29873683 DOI: 10.1093/cid/ciy065
    Background: Plasmodium knowlesi is increasingly reported in Southeast Asia, but prospective studies of its clinical spectrum in children and comparison with autochthonous human-only Plasmodium species are lacking.

    Methods: Over 3.5 years, we prospectively assessed patients of any age with molecularly-confirmed Plasmodium monoinfection presenting to 3 district hospitals in Sabah, Malaysia.

    Results: Of 481 knowlesi, 172 vivax, and 96 falciparum malaria cases enrolled, 44 (9%), 71 (41%), and 31 (32%) children aged ≤12 years. Median parasitemia was lower in knowlesi malaria (2480/μL [interquartile range, 538-8481/μL]) than in falciparum (9600/μL; P < .001) and vivax malaria. In P. knowlesi, World Health Organization-defined anemia was present in 82% (95% confidence interval [CI], 67%-92%) of children vs 36% (95% CI, 31%-41%) of adults. Severe knowlesi malaria occurred in 6.4% (95% CI, 3.9%-8.3%) of adults but not in children; the commenst severity criterion was acute kideny injury. No patient had coma. Age, parasitemia, schizont proportion, abdominal pain, and dyspnea were independently associated with severe knowlesi malaria, with parasitemia >15000/μL the best predictor (adjusted odds ratio, 16.1; negative predictive value, 98.5%; P < .001). Two knowlesi-related adult deaths occurred (fatality rate: 4.2/1000 adults).

    Conclusions: Age distribution and parasitemia differed markedly in knowlesi malaria compared to human-only species, with both uncomplicated and severe disease occurring at low parasitemia. Severe knowlesi malaria occurred only in adults; however, anemia was more common in children despite lower parasitemia. Parasitemia independently predicted knowlesi disease severity: Intravenous artesunate is warranted initially for those with parasitemia >15000/μL.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  9. Waugh S
    Parasit Vectors, 2015;8:79.
    PMID: 25651916 DOI: 10.1186/s13071-015-0694-8
    The use of detailed methodologies and legitimate settings justifications in spatial analysis is imperative to locating areas of significance. Studies missing this action may enact interventions in improper areas.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  10. Grigg MJ, William T, Barber BE, Rajahram GS, Menon J, Schimann E, et al.
    Clin Infect Dis, 2018 Jan 06;66(2):229-236.
    PMID: 29020373 DOI: 10.1093/cid/cix779
    BACKGROUND: Plasmodium knowlesi is reported increasingly across Southeast Asia and is the most common cause of malaria in Malaysia. No randomized trials have assessed the comparative efficacy of artemether-lumefantrine (AL) for knowlesi malaria.

    METHODS: A randomized controlled trial was conducted in 3 district hospitals in Sabah, Malaysia to compare the efficacy of AL against chloroquine (CQ) for uncomplicated knowlesi malaria. Participants were included if they weighed >10 kg, had a parasitemia count <20000/μL, and had a negative rapid diagnostic test result for Plasmodium falciparum histidine-rich protein 2. Diagnosis was confirmed by means of polymerase chain reaction. Patients were block randomized to AL (total target dose, 12 mg/kg for artemether and 60 mg/kg for lumefantrine) or CQ (25 mg/kg). The primary outcome was parasite clearance at 24 hours in a modified intention-to-treat analysis.

    RESULTS: From November 2014 to January 2016, a total of 123 patients (including 18 children) were enrolled. At 24 hours after treatment 76% of patients administered AL (95% confidence interval [CI], 63%-86%; 44 of 58) were aparasitemic, compared with 60% administered CQ (47%-72%; 39 of 65; risk ratio, 1.3 [95% CI, 1.0-1.6]; P = .06). Overall parasite clearance was shorter after AL than after CQ (median, 18 vs 24 hours, respectively; P = .02), with all patients aparasitemic by 48 hours. By day 42 there were no treatment failures. The risk of anemia during follow-up was similar between arms. Patients treated with AL would require lower bed occupancy than those treated with CQ (2414 vs 2800 days per 1000 patients; incidence rate ratio, 0.86 [95% CI, .82-.91]; P < .001). There were no serious adverse events.

    CONCLUSIONS: AL is highly efficacious for treating uncomplicated knowlesi malaria; its excellent tolerability and rapid therapeutic response allow earlier hospital discharge, and support its use as a first-line artemisinin-combination treatment policy for all Plasmodium species in Malaysia.

    CLINICAL TRIALS REGISTRATION: NCT02001012.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  11. Tan CH, Vythilingam I, Matusop A, Chan ST, Singh B
    Malar J, 2008;7:52.
    PMID: 18377652 DOI: 10.1186/1475-2875-7-52
    A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  12. Azira NM, Zairi NZ, Amry AR, Zeehaida M
    Trop Biomed, 2012 Sep;29(3):398-404.
    PMID: 23018503 MyJurnal
    Plasmodium knowlesi is a simian malaria parasite and is recently recognized as the fifth malaria parasite infecting humans. Manifestation of the infection may resemble other infection particularly dengue fever leading to inappropriate management and delay in treatment. We reported three cases of naturally acquired P. knowlesi in Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia. Clinical manifestations were quite similar in those cases. Microscopically, the diagnosis might be challenging. These cases were confirmed by polymerase chain reaction method which serves as a gold standard.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  13. William T, Jelip J, Menon J, Anderios F, Mohammad R, Awang Mohammad TA, et al.
    Malar J, 2014;13:390.
    PMID: 25272973 DOI: 10.1186/1475-2875-13-390
    While Malaysia has had great success in controlling Plasmodium falciparum and Plasmodium vivax, notifications of Plasmodium malariae and the microscopically near-identical Plasmodium knowlesi increased substantially over the past decade. However, whether this represents microscopic misdiagnosis or increased recognition of P. knowlesi has remained uncertain.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  14. Daneshvar C, Davis TM, Cox-Singh J, Rafa'ee MZ, Zakaria SK, Divis PC, et al.
    Clin Infect Dis, 2009 Sep 15;49(6):852-60.
    PMID: 19635025 DOI: 10.1086/605439
    BACKGROUND: Plasmodium knowlesi is increasingly recognized as a cause of human malaria in Southeast Asia but there are no detailed prospective clinical studies of naturally acquired infections.

    METHODS: In a systematic study of the presentation and course of patients with acute P. knowlesi infection, clinical and laboratory data were collected from previously untreated, nonpregnant adults admitted to the hospital with polymerase chain reaction-confirmed acute malaria at Kapit Hospital (Sarawak, Malaysia) from July 2006 through February 2008.

    RESULTS: Of 152 patients recruited, 107 (70%) had P. knowlesi infection, 24 (16%) had Plasmodium falciparum infection, and 21 (14%) had Plasmodium vivax. Patients with P. knowlesi infection presented with a nonspecific febrile illness, had a baseline median parasitemia value at hospital admission of 1387 parasites/microL (interquartile range, 6-222,570 parasites/microL), and all were thrombocytopenic at hospital admission or on the following day. Most (93.5%) of the patients with P. knowlesi infection had uncomplicated malaria that responded to chloroquine and primaquine treatment. Based on World Health Organization criteria for falciparum malaria, 7 patients with P. knowlesi infection (6.5%) had severe infections at hospital admission. The most frequent complication was respiratory distress, which was present at hospital admission in 4 patients and developed after admission in an additional 3 patients. P. knowlesi parasitemia at hospital admission was an independent determinant of respiratory distress, as were serum creatinine level, serum bilirubin, and platelet count at admission (p < .002 for each). Two patients with knowlesi malaria died, representing a case fatality rate of 1.8% (95% confidence interval, 0.2%-6.6%).

    CONCLUSIONS: Knowlesi malaria causes a wide spectrum of disease. Most cases are uncomplicated and respond promptly to treatment, but approximately 1 in 10 patients develop potentially fatal complications.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  15. Daneshvar C, Davis TM, Cox-Singh J, Rafa'ee MZ, Zakaria SK, Divis PC, et al.
    Malar J, 2010;9:238.
    PMID: 20723228 DOI: 10.1186/1475-2875-9-238
    Plasmodium knowlesi is a cause of symptomatic and potentially fatal infections in humans. There are no studies assessing the detailed parasitological response to treatment of knowlesi malaria infections in man and whether antimalarial resistance occurs.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification
  16. Nuin NA, Tan AF, Lew YL, Piera KA, William T, Rajahram GS, et al.
    Malar J, 2020 Aug 27;19(1):306.
    PMID: 32854695 DOI: 10.1186/s12936-020-03379-2
    BACKGROUND: The monkey parasite Plasmodium knowlesi is an emerging public health issue in Southeast Asia. In Sabah, Malaysia, P. knowlesi is now the dominant cause of human malaria. Molecular detection methods for P. knowlesi are essential for accurate diagnosis and in monitoring progress towards malaria elimination of other Plasmodium species. However, recent commercially available PCR malaria kits have unpublished P. knowlesi gene targets or have not been evaluated against clinical samples.

    METHODS: Two real-time PCR methods currently used in Sabah for confirmatory malaria diagnosis and surveillance reporting were evaluated: the QuantiFast™ Multiplex PCR kit (Qiagen, Germany) targeting the P. knowlesi 18S SSU rRNA; and the abTES™ Malaria 5 qPCR II kit (AITbiotech, Singapore), with an undisclosed P. knowlesi gene target. Diagnostic accuracy was evaluated using 52 P. knowlesi, 25 Plasmodium vivax, 21 Plasmodium falciparum, and 10 Plasmodium malariae clinical isolates, and 26 malaria negative controls, and compared against a validated reference nested PCR assay. The limit of detection (LOD) for each PCR method and Plasmodium species was also evaluated.

    RESULTS: The sensitivity of the QuantiFast™ and abTES™ assays for detecting P. knowlesi was comparable at 98.1% (95% CI 89.7-100) and 100% (95% CI 93.2-100), respectively. Specificity of the QuantiFast™ and abTES™ for P. knowlesi was high at 98.8% (95% CI 93.4-100) for both assays. The QuantiFast™ assay demonstrated falsely-positive mixed Plasmodium species at low parasitaemias in both the primary and LOD analysis. Diagnostic accuracy of both PCR kits for detecting P. vivax, P. falciparum, and P. malariae was comparable to P. knowlesi. The abTES™ assay demonstrated a lower LOD for P. knowlesi of ≤ 0.125 parasites/µL compared to QuantiFast™ with a LOD of 20 parasites/µL. Hospital microscopy demonstrated a sensitivity of 78.8% (95% CI 65.3-88.9) and specificity of 80.4% (95% CI 67.6-89.8) compared to reference PCR for detecting P. knowlesi.

    CONCLUSION: The QuantiFast™ and abTES™ commercial PCR kits performed well for the accurate detection of P. knowlesi infections. Although the QuantiFast™ kit is cheaper, the abTES™ kit demonstrated a lower LOD, supporting its use as a second-line referral-laboratory diagnostic tool in Sabah, Malaysia.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  17. Rajahram GS, Barber BE, William T, Menon J, Anstey NM, Yeo TW
    Malar J, 2012;11:284.
    PMID: 22905799 DOI: 10.1186/1475-2875-11-284
    The simian parasite Plasmodium knowlesi is recognized as a common cause of severe and fatal human malaria in Sabah, Malaysia, but is morphologically indistinguishable from and still commonly reported as Plasmodium malariae, despite the paucity of this species in Sabah. Since December 2008 Sabah Department of Health has recommended intravenous artesunate and referral to a general hospital for all severe malaria cases of any species. This paper reviews all malaria deaths in Sabah subsequent to the introduction of these measures. Reporting of malaria deaths in Malaysia is mandatory.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  18. Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P
    Malar J, 2019 Mar 08;18(1):66.
    PMID: 30849978 DOI: 10.1186/s12936-019-2693-2
    Plasmodium knowlesi is a zoonotic malaria parasite normally residing in long-tailed and pig-tailed macaques (Macaca fascicularis and Macaca nemestrina, respectively) found throughout Southeast Asia. Recently, knowlesi malaria has become the predominant malaria affecting humans in Malaysian Borneo, being responsible for approximately 70% of reported cases. Largely as a result of anthropogenic land use changes in Borneo, vectors which transmit the parasite, along with macaque hosts, are both now frequently found in disturbed forest habitats, or at the forest fringes, thus having more frequent contact with humans. Having access to human hosts provides the parasite with the opportunity to further its adaption to the human immune system. The ecological drivers of the transmission and spread of P. knowlesi are operating over many different spatial (and, therefore, temporal) scales, from the molecular to the continental. Strategies to prevent and manage zoonoses, such as P. knowlesi malaria require interdisciplinary research exploring the impact of land use change and biodiversity loss on the evolving relationship between parasite, reservoir hosts, vectors, and humans over multiple spatial scales.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  19. Moyes CL, Henry AJ, Golding N, Huang Z, Singh B, Baird JK, et al.
    PLoS Negl Trop Dis, 2014 Mar;8(3):e2780.
    PMID: 24676231 DOI: 10.1371/journal.pntd.0002780
    BACKGROUND: The simian malaria parasite, Plasmodium knowlesi, can cause severe and fatal disease in humans yet it is rarely included in routine public health reporting systems for malaria and its geographical range is largely unknown. Because malaria caused by P. knowlesi is a truly neglected tropical disease, there are substantial obstacles to defining the geographical extent and risk of this disease. Information is required on the occurrence of human cases in different locations, on which non-human primates host this parasite and on which vectors are able to transmit it to humans. We undertook a systematic review and ranked the existing evidence, at a subnational spatial scale, to investigate the potential geographical range of the parasite reservoir capable of infecting humans.

    METHODOLOGY/PRINCIPAL FINDINGS: After reviewing the published literature we identified potential host and vector species and ranked these based on how informative they are for the presence of an infectious parasite reservoir, based on current evidence. We collated spatial data on parasite occurrence and the ranges of the identified host and vector species. The ranked spatial data allowed us to assign an evidence score to 475 subnational areas in 19 countries and we present the results on a map of the Southeast and South Asia region.

    CONCLUSIONS/SIGNIFICANCE: We have ranked subnational areas within the potential disease range according to evidence for presence of a disease risk to humans, providing geographical evidence to support decisions on prevention, management and prophylaxis. This work also highlights the unknown risk status of large parts of the region. Within this unknown category, our map identifies which areas have most evidence for the potential to support an infectious reservoir and are therefore a priority for further investigation. Furthermore we identify geographical areas where further investigation of putative host and vector species would be highly informative for the region-wide assessment.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  20. Piera KA, Aziz A, William T, Bell D, González IJ, Barber BE, et al.
    Malar J, 2017 01 13;16(1):29.
    PMID: 28086789 DOI: 10.1186/s12936-016-1676-9
    BACKGROUND: Plasmodium knowlesi is the most common cause of malaria in Malaysia. However, microscopic diagnosis is inaccurate and rapid diagnostic tests (RDTs) are insufficiently sensitive. PCR is sensitive and specific but not feasible at a district level. Loop-mediated isothermal amplification (LAMP) shows potential with only basic requirements. A commercially available LAMP assay, the Eiken Loopamp™ MALARIA Pan Detection kit, is sensitive for Plasmodium falciparum and Plasmodium vivax, but has not previously been evaluated for P. knowlesi. This study aims to determine the sensitivity of this LAMP assay for detecting P. knowlesi infection.

    METHODS: Study participants included 73 uncomplicated malaria patients with PCR species confirmation: 50 P. knowlesi, 20 P. falciparum and 3 P. vivax. Nineteen malaria-negative, non-endemic area controls were also included. The sensitivity of the Eiken Loopamp™ MALARIA Pan Detection kit (Pan LAMP) for detecting each Plasmodium species was evaluated. Sensitivity and specificity of the Eiken Loopamp™ MALARIA Pf Detection kit (Pf LAMP) for P. falciparum were also determined. The limit of detection for each LAMP assay was evaluated, with results compared to PCR. All P. knowlesi patients were also tested by CareStart™ (Pf/VOM) and OptiMAL-IT™ (Pan/Pf) RDTs.

    RESULTS: The sensitivity of the Pan LAMP assay was 100% for P. knowlesi (95% CI 92.9-100), P. falciparum (95% CI 83.2-100), and P. vivax (95% CI 29.2-100). The Pf LAMP was 100% sensitive and specific for P. falciparum detection, with all P. knowlesi samples having a negative reaction. LAMP sensitivity was superior to both RDTs, with only 10 and 28% of P. knowlesi samples testing positive to CareStart™ and OptiMAL-IT™, respectively. Limit of detection using the Pan LAMP for both P. knowlesi and P. vivax was 2 parasites/μL, comparable to PCR. For P. falciparum both the Pan LAMP and Pf LAMP demonstrated a limit of detection of 20 parasites/μL.

    CONCLUSIONS: The Eiken Loopamp™ MALARIA Pan Detection kit is sensitive for detection of P. knowlesi in low parasitaemia clinical infections, as well as P. falciparum and P. vivax. However, a P. knowlesi-specific field assay in a simpler format would assist correct species identification and initiation of optimal treatment for all malaria patients.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links