Displaying publications 1 - 20 of 292 in total

Abstract:
Sort:
  1. Yee W, Abdul-Kadir R, Lee LM, Koh B, Lee YS, Chan HY
    3 Biotech, 2018 Aug;8(8):354.
    PMID: 30105179 DOI: 10.1007/s13205-018-1381-1
    In this work, a simple and inexpensive physical lysis method using a cordless drill fitted with a plastic pellet pestle and 150 mg of sterile sea sand was established for the extraction of DNA from six strains of freshwater microalgae. This lysis method was also tested for RNA extraction from two microalgal strains. Lysis duration between 15 and 120 s using the cetyltrimethyl ammonium bromide (CTAB) buffer significantly increased the yield of DNA from four microalgalstrains (Monoraphidium griffithii NS16, Scenedesmus sp. NS6, Scenedesmus sp. DPBC1 and Acutodesmus sp. DPBB10) compared to control. It was also found that grinding was not required to obtain DNA from two strains of microalgae (Choricystis sp. NPA14 and Chlamydomonas sp. BM3). The average DNA yield obtained using this lysis method was between 62.5 and 78.9 ng/mg for M. griffithii NS16, 42.2-247.0 ng/mg for Scenedesmus sp. NS6, 70.2-110.9 ng/mg for Scenedesmus sp. DPBC1 and 142.8-164.8 ng/mg for Acutodesmus sp. DPBB10. DNA obtained using this method was sufficiently pure for PCR amplification. Extraction of total RNA from M. griffithii NS16 and Mychonastes sp. NPD7 using this lysis method yielded high-quality RNA suitable for RT-PCR. This lysis method is simple, cheap and would enable rapid nucleic acid extraction from freshwater microalgae without requiring costly materials and equipment such as liquid nitrogen or beadbeaters, and would facilitate molecular studies on microalgae in general.
    Matched MeSH terms: Plastics
  2. Abdul Manap AH, Md Izah SS, Mohamed K
    ACS Omega, 2019 Dec 03;4(23):20257-20264.
    PMID: 31815228 DOI: 10.1021/acsomega.9b02547
    This study aims at investigating the distortion of poly(dimethylsiloxane) (PDMS) nanostructures in a soft lithography demolding process using molecular dynamics simulation. Experimental results show that after peeling, PDMS nanopillars became 10-60% longer in height than the mold size. Molecular dynamics simulations have been employed to plot the stress-strain curve of the nanopillars when subjected to uniaxial stress. Three force fields (COMPASS, CVFF, and PCFF) were used for modeling. The demolding process in soft lithography and nanoimprint lithography causes significant deformation in replication. The experimental results show clear signs of elongation after demolding. Molecular dynamics simulations are employed to study the stress-strain relationship of the PDMS nanopillars. The results from the simulation show that a PDMS nanopillar at temperature T = 300 K under tensile stress shows characteristics of flexible plastic under tensile stress and has a lower Young's modulus, ultimate tensile stress, and Poisson's ratio.
    Matched MeSH terms: Plastics
  3. Shaari, S., Ehsan, A.A., Abd-Rahman, M.K.
    ASM Science Journal, 2008;2(2):153-161.
    MyJurnal
    An optical code generating device for a portable optical access-card system was constructed using the plastic optical fibre (POF) waveguide coupler. The newly constructed device provided output light intensities which were used as optical codes in a portable optical access-card system. The construction of a basic 1 × 2 waveguide design combined two major components which were the asymmetric Y-junction splitter and the linear taper. A hollow waveguide structure was utilized as it provided more flexibility in guiding light rays. A basic 1 × 2 waveguide coupler was designed using the CAD tool and then the ray was traced using the non-sequential ray tracing tool. A linear relationship between the tap-off ratio and the waveguide tap-width enabled a higher-level hollow waveguide coupler to be designed using the simple cascading technique. Construction of a 1 × 4 and higher level waveguide coupler was easily realized using the basic 1 × 2 waveguide coupler design together with a simple cascading technique.
    Matched MeSH terms: Plastics
  4. Tan LF, Elaine E, Pui LP, Nyam KL, Yusof YA
    Acta Sci Pol Technol Aliment, 2021 1 16;20(1):55-66.
    PMID: 33449520 DOI: 10.17306/J.AFS.0771
    BACKGROUND: Biodegradable food packaging has improved in quality with recent research incorporating natural extracts for functionality purposes. This research aims to develop chitosan film with Chrysanthemum morifolium essential oil to improve the shelf life of fresh raw chicken and beef.

    METHODS: 1.5% (w/v) chitosan films with Chrysanthemum morifolium essential oil (0% to 6% (v/v)) were produced through homogenization, the casting of a film solution in a petri dish and convection drying. The edible film was evaluated in terms of its physical (color, thickness, water vapor permeability), mechanical (puncture strength, tensile strength, elongation at break) and chemical properties (antioxidant assay, Fourier Transform Infrared Spectroscopy (FTIR)).

    RESULTS: With an increasing concentration of Chrysanthemum morifolium in the chitosan film, the test values of physical properties such as tensile strength, puncture force, and elongation at break declined significantly. However, the thickness, water permeability, and color profile (L*, a*, b*) values of the chitosan film increased. Similarly, the scavenging effect of antioxidant assay increased (from 4.97% to 18.63%) with a rise in Chrysanthemum morifolium concentration. 2%, 3%, and 4% of Chrysanthemum morifolium in the chitosan film showed a significant inhibition zone ranging from 2.67 mm to 3.82 mm against Staphylococcus aureus, a spoilage bacterium that is commonly found in chicken and beef products. The storage and pH tests showed that 4% of Chrysanthemum morifolium in the film maintained pH level (safe to consume), and the shelf life was extended from 3 days to 5 days of meat storage.

    CONCLUSIONS: This study demonstrated that the incorporation of 4% (v/v) Chrysanthemum morifolium extract into 1.5% (w/v) chitosan film extends the storage duration of raw meat products noticeably by reducing Staphylococcus aureus activity. Therefore, it increases the quality of the edible film as an environmentally friendly food packaging material so that it can act as a substitute for the use of plastic bags. Future studies will be conducted on improving the tensile strength of the edible film to increase the feasibility of using it in the food industry. In addition, the microstructure and surface morphology of the edible film can be further determined.

    Matched MeSH terms: Plastics
  5. Chong HC, Fong KK, Hayati F
    Ann Med Surg (Lond), 2021 Apr;64:102267.
    PMID: 33889406 DOI: 10.1016/j.amsu.2021.102267
    Background: Extravasation injury (EVI) is common, yet it is always underestimated and underreported. Severity varies ranging from thrombophlebitis up to disability. Unrecognised EVI is a potential medicolegal case in medicine.

    Case presentation: We experience a 47-year-old lady who developed an unrecognised EVI after being admitted for sepsis. The EVI turned out to be a huge and sloughy skin ulcer. A series of wound debridement with vacuum dressing were conducted until the wound was able to be closed.

    Discussion: The EVI can be categorised according to Amjad EVI grading and Loth and Eversmann's EVI classification. Adult EVI tends to be overlooked, especially during critical care because patients cannot complain upon sedation and ventilation. In order to prevent EVI, firstly prevention is better than cure. Secondly, if EVI is recognised early, infusion should be stopped immediately. Thirdly, analgesia is mandatory. Finally, the plastic team needs to be engaged if it is deemed required.

    Conclusion: Prevention and early intervention before the occurrence of progressive tissue damage is the key to treatment. Early radical wound debridement and immediate or delayed wound coverage with skin graft or skin flap are indicated in full thickness skin necrosis, persistent pain, and chronic ulcer.

    Matched MeSH terms: Plastics
  6. Chek MF, Hiroe A, Hakoshima T, Sudesh K, Taguchi S
    Appl Microbiol Biotechnol, 2019 Feb;103(3):1131-1141.
    PMID: 30511262 DOI: 10.1007/s00253-018-9538-8
    Polyhydroxyalkanoates (PHAs) are biopolymers synthesized by a wide range of bacteria, which serve as a promising candidate in replacing some conventional petrochemical-based plastics. PHA synthase (PhaC) is the key enzyme in the polymerization of PHA, and the crystal structures were successfully determined using the catalytic domain of PhaC from Cupriavidus necator (PhaCCn-CAT) and Chromobacterium sp. USM2 (PhaCCs-CAT). Here, we review the beneficial mutations discovered in PhaCs from a structural perspective. The structural comparison of the residues involved in beneficial mutation reveals that the residues are near to the catalytic triad, but not inside the catalytic pocket. For instance, Ala510 of PhaCCn is near catalytic His508 and may be involved in the open-close regulation, which presumably play an important role in substrate specificity and activity. In the class II PhaC1 from Pseudomonas sp. 61-3 (PhaC1Ps), Ser325 stabilizes the catalytic cysteine through hydrogen bonding. Another residue, Gln508 of PhaC1Ps is located in a conserved hydrophobic pocket which is next to the catalytic Asp and His. A class I, II-conserved Phe420 of PhaCCn is one of the residues involved in dimerization and its mutation to serine greatly reduced the lag phase. The current structural analysis shows that the Phe362 and Phe518 of PhaC from Aeromonas caviae (PhaCAc) are assisting the dimer formation and maintaining the integrity of the core beta-sheet, respectively. The structure-function relationship of PhaCs discussed in this review will serve as valuable reference for future protein engineering works to enhance the performance of PhaCs and to produce novel biopolymers.
    Matched MeSH terms: Plastics
  7. Tajudin SM, Namito Y, Sanami T, Hirayama H
    Appl Radiat Isot, 2020 May;159:109086.
    PMID: 32250760 DOI: 10.1016/j.apradiso.2020.109086
    In this study, we developed a method for directly determining the energy deposited over the entire energy range by monitoring the light output from a plastic scintillator under gamma irradiation. The relative light output was analyzed based on Birks' semi-empirical formula for ionization to obtain the quenching parameter as kB = 0.016 ± 0.0004 g cm-2 MeV-1. Comparisons of experimental and calculated results for the light output spectra showed that considering the quenching effect, background subtraction, source casing, and energy sampling were essential for achieving good agreement.
    Matched MeSH terms: Plastics
  8. Liang J, Abdullah ALB, Wang H, Liu G, Han M
    Aquat Toxicol, 2023 Oct;263:106711.
    PMID: 37783050 DOI: 10.1016/j.aquatox.2023.106711
    The COVID-19 pandemic has further intensified plastic pollution due to the escalated use of single-use gloves and masks, consequently leading to the widespread presence of microplastics (MPs) and nanoplastics (NPs) in major rivers and lakes worldwide. Macrobrachium rosenbergii has become an important experimental subject due to its ecological role and environmental sensitivity. In this study, we sought to comprehend the ramifications of NPs on the widely-distributed freshwater prawn, M rosenbergii, by conducting a detailed analysis of its responses to NPs after both 96 h and 30 days of exposure. The transcriptome analysis revealed 918 differentially expressed unigenes (DEGs) after 30 days of NPs exposure (356 upregulated, 562 downregulated) and 2376 DEGs after 96 h of NPs exposure (1541 upregulated, 835 downregulated). The results of DEGs expression indicated that acute NPs exposure enhanced carbohydrate transport and metabolism, fostering chitin and extracellular matrix processes. In contrast, chronic NPs exposure induced nucleolar stress in M. rosenbergii, impeding ribosome development and mRNA maturation while showing no significant changes in glucose metabolism. Our findings underscore the M. rosenbergii distinct coping mechanisms during acute and chronic NPs exposure, elucidating its vital adaptive strategies. These results contribute to our understanding of the ecological implications of NPs pollution and its impact on aquatic animals.
    Matched MeSH terms: Plastics
  9. Ma YB, Xie ZY, Hamid N, Tang QP, Deng JY, Luo L, et al.
    Aquat Toxicol, 2023 Aug;261:106597.
    PMID: 37311378 DOI: 10.1016/j.aquatox.2023.106597
    Environmental micro(nano)plastics have become a significant global pollution problem due to the widespread use of plastic products. In this review, we summarized the latest research advances on micro(nano)plastics in the environment, including their distribution, health risks, challenges, and future prospect. Micro(nano)plastics have been found in a variety of environmental media, such as the atmosphere, water bodies, sediment, and especially marine systems, even in remote places like Antarctica, mountain tops, and the deep sea. The accumulation of micro(nano)plastics in organisms or humans through ingestion or other passive ways poses a series of negative impacts on metabolism, immune function, and health. Moreover, due to their large specific surface area, micro(nano)plastics can also adsorb other pollutants, causing even more serious effects on animal and human health. Despite the significant health risks posed by micro(nano)plastics, there are limitations in the methods used to measure their dispersion in the environment and their potential health risks to organisms. Therefore, further research is needed to fully understand these risks and their impacts on the environment and human health. Taken together, the challenges of micro(nano)plastics analysis in the environment and organisms must be addressed, and future research prospects need to be identified. Governments and individuals must take action to reduce plastic waste and minimize the negative impact of micro(nano)plastics on the environment and human health.
    Matched MeSH terms: Plastics/toxicity
  10. Matsuguma Y, Takada H, Kumata H, Kanke H, Sakurai S, Suzuki T, et al.
    Arch Environ Contam Toxicol, 2017 Aug;73(2):230-239.
    PMID: 28534067 DOI: 10.1007/s00244-017-0414-9
    Microplastics (<5 mm) were extracted from sediment cores collected in Japan, Thailand, Malaysia, and South Africa by density separation after hydrogen peroxide treatment to remove biofilms were and identified using FTIR. Carbonyl and vinyl indices were used to avoid counting biopolymers as plastics. Microplastics composed of variety of polymers, including polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethyleneterphthalates (PET), polyethylene-polypropylene copolymer (PEP), and polyacrylates (PAK), were identified in the sediment. We measured microplastics between 315 µm and 5 mm, most of which were in the range 315 µm-1 mm. The abundance of microplastics in surface sediment varied from 100 pieces/kg-dry sediment in a core collected in the Gulf of Thailand to 1900 pieces/kg-dry sediment in a core collected in a canal in Tokyo Bay. A far higher stock of PE and PP composed microplastics in sediment compared with surface water samples collected in a canal in Tokyo Bay suggests that sediment is an important sink for microplastics. In dated sediment cores from Japan, microplastic pollution started in 1950s, and their abundance increased markedly toward the surface layer (i.e., 2000s). In all sediment cores from Japan, Thailand, Malaysia, and South Africa, the abundance of microplastics increased toward the surface, suggesting the global occurrence of and an increase in microplastic pollution over time.
    Matched MeSH terms: Plastics
  11. Amirah Mohd Napi NN, Ibrahim N, Adli Hanif M, Hasan M, Dahalan FA, Syafiuddin A, et al.
    Bioengineered, 2023 Dec;14(1):2276391.
    PMID: 37942779 DOI: 10.1080/21655979.2023.2276391
    Microplastic (MP) is an emerging contaminant of concern due to its abundance in the environment. Wastewater treatment plant (WWTP) can be considered as one of the main sources of microplastics in freshwater due to its inefficiency in the complete removal of small MPs. In this study, a column-based MP removal which could serve as a tertiary treatment in WWTPs is evaluated using granular activated carbon (GAC) as adsorbent/filter media, eliminating clogging problems commonly caused by powder form activated carbon (PAC). The GAC is characterized via N2 adsorption-desorption isotherm, field emission scanning electron microscopy, and contact angle measurement to determine the influence of its properties on MP removal efficiency. MPs (40-48 μm) removal up to 95.5% was observed with 0.2 g/L MP, which is the lowest concentration tested in this work, but still higher than commonly used MP concentration in other studies. The performance is reduced with further increase in MP concentration (up to 1.0 g/L), but increasing the GAC bed length from 7.5 to 17.5 cm could lead to better removal efficiencies. MP particles are immobilized by the GAC predominantly by filtration process by being entangled with small GAC particles/chips or stuck between the GAC particles. MPs are insignificantly removed by adsorption process through entrapment in GAC porous structure or attachment onto the GAC surface.
    Matched MeSH terms: Plastics
  12. Priya A, Anusha G, Thanigaivel S, Karthick A, Mohanavel V, Velmurugan P, et al.
    Bioprocess Biosyst Eng, 2023 Mar;46(3):309-321.
    PMID: 35301580 DOI: 10.1007/s00449-022-02715-x
    Microplastics (MPs) in environmental studies have revealed that public sewage treatment plants are a common pathway for microplastics to reach local surroundings. Microplastics are becoming more of a worry, posing a danger to both marine wildlife and humans. These plastic items not only contribute to the macrocosmic proliferation of plastics but also the scattering of microplastics and the concentration of other micropollutant-containing objects, increasing the number of pollutants identified. Microplastics' behavior, movement, transformation, and persistence mechanisms, as well as their mode of action in various wastewater effluent treatment procedures, are still unknown. They are making microplastics made from wastewater a big deal. We know that microplastics enter wastewater treatment facilities (WWTPs), that wastewater is released into the atmosphere, and that this wastewater has been considered to represent a threat to habitats and ground character based on our literature assessment. The basic methods of wastewater and sewage sludge, as well as the treatment procedure and early characterization, are covered throughout the dissection of the problematic scientific conceptualization.
    Matched MeSH terms: Plastics
  13. Kristanti RA, Hadibarata T, Wulandari NF, Sibero MT, Darmayati Y, Hatmanti A
    Bioprocess Biosyst Eng, 2023 Mar;46(3):429-441.
    PMID: 36149484 DOI: 10.1007/s00449-022-02784-y
    The introduction of plastic sectors has resulted in the presence of microplastics (MPs) in water systems, which has become a global issue that has attracted scientific and community awareness. MPs can be detected in a variety of sources such as beauty products, manufacturing effluent, or fishing activities. This study examined the repercussions posed by MPs' prevalence on land and marine environments and human health issues. Henceforth, remediation technologies must be introduced to shift out MPs from the water supplies in order to sustain the environmental quality for future generations, the benefits and drawbacks of the technology applied. This study also portrays difficulties encountered in MP research as the hurdles must be mastered in order to properly comprehend the MPs. The cooperation between nations is the most critical aspect in fully tackling MP issues as it can be easily carried by wind or water and its damage can be larger than predicted.
    Matched MeSH terms: Plastics
  14. Aisami Abubakar, Mohd Yunus Shukor
    MyJurnal
    Environmental pollution is one of the major concerns in the 21st century; where billions of tonnes
    of harmful chemicals are produced by industries such as petroleum, paints, food, rubber, and
    plastic. Phenol and its derivatives infiltrate the ecosystems and have become one of the top major
    pollutants worldwide. This review covers the major aspects of immobilization of phenoldegrading
    bacteria as a method to improve phenol bioremediation. The use of various forms of
    immobilization matrices is discussed along with the advantages and disadvantages of each of the
    immobilization matrices especially when environmental usage is warranted. To be used as a
    bioremediation tool, the immobilized system must not only be effective, but the matrices must be
    non-toxic, non-polluting and if possible non-biodegradable. The mechanical, biological and
    chemical stability of the system is paramount for long-term activity as well as price is an
    important factor when the very large scale is a concern. The system must also be able to tolerate
    high concentration of other toxicants especially heavy metals that form as co-contaminants, and
    most immobilized systems are geared towards this last aspect as immobilization provides
    protection from other contaminants.
    Matched MeSH terms: Plastics
  15. Majid M, Chin BLF, Jawad ZA, Chai YH, Lam MK, Yusup S, et al.
    Bioresour Technol, 2021 Jun;329:124874.
    PMID: 33647605 DOI: 10.1016/j.biortech.2021.124874
    This study investigated on the co-pyrolysis of microalgae Chlorella vulgaris and high-density polyethylene (HDPE) waste mixtures which was performed with three types of catalysts, namely limestone (LS), HZSM-5 zeolite, and novel bi-functional LS/HZSM-5/LS. Kissinger-Kai (K-K) model-free method was coupled with Particle Swarm Optimization (PSO) model-fitting method using the thermogravimetric experimental data. A global sensitivity analysis was carried out using Latin Hypercube Sampling and rank transformation to assess the extent of impact of the input kinetic parameters on the output results. Furthermore, a thermodynamic analysis was performed to obtain parameters such as enthalpy change (ΔH), Gibb's free energy (ΔG), and entropy change (ΔS). The activation energy (EA) of the microalgae Chlorella vulgaris and HDPE binary mixture were found to be lower upon the addition of catalysts. Among the catalyst used, bi-functional LS/HZSM-5 catalyst exhibited the lowest EA (83.59 kJ/mol) and ΔH (78 kJ/mol) as compared to LS and HZSM-5 catalysts.
    Matched MeSH terms: Plastics
  16. Hassan H, Lim JK, Hameed BH
    Bioresour Technol, 2016 Dec;221:645-655.
    PMID: 27671343 DOI: 10.1016/j.biortech.2016.09.026
    Co-pyrolysis of biomass with abundantly available materials could be an economical method for production of bio-fuels. However, elimination of oxygenated compounds poses a considerable challenge. Catalytic co-pyrolysis is another potential technique for upgrading bio-oils for application as liquid fuels in standard engines. This technique promotes the production of high-quality bio-oil through acid catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize research progress on co-pyrolysis and catalytic co-pyrolysis, as well as their benefits on enhancement of bio-oils derived from biomass. This review focuses on the potential of plastic wastes and coal materials as co-feed in co-pyrolysis to produce valuable liquid fuel. This paper also proposes future directions for using this technique to obtain high yields of bio-oils.
    Matched MeSH terms: Plastics*
  17. Leong YK, Show PL, Lan JC, Krishnamoorthy R, Chu DT, Nagarajan D, et al.
    Bioresour Technol, 2019 Sep;287:121474.
    PMID: 31122870 DOI: 10.1016/j.biortech.2019.121474
    Polyhydroxyalkanoates (PHAs), a family of biodegradable and renewable biopolymers show a huge potential as an alternative to conventional plastics. Extractive bioconversion (in situ product recovery) is a technique that integrates upstream fermentation and downstream purification. In this study, extractive bioconversion of PHAs from Cupriavidus necator H16 was performed via a thermo-separating aqueous two-phase system to reduce the cost and environmental impacts of PHAs production. Key operating parameters, such as polymer concentration, temperature, and pH, were optimized. The strategy achieved a yield and PF of 97.6% and 1.36-fold, respectively at 5% EOPO 3900 concentration, 30 °C fermentation temperature and pH 6. The PHAs production process was also successfully scaled up in a 2 L bioreactor. To the best of our knowledge, this is the first report on extractive fermentation of PHAs from Cupriavidus necator utilizing a thermo-separation system to achieve a better productivity and purity of the target product.
    Matched MeSH terms: Plastics
  18. Zhang C, Show PL, Ho SH
    Bioresour Technol, 2019 Oct;289:121700.
    PMID: 31262543 DOI: 10.1016/j.biortech.2019.121700
    There is a growing interest in developing bio-based biodegradable plastics to reduce the dependence on depleting fossil fuels and provide a sustainable alternative. Bio-based plastics can usually be produced from lipids, proteins or carbohydrates, which are major components of microalgae. Despite its potential for algal plastics, little information is available on strain selection, culture optimization and bioplastics fabrication mechanism. In this review, we summarized the recent developments in understanding the utilization of seaweed polysaccharides, such as alginate and carrageenan for bio-based plastics. In addition, a conceptual biorefinery framework for algal plastics through promising components (e.g., lipids, carbohydrates and proteins) from microalgae is comprehensively presented. Moreover, the reasons for variations in bioplastics performance and underlying mechanism of various algal biocomposites have been critically discussed. We believe this review can provide valuable information to accelerate the development of innovative green technologies for improving the commercial viability of algal plastics.
    Matched MeSH terms: Biodegradable Plastics
  19. Ryu HW, Kim DH, Jae J, Lam SS, Park ED, Park YK
    Bioresour Technol, 2020 Aug;310:123473.
    PMID: 32389430 DOI: 10.1016/j.biortech.2020.123473
    The global economy is threatened by the depletion of fossil resources and fluctuations in fossil fuel prices, and thus it is necessary to exploit sustainable energy sources. Carbon-neutral fuels including bio-oil obtained from biomass pyrolysis can act as alternatives to fossil fuels. Co-pyrolysis of lignocellulosic biomass and plastic is efficient to upgrade the quality of bio-oil because plastic facilitates deoxygenation. However, catalysts are required to produce bio-oil that is suitable for potential use as transportation fuel. This review presents an overview of recent advances in catalytic co-pyrolysis of biomass and plastic from the perspective of chemistry, catalyst, and feedstock pretreatment. Additionally, this review introduces not only recent research results of acid catalysts for catalytic co-pyrolysis, but also recent approaches that utilize base catalysts. Future research directions are suggested for commercially feasible co-pyrolysis process.
    Matched MeSH terms: Plastics*
  20. Seo J, Kim H, Jeon S, Valizadeh S, Khani Y, Jeon BH, et al.
    Bioresour Technol, 2023 Apr;373:128702.
    PMID: 36740100 DOI: 10.1016/j.biortech.2023.128702
    Air gasification of the Wood-Plastic Composite (WPC) was performed over Ni-loaded HZSM-5 catalysts to generate H2-rich gas. Increasing SiO2/Al2O3 ratio (SAR) of HZSM-5 adversely affected catalytic activity, where the highest gas yield (51.38 wt%) and H2 selectivity (27.01 vol%) were acquired using 20 %Ni/HZSM-5(30) than those produced over 20 %Ni/HZSM-5(80) and 20 %Ni/HZSM-5(280). Reducing SAR was also favorably conducive to increasing the acyclic at the expense of cyclic compounds in oil products. These phenomena are attributed to enhanced acid strength and Ni dispersion of 20 %Ni/HZSM-5(30) catalyst. Moreover, catalytic activity in the terms of gas yield and H2 selectivity enhanced with growing Ni loading to 20 %. Also, the addition of promoters (Cu and Ca) to 20 %Ni/HZSM-5(30) boosted the catalytic efficiency for H2-rich gas generation. Raising temperature indicated a positive relevance with the gas yield and H2 selectivity. WPC valorization via gasification technology would be an outstanding outlook in the terms of a waste-to-energy platform.
    Matched MeSH terms: Plastics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links