Displaying publications 1 - 20 of 67 in total

Abstract:
Sort:
  1. Stremenova Spegarova J, Lawless D, Mohamad SMB, Engelhardt KR, Doody G, Shrimpton J, et al.
    Blood, 2020 Aug 27;136(9):1055-1066.
    PMID: 32518946 DOI: 10.1182/blood.2020005844
    Molecular dissection of inborn errors of immunity can help to elucidate the nonredundant functions of individual genes. We studied 3 children with an immune dysregulation syndrome of susceptibility to infection, lymphadenopathy, hepatosplenomegaly, developmental delay, autoimmunity, and lymphoma of B-cell (n = 2) or T-cell (n = 1) origin. All 3 showed early autologous T-cell reconstitution following allogeneic hematopoietic stem cell transplantation. By whole-exome sequencing, we identified rare homozygous germline missense or nonsense variants in a known epigenetic regulator of gene expression: ten-eleven translocation methylcytosine dioxygenase 2 (TET2). Mutated TET2 protein was absent or enzymatically defective for 5-hydroxymethylating activity, resulting in whole-blood DNA hypermethylation. Circulating T cells showed an abnormal immunophenotype including expanded double-negative, but depleted follicular helper, T-cell compartments and impaired Fas-dependent apoptosis in 2 of 3 patients. Moreover, TET2-deficient B cells showed defective class-switch recombination. The hematopoietic potential of patient-derived induced pluripotent stem cells was skewed toward the myeloid lineage. These are the first reported cases of autosomal-recessive germline TET2 deficiency in humans, causing clinically significant immunodeficiency and an autoimmune lymphoproliferative syndrome with marked predisposition to lymphoma. This disease phenotype demonstrates the broad role of TET2 within the human immune system.
    Matched MeSH terms: Induced Pluripotent Stem Cells/pathology
  2. Tan JJ, Guyette JP, Miki K, Xiao L, Kaur G, Wu T, et al.
    Nat Commun, 2021 08 17;12(1):4997.
    PMID: 34404774 DOI: 10.1038/s41467-021-24921-z
    Epicardial formation is necessary for normal myocardial morphogenesis. Here, we show that differentiating hiPSC-derived lateral plate mesoderm with BMP4, RA and VEGF (BVR) can generate a premature form of epicardial cells (termed pre-epicardial cells, PECs) expressing WT1, TBX18, SEMA3D, and SCX within 7 days. BVR stimulation after Wnt inhibition of LPM demonstrates co-differentiation and spatial organization of PECs and cardiomyocytes (CMs) in a single 2D culture. Co-culture consolidates CMs into dense aggregates, which then form a connected beating syncytium with enhanced contractility and calcium handling; while PECs become more mature with significant upregulation of UPK1B, ITGA4, and ALDH1A2 expressions. Our study also demonstrates that PECs secrete IGF2 and stimulate CM proliferation in co-culture. Three-dimensional PEC-CM spheroid co-cultures form outer smooth muscle cell layers on cardiac micro-tissues with organized internal luminal structures. These characteristics suggest PECs could play a key role in enhancing tissue organization within engineered cardiac constructs in vitro.
    Matched MeSH terms: Induced Pluripotent Stem Cells
  3. Lee CY, Huang CH, Rastegari E, Rengganaten V, Liu PC, Tsai PH, et al.
    Int J Mol Sci, 2021 Sep 13;22(18).
    PMID: 34576032 DOI: 10.3390/ijms22189869
    The coronavirus disease 2019 (COVID-19) pandemic with high infectivity and mortality has caused severe social and economic impacts worldwide. Growing reports of COVID-19 patients with multi-organ damage indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) may also disturb the cardiovascular system. Herein, we used human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) as the in vitro platform to examine the consequence of SARS-CoV2 infection on iCMs. Differentiated iCMs expressed the primary SARS-CoV2 receptor angiotensin-converting enzyme-II (ACE2) and the transmembrane protease serine type 2 (TMPRSS2) receptor suggesting the susceptibility of iCMs to SARS-CoV2. Following the infection of iCMs with SARS-CoV2, the viral nucleocapsid (N) protein was detected in the host cells, demonstrating the successful infection. Bioinformatics analysis revealed that the SARS-CoV2 infection upregulates several inflammation-related genes, including the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The pretreatment of iCMs with TNF-α for 24 h, significantly increased the expression of ACE2 and TMPRSS2, SASR-CoV2 entry receptors. The TNF-α pretreatment enhanced the entry of GFP-expressing SARS-CoV2 pseudovirus into iCMs, and the neutralization of TNF-α ameliorated the TNF-α-enhanced viral entry. Collectively, SARS-CoV2 elevated TNF-α expression, which in turn enhanced the SARS-CoV2 viral entry. Our findings suggest that, TNF-α may participate in the cytokine storm and aggravate the myocardial damage in COVID-19 patients.
    Matched MeSH terms: Induced Pluripotent Stem Cells
  4. Ting WJ, Shaw SW, Hii LY, Lin TY, Chang SC, Liu KY, et al.
    Taiwan J Obstet Gynecol, 2020 Jul;59(4):520-526.
    PMID: 32653123 DOI: 10.1016/j.tjog.2020.05.009
    OBJECTIVE: Bovine mastitis results in economic loss due to decrease in milk production. Antibiotic ointments are commonly used for treating. However, residue and anti-microbial resistance warranted attention progressively. Fortunately, stem cell anti-inflammatory properties and paracrine expression of cytokines accelerates wound healing and suppresses inflammatory reactions in mastitis. The objective of this study is to use the conditioned-Dulbecco's pluripotent stem cells (DPBS) from amniotic membrane stem cells (AMSCs) in treating bovine mastitis.

    MATERIALS AND METHODS: The cows with mastitis were divided into two groups. In antibiotic control group, the cows were given tetraneomycin ointment. In conditioned-DPBS of AMSCs treatment group, amniotic membrane was collected for AMSCs after delivery. With expression of surface antigen and potential of tri-linage differentiation, AMSCs were injected into mammary glands. Then, milk was sampled every three days to monitor the effect of both treatments. The quality of milk was measured with pH, titratable acidity, free calcium ions and somatic cell count.

    RESULTS: Our results demonstrated the Bovine AMSCs expressed CD44, low levels of CD4 and no CD105. Bovine AMSCs demonstrated the differentiation capability in the tri-cell lineages. Mastitis treatment with conditioned-DPBS from AMSCs (experimental group) and conventional antibiotics (control group) showed insignificant difference in pH value and titratable acidity. The level of ionic calcium concentration in the conditioned-DPBS group decreased from 3rd day to 12th day, while the level in the antibiotic group decreased from 0 day to 12th day. The somatic cell number was similar in both groups, which meet the standard of Taiwan milk collection.

    CONCLUSION: In conclusion, conditioned-DPBS from bovine AMSCs has the therapeutic potential to treat bovine mastitis and may replace antibiotics therapy in the future.

    Matched MeSH terms: Pluripotent Stem Cells
  5. Chiew MY, Boo NY, Voon K, Cheong SK, Leong PP
    Leuk Lymphoma, 2017 01;58(1):162-170.
    PMID: 27185517
    Acute monocytic leukemia (AML-M5), a subtype of acute myeloid leukemia (AML), affects mostly young children and has poor prognosis. The mechanisms of treatment failure of AML-M5 are still unclear. In this study, we generated iPSC from THP-1 cells from a patient with AML-M5, using retroviruses encoding the pluripotency-associated genes (OCT3/4, SOX2, KLF4 and c-MYC). These AML-M5-derived iPSC showed features similar with those of human embryonic stem cells in terms of the morphology, gene expression, protein/antigen expression and differentiation capability. Parental-specific markers were down-regulated in these AML-M5-derived iPSCs. Expression of MLL-AF9 fusion gene (previously identified to be associated with pathogenesis of AML-M5) was observed in all iPSC clones as well as parental cells. We conclude that AML-M5-specific iPSC clones have been successfully developed. This disease model may provide a novel approach for future study of pathogenesis and therapeutic intervention of AML-M5.
    Matched MeSH terms: Induced Pluripotent Stem Cells/metabolism
  6. Verusingam ND, Yeap SK, Ky H, Paterson IC, Khoo SP, Cheong SK, et al.
    PeerJ, 2017;5:e3174.
    PMID: 28417059 DOI: 10.7717/peerj.3174
    Although numbers of cancer cell lines have been shown to be successfully reprogrammed into induced pluripotent stem cells (iPSCs), reprogramming Oral Squamous Cell Carcinoma (OSCC) to pluripotency in relation to its cancer cell type and the expression pattern of pluripotent genes under later passage remain unexplored. In our study, we reprogrammed and characterised H103 and H376 oral squamous carcinoma cells using retroviral OSKM mediated method. Reprogrammed cells were characterized for their embryonic stem cells (ESCs) like morphology, pluripotent gene expression via quantitative real-time polymerase chain reaction (RT-qPCR), immunofluorescence staining, embryoid bodies (EB) formation and directed differentiation capacity. Reprogrammed H103 (Rep-H103) exhibited similar ESCs morphologies with flatten cells and clear borders on feeder layer. Reprogrammed H376 (Rep-H376) did not show ESCs morphologies but grow with a disorganized morphology. Critical pluripotency genes Oct4, Sox2 and Nanog were expressed higher in Rep-H103 against the parental counterpart from passage 5 to passage 10. As for Rep-H376, Nanog expression against its parental counterpart showed a significant decrease at passage 5 and although increased in passage 10, the level of expression was similar to the parental cells. Rep-H103 exhibited pluripotent signals (Oct4, Sox2, Nanog and Tra-1-60) and could form EB with the presence of three germ layers markers. Rep-H103 displayed differentiation capacity into adipocytes and osteocytes. The OSCC cell line H103 which was able to be reprogrammed into an iPSC like state showed high expression of Oct4, Sox2 and Nanog at late passage and may provide a potential iPSC model to study multi-stage oncogenesis in OSCC.
    Matched MeSH terms: Induced Pluripotent Stem Cells
  7. Che Anuar Che Mohamad, Abdurezak Abdullahi Hashi
    MyJurnal
    The advancement in human stem cell research has promised a viable alternative treatment for a range of ‘incurable diseases’ such as neurological diseases. To date, several studies have documented substantial evidences on the therapeutic properties of stem cells in promoting repair in different diseases including common neurological disorders i.e. ischaemic stroke and spinal cord injury. However, the progress of stem cell research has been surrounded by ethical issues which largely due to the usage of human embryos as one of the sources. These embryonic stem cells which originally derived from human embryo of aborted foetus or already existing human embryonic stem cells (hESCs) lines, has sparked an intense moral and religious argument among people of various faith, including Muslim community. From the therapeutic point of view, amongst the currently available stem cells, hESCs show the greatest potential for the broadest range of cell replacement therapies and are regarded as the most commercially viable. This review focuses on the major ethical issues, particularly to Muslim community, related to human embryonic stem cells research with special emphasis on the moral status of the embryo and the beginning of life according to the Islamic ethics and rulings. In this paper, we also discuss some ethical positions towards embryonic stem cell research in the Islamic world, including official regulations existing in some Muslim countries. We examine the justification and the necessity on the usage of hESCs following the newly discovered Induced Pluripotent Stem Cells (IPSCs) in the laboratory. In addition, we supplement the discussions with the general views and positions from the other two Abrahamic religions i.e. Christianity and Judaism.
    Matched MeSH terms: Induced Pluripotent Stem Cells
  8. Lu J, Wei H, Wu J, Jamil MF, Tan ML, Adenan MI, et al.
    PLoS One, 2014;9(12):e115648.
    PMID: 25535742 DOI: 10.1371/journal.pone.0115648
    INTRODUCTION: Mitragynine is a major bioactive compound of Kratom, which is derived from the leave extracts of Mitragyna speciosa Korth or Mitragyna speciosa (M. speciosa), a medicinal plant from South East Asia used legally in many countries as stimulant with opioid-like effects for the treatment of chronic pain and opioid-withdrawal symptoms. Fatal incidents with Mitragynine have been associated with cardiac arrest. In this study, we determined the cardiotoxicity of Mitragynine and other chemical constituents isolated using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs).

    METHODS AND RESULTS: The rapid delayed rectifier potassium current (IKr), L-type Ca2+ current (ICa,L) and action potential duration (APD) were measured by whole cell patch-clamp. The expression of KCNH2 and cytotoxicity was determined by real-time PCR and Caspase activity measurements. After significant IKr suppression by Mitragynine (10 µM) was confirmed in hERG-HEK cells, we systematically examined the effects of Mitragynine and other chemical constituents in hiPSC-CMs. Mitragynine, Paynantheine, Speciogynine and Speciociliatine, dosage-dependently (0.1∼100 µM) suppressed IKr in hiPSC-CMs by 67%∼84% with IC50 ranged from 0.91 to 2.47 µM. Moreover, Mitragynine (10 µM) significantly prolonged APD at 50 and 90% repolarization (APD50 and APD90) (439.0±11.6 vs. 585.2±45.5 ms and 536.0±22.6 vs. 705.9±46.1 ms, respectively) and induced arrhythmia, without altering the L-type Ca2+ current. Neither the expression, and intracellular distribution of KCNH2/Kv11.1, nor the Caspase 3 activity were significantly affected by Mitragynine.

    CONCLUSIONS: Our study indicates that Mitragynine and its analogues may potentiate Torsade de Pointes through inhibition of IKr in human cardiomyocytes.

    Matched MeSH terms: Induced Pluripotent Stem Cells/cytology
  9. Xin LZ, Govindasamy V, Musa S, Abu Kasim NH
    Med Hypotheses, 2013 Oct;81(4):704-6.
    PMID: 23932760 DOI: 10.1016/j.mehy.2013.07.032
    Dental tissues contains stem cells or progenitors that have high proliferative capacity, are clonogenic in vitro and demonstrate the ability to differentiate to multiple type cells involving neurons, bone, cartilage, fat and smooth muscle. Numerous experiments have demonstrated that the multipotent stem cells are not rejected by immune system and therefore it may be possible to use these cells in allogeneic settings. In addition, these remarkable cells are easily abundantly available couple with less invasive procedure in isolating comparing to bone marrow aspiration. Here we proposed dental stem cells as candidate for cardiac regeneration based on its immature characteristic and propensity towards cardiac lineage via PI3-Kinase/Aktsignalling pathway.
    Matched MeSH terms: Pluripotent Stem Cells/transplantation*
  10. Lai MI, Wendy-Yeo WY, Ramasamy R, Nordin N, Rosli R, Veerakumarasivam A, et al.
    J Assist Reprod Genet, 2011 Apr;28(4):291-301.
    PMID: 21384252 DOI: 10.1007/s10815-011-9552-6
    Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells has emerged as an invaluable method for generating patient-specific stem cells of any lineage without the use of embryonic materials. Following the first reported generation of iPS cells from murine fibroblasts using retroviral transduction of a defined set of transcription factors, various new strategies have been developed to improve and refine the reprogramming technology. Recent developments provide optimism that the generation of safe iPS cells without any genomic modification could be derived in the near future for the use in clinical settings. This review summarizes current and evolving strategies in the generation of iPS cells, including types of somatic cells for reprogramming, variations of reprogramming genes, reprogramming methods, and how the advancement iPS cells technology can lead to the future success of reproductive medicine.
    Matched MeSH terms: Induced Pluripotent Stem Cells/cytology*
  11. Alhaji SY, Nordin N, Ngai SC, Al Abbar A, Mei L, Abdullah S
    Gene, 2020 Oct 20;758:144958.
    PMID: 32683073 DOI: 10.1016/j.gene.2020.144958
    Short-lived therapeutic gene expression in mammalian cells by DNA methylation is one of the major challenges in gene therapy. In this study, we assessed the implication of DNA methylation on the duration of GFP expression in mouse embryonic stem (ES) and mouse induced pluripotent stem (iPS) cells. The cells were transduced with lentivirus (LV) carrying green fluorescent protein (GFP) driven by either human elongation factor (EF1α) or cytomegalovirus (CMV) promoter. Transduced iPS cells exhibited higher percentage of GFP+ cells with persistent mean fluorescent intensity than transduced ES cells. Analysis on the integrated copy of transgene in the population of the transduced cells demonstrated similar copy number. However, significant increase in GFP intensity following 5-azaC treatment was observed in transduced ES cells only, suggesting the influence of DNA methylation in transgene silencing. Subsequent DNA methylation analysis showed that the promoter and the GFP region of the provirus in iPS cells had negligible methylation profile compared to transduced ES cells. Interestingly, sustained transgene expression was observed upon directed differentiation of transduced iPS cells towards CD34+ CD45+ cells. Hence, this study has shown that favourable transgene activity from lentiviral transduced iPS cells was due to the lack of methylation at the proviral regions.
    Matched MeSH terms: Induced Pluripotent Stem Cells/metabolism*
  12. Liau LL, Ruszymah BHI, Ng MH, Law JX
    Curr Res Transl Med, 2020 01;68(1):5-16.
    PMID: 31543433 DOI: 10.1016/j.retram.2019.09.001
    Mesenchymal stromal cells (MSCs) are widely used in the clinic because they involve fewer ethical issues and safety concerns compared to other stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). MSCs derived from umbilical cord Wharton's jelly (WJ-MSCs) have excellent proliferative potential and a faster growth rate and can retain their multipotency for more passages in vitro compared to adult MSCs from bone marrow or adipose tissue. WJ-MSCs are used clinically for repairing tissue injuries of the spinal cord, liver and heart with the aim of regenerating tissue. On the other hand, WJ-MSCs are also used clinically to ameliorate immune-mediated diseases based on their ability to modulate immune responses. In the field of tissue engineering, WJ-MSCs capable of differentiating into multiple cell lineages have been used to produce a variety of engineered tissues in vitro that can then be transplanted in vivo. This review discusses the characteristics of WJ-MSCs, the differences between WJ-MSCs and adult MSCs, clinical studies involving WJ-MSCs and future perspectives of WJ-MSC research and clinical applications. To summarize, WJ-MSCs have shown promise in treating a variety of diseases clinically. However, most clinical trials/studies reported thus far are relatively smaller in scale. The collected evidence is insufficient to support the routine use of WJ-MSC therapy in the clinic. Thus, rigorous clinical trials are needed in the future to obtain more information on WJ-MSC therapy safety and efficacy.
    Matched MeSH terms: Induced Pluripotent Stem Cells/cytology
  13. Kalra K, Chandrabose ST, Ramasamy TS, Kasim NHBA
    Curr Drug Targets, 2018;19(13):1463-1477.
    PMID: 29874998 DOI: 10.2174/1389450119666180605112917
    Diabetes mellitus is one of the leading causes of death worldwide. Loss and functional failure of pancreatic β-cells, the parenchyma cells in the islets of Langerhans, progress diabetes mellitus. The increasing incidence of this metabolic disorder necessitates efficient strategies to produce functional β-cells for treating diabetes mellitus. Human induced Pluripotent Stem Cells (hiPSC), hold potential for treating diabetes ownig to their self-renewal capacity and the ability to differentiate into β- cells. iPSC technology also provides unlimited starting material to generate differentiated cells for regenerative applications. Progress has also been made in establishing in-vitro culture protocols to yield definitive endoderm, pancreatic endoderm progenitor cells and β-cells via different reprogramming strategies and growth factor supplementation. However, these generated β-cells are still immature, lack functional characteristics and exhibit lower capability in reversing the diseases conditions. Current methods employed to generate mature and functional β-cells include; use of small and large molecules to enhance the reprogramming and differentiation efficiency, 3D culture systems to improve the functional properties and heterogeneity of differentiated cells. This review details recent advancements in the generation of mature β-cells by reprogramming stem cells into iPSCs that are further programmed to β-cells. It also provides deeper insight into current reprogramming protocols and their efficacy, focusing on the underlying mechanism of chemical-based approach to generate iPSCs. Furthermore, we have highlighted the recent differentiation strategies both in-vitro and in-vivo to date and the future prospects in the generation of mature β-cells.
    Matched MeSH terms: Induced Pluripotent Stem Cells/cytology*
  14. Meyer K, Feldman HM, Lu T, Drake D, Lim ET, Ling KH, et al.
    Cell Rep, 2019 01 29;26(5):1112-1127.e9.
    PMID: 30699343 DOI: 10.1016/j.celrep.2019.01.023
    The molecular basis of the earliest neuronal changes that lead to Alzheimer's disease (AD) is unclear. Here, we analyze neural cells derived from sporadic AD (SAD), APOE4 gene-edited and control induced pluripotent stem cells (iPSCs). We observe major differences in iPSC-derived neural progenitor (NP) cells and neurons in gene networks related to neuronal differentiation, neurogenesis, and synaptic transmission. The iPSC-derived neural cells from SAD patients exhibit accelerated neural differentiation and reduced progenitor cell renewal. Moreover, a similar phenotype appears in NP cells and cerebral organoids derived from APOE4 iPSCs. Impaired function of the transcriptional repressor REST is strongly implicated in the altered transcriptome and differentiation state. SAD and APOE4 expression result in reduced REST nuclear translocation and chromatin binding, and disruption of the nuclear lamina. Thus, dysregulation of neural gene networks may set in motion the pathologic cascade that leads to AD.
    Matched MeSH terms: Induced Pluripotent Stem Cells/metabolism*
  15. Rabbolini DJ, Morel-Kopp MC, Chen Q, Gabrielli S, Dunlop LC, Chew LP, et al.
    J Thromb Haemost, 2017 Nov;15(11):2245-2258.
    PMID: 28880435 DOI: 10.1111/jth.13843
    Essentials The phenotypes of different growth factor-independent 1B (GFI1B) variants are not established. GFI1B variants produce heterogeneous clinical phenotypes dependent on the site of mutation. Mutation of the first non-DNA-binding zinc-finger causes a mild platelet and clinical phenotype. GFI1B regulates the CD34 promoter; platelet CD34 expression is an indicator of GFI1B mutation.

    SUMMARY: Background Mutation of the growth factor-independent 1B (GFI1B) fifth DNA-binding zinc-finger domain causes macrothrombocytopenia and α-granule deficiency leading to clinical bleeding. The phenotypes associated with GFI1B variants disrupting non-DNA-binding zinc-fingers remain uncharacterized. Objectives To determine the functional and phenotypic consequences of GFI1B variants disrupting non-DNA-binding zinc-finger domains. Methods The GFI1B C168F variant and a novel GFI1B c.2520 + 1_2520 + 8delGTGGGCAC splice variant were identified in four unrelated families. Phenotypic features, DNA-binding properties and transcriptional effects were determined and compared with those in individuals with a GFI1B H294 fs mutation of the fifth DNA-binding zinc-finger. Patient-specific induced pluripotent stem cell (iPSC)-derived megakaryocytes were generated to facilitate disease modeling. Results The DNA-binding GFI1B variant C168F, which is predicted to disrupt the first non-DNA-binding zinc-finger domain, is associated with macrothrombocytopenia without α-granule deficiency or bleeding symptoms. A GFI1B splice variant, c.2520 + 1_2520 + 8delGTGGGCAC, which generates a short GFI1B isoform that lacks non-DNA-binding zinc-fingers 1 and 2, is associated with increased platelet CD34 expression only, without quantitative or morphologic platelet abnormalities. GFI1B represses the CD34 promoter, and this repression is attenuated by different GFI1B zinc-finger mutations, suggesting that deregulation of CD34 expression occurs at a direct transcriptional level. Patient-specific iPSC-derived megakaryocytes phenocopy these observations. Conclusions Disruption of GFI1B non-DNA-binding zinc-finger 1 is associated with mild to moderate thrombocytopenia without α-granule deficiency or bleeding symptomatology, indicating that the site of GFI1B mutation has important phenotypic implications. Platelet CD34 expression appears to be a common feature of perturbed GFI1B function, and may have diagnostic utility.

    Matched MeSH terms: Induced Pluripotent Stem Cells/metabolism*
  16. Govindasamy V, Abdullah AN, Ronald VS, Musa S, Ab Aziz ZA, Zain RB, et al.
    J Endod, 2010 Sep;36(9):1504-15.
    PMID: 20728718 DOI: 10.1016/j.joen.2010.05.006
    Lately, several new stem cell sources and their effective isolation have been reported that claim to have potential for therapeutic applications. However, it is not yet clear which type of stem cell sources are most potent and best for targeted therapy. Lack of understanding of nature of these cells and their lineage-specific propensity might hinder their full potential. Therefore, understanding the gene expression profile that indicates their lineage-specific proclivity is fundamental to the development of successful cell-based therapies.
    Matched MeSH terms: Pluripotent Stem Cells/cytology; Pluripotent Stem Cells/physiology
  17. Garza-Manero S, Sindi AAA, Mohan G, Rehbini O, Jeantet VHM, Bailo M, et al.
    Epigenetics Chromatin, 2019 12 12;12(1):73.
    PMID: 31831052 DOI: 10.1186/s13072-019-0320-7
    BACKGROUND: Members of the HMGN protein family modulate chromatin structure and influence epigenetic modifications. HMGN1 and HMGN2 are highly expressed during early development and in the neural stem/progenitor cells of the developing and adult brain. Here, we investigate whether HMGN proteins contribute to the chromatin plasticity and epigenetic regulation that is essential for maintaining pluripotency in stem cells.

    RESULTS: We show that loss of Hmgn1 or Hmgn2 in pluripotent embryonal carcinoma cells leads to increased levels of spontaneous neuronal differentiation. This is accompanied by the loss of pluripotency markers Nanog and Ssea1, and increased expression of the pro-neural transcription factors Neurog1 and Ascl1. Neural stem cells derived from these Hmgn-knockout lines also show increased spontaneous neuronal differentiation and Neurog1 expression. The loss of HMGN2 leads to a global reduction in H3K9 acetylation, and disrupts the profile of H3K4me3, H3K9ac, H3K27ac and H3K122ac at the Nanog and Oct4 loci. At endodermal/mesodermal genes, Hmgn2-knockout cells show a switch from a bivalent to a repressive chromatin configuration. However, at neuronal lineage genes whose expression is increased, no epigenetic changes are observed and their bivalent states are retained following the loss of HMGN2.

    CONCLUSIONS: We conclude that HMGN1 and HMGN2 maintain the identity of pluripotent embryonal carcinoma cells by optimising the pluripotency transcription factor network and protecting the cells from precocious differentiation. Our evidence suggests that HMGN2 regulates active and bivalent genes by promoting an epigenetic landscape of active histone modifications at promoters and enhancers.

    Matched MeSH terms: Pluripotent Stem Cells/cytology; Pluripotent Stem Cells/metabolism
  18. Musa S, Xin LZ, Govindasamy V, Fuen FW, Kasim NH
    Expert Opin Biol Ther, 2014 Jan;14(1):63-73.
    PMID: 24191782 DOI: 10.1517/14712598.2014.858694
    Acute myocardial infarction is the primary cause of heart disease-related death in the world. Reperfusion therapy is currently the backbone of treatment for acute myocardial infarction albeit with many limitations. With the emergence of stem cells as potential therapeutic agents, attempts in using them to enhance cardiac function have increased exponentially. However, it has its own disadvantages, and we postulate that the primary drawback is choosing the right cell type and solving this may significantly contribute to ambitious goal of using stem cells in the regeneration medicine.
    Matched MeSH terms: Induced Pluripotent Stem Cells/transplantation*
  19. Mok PL, Cheong SK, Leong CF, Othman A
    Cytotherapy, 2008;10(2):116-24.
    PMID: 18368590 DOI: 10.1080/14653240701816996
    Mesenchymal stromal cells (MSC) are pluripotent progenitor cells that can be found in human bone marrow (BM). These cells have low immunogenicity and could suppress alloreactive T-cell responses. In the current study, MSC were tested for their capacity to carry and deliver the erythropoietin (EPO) gene in vitro.
    Matched MeSH terms: Pluripotent Stem Cells/cytology
  20. Lee SY, George JH, Nagel DA, Ye H, Kueberuwa G, Seymour LW
    J Tissue Eng Regen Med, 2019 Mar;13(3):369-384.
    PMID: 30550638 DOI: 10.1002/term.2786
    Development of an optogenetically controllable human neural network model in three-dimensional (3D) cultures can provide an investigative system that is more physiologically relevant and better able to mimic aspects of human brain function. Light-sensitive neurons were generated by transducing channelrhodopsin-2 (ChR2) into human induced pluripotent stem cell (hiPSC) derived neural progenitor cells (Axol) using lentiviruses and cell-type specific promoters. A mixed population of human iPSC-derived cortical neurons, astrocytes and progenitor cells were obtained (Axol-ChR2) upon neural differentiation. Pan-neuronal promoter synapsin-1 (SYN1) and excitatory neuron-specific promoter calcium-calmodulin kinase II (CaMKII) were used to drive reporter gene expression in order to assess the differentiation status of the targeted cells. Expression of ChR2 and characterisation of subpopulations in differentiated Axol-ChR2 cells were evaluated using flow cytometry and immunofluorescent staining. These cells were transferred from 2D culture to 3D alginate hydrogel functionalised with arginine-glycine-aspartate (RGD) and small molecules (Y-27632). Improved RGD-alginate hydrogel was physically characterised and assessed for cell viability to serve as a generic 3D culture system for human pluripotent stem cells (hPSCs) and neuronal cells. Prior to cell encapsulation, neural network activities of Axol-ChR2 cells and primary neurons were investigated using calcium imaging. Results demonstrate that functional activities were successfully achieved through expression of ChR2- by both the CaMKII and SYN1 promoters. The RGD-alginate hydrogel system supports the growth of differentiated Axol-ChR2 cells whilst allowing detection of ChR2 expression upon light stimulation. This allows precise and non-invasive control of human neural networks in 3D.
    Matched MeSH terms: Pluripotent Stem Cells; Induced Pluripotent Stem Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links